1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
|
/* Target-dependent code for UltraSPARC.
Copyright 2003 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "arch-utils.h"
#include "floatformat.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "gdbtypes.h"
#include "osabi.h"
#include "regcache.h"
#include "target.h"
#include "value.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "sparc64-tdep.h"
/* This file implements the The SPARC 64-bit ABI as defined by the
section "Low-Level System Information" of the SPARC Compliance
Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
SPARC. */
/* Please use the sparc32_-prefix for 32-bit specific code, the
sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
code can handle both. */
/* The stack pointer is offset from the stack frame by a BIAS of 2047
(0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
hosts, so undefine it first. */
#undef BIAS
#define BIAS 2047
/* Macros to extract fields from SPARC instructions. */
#define X_OP(i) (((i) >> 30) & 0x3)
#define X_A(i) (((i) >> 29) & 1)
#define X_COND(i) (((i) >> 25) & 0xf)
#define X_OP2(i) (((i) >> 22) & 0x7)
#define X_IMM22(i) ((i) & 0x3fffff)
#define X_OP3(i) (((i) >> 19) & 0x3f)
/* Sign extension macros. */
#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
/* Fetch the instruction at PC. Instructions are always big-endian
even if the processor operates in little-endian mode. */
static unsigned long
sparc_fetch_instruction (CORE_ADDR pc)
{
unsigned char buf[4];
unsigned long insn;
int i;
read_memory (pc, buf, sizeof (buf));
insn = 0;
for (i = 0; i < sizeof (buf); i++)
insn = (insn << 8) | buf[i];
return insn;
}
/* The functions on this page are intended to be used to classify
function arguments. */
/* Return the contents if register REGNUM as an address. */
static CORE_ADDR
sparc_address_from_register (int regnum)
{
ULONGEST addr;
regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
return addr;
}
/* Check whether TYPE is "Integral or Pointer". */
static int
sparc64_integral_or_pointer_p (const struct type *type)
{
switch (TYPE_CODE (type))
{
case TYPE_CODE_INT:
case TYPE_CODE_BOOL:
case TYPE_CODE_CHAR:
case TYPE_CODE_ENUM:
case TYPE_CODE_RANGE:
{
int len = TYPE_LENGTH (type);
gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
}
return 1;
case TYPE_CODE_PTR:
case TYPE_CODE_REF:
{
int len = TYPE_LENGTH (type);
gdb_assert (len == 8);
}
return 1;
default:
break;
}
return 0;
}
/* Check whether TYPE is "Floating". */
static int
sparc64_floating_p (const struct type *type)
{
switch (TYPE_CODE (type))
{
case TYPE_CODE_FLT:
{
int len = TYPE_LENGTH (type);
gdb_assert (len == 4 || len == 8 || len == 16);
}
return 1;
default:
break;
}
return 0;
}
/* Check whether TYPE is "Structure or Union". */
static int
sparc64_structure_or_union_p (const struct type *type)
{
switch (TYPE_CODE (type))
{
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
return 1;
default:
break;
}
return 0;
}
/* UltraSPARC architecture specific information. */
struct gdbarch_tdep
{
/* Offset of saved PC in jmp_buf. */
int jb_pc_offset;
};
/* Register information. */
struct sparc64_register_info
{
char *name;
struct type **type;
};
static struct sparc64_register_info sparc64_register_info[] =
{
{ "g0", &builtin_type_int64 },
{ "g1", &builtin_type_int64 },
{ "g2", &builtin_type_int64 },
{ "g3", &builtin_type_int64 },
{ "g4", &builtin_type_int64 },
{ "g5", &builtin_type_int64 },
{ "g6", &builtin_type_int64 },
{ "g7", &builtin_type_int64 },
{ "o0", &builtin_type_int64 },
{ "o1", &builtin_type_int64 },
{ "o2", &builtin_type_int64 },
{ "o3", &builtin_type_int64 },
{ "o4", &builtin_type_int64 },
{ "o5", &builtin_type_int64 },
{ "sp", &builtin_type_void_data_ptr },
{ "o7", &builtin_type_int64 },
{ "l0", &builtin_type_int64 },
{ "l1", &builtin_type_int64 },
{ "l2", &builtin_type_int64 },
{ "l3", &builtin_type_int64 },
{ "l4", &builtin_type_int64 },
{ "l5", &builtin_type_int64 },
{ "l6", &builtin_type_int64 },
{ "l7", &builtin_type_int64 },
{ "i0", &builtin_type_int64 },
{ "i1", &builtin_type_int64 },
{ "i2", &builtin_type_int64 },
{ "i3", &builtin_type_int64 },
{ "i4", &builtin_type_int64 },
{ "i5", &builtin_type_int64 },
{ "fp", &builtin_type_void_data_ptr },
{ "i7", &builtin_type_int64 },
{ "f0", &builtin_type_float },
{ "f1", &builtin_type_float },
{ "f2", &builtin_type_float },
{ "f3", &builtin_type_float },
{ "f4", &builtin_type_float },
{ "f5", &builtin_type_float },
{ "f6", &builtin_type_float },
{ "f7", &builtin_type_float },
{ "f8", &builtin_type_float },
{ "f9", &builtin_type_float },
{ "f10", &builtin_type_float },
{ "f11", &builtin_type_float },
{ "f12", &builtin_type_float },
{ "f13", &builtin_type_float },
{ "f14", &builtin_type_float },
{ "f15", &builtin_type_float },
{ "f16", &builtin_type_float },
{ "f17", &builtin_type_float },
{ "f18", &builtin_type_float },
{ "f19", &builtin_type_float },
{ "f20", &builtin_type_float },
{ "f21", &builtin_type_float },
{ "f22", &builtin_type_float },
{ "f23", &builtin_type_float },
{ "f24", &builtin_type_float },
{ "f25", &builtin_type_float },
{ "f26", &builtin_type_float },
{ "f27", &builtin_type_float },
{ "f28", &builtin_type_float },
{ "f29", &builtin_type_float },
{ "f30", &builtin_type_float },
{ "f31", &builtin_type_float },
{ "f32", &builtin_type_double },
{ "f34", &builtin_type_double },
{ "f36", &builtin_type_double },
{ "f38", &builtin_type_double },
{ "f40", &builtin_type_double },
{ "f42", &builtin_type_double },
{ "f44", &builtin_type_double },
{ "f46", &builtin_type_double },
{ "f48", &builtin_type_double },
{ "f50", &builtin_type_double },
{ "f52", &builtin_type_double },
{ "f54", &builtin_type_double },
{ "f56", &builtin_type_double },
{ "f58", &builtin_type_double },
{ "f60", &builtin_type_double },
{ "f62", &builtin_type_double },
{ "pc", &builtin_type_void_func_ptr },
{ "npc", &builtin_type_void_func_ptr },
/* This raw register contains the contents of %cwp, %pstate, %asi
and %ccr as laid out in a %tstate register. */
/* FIXME: Give it a name until we start using register groups. */
{ "state", &builtin_type_int64 },
{ "fsr", &builtin_type_int64 },
{ "fprs", &builtin_type_int64 },
/* "Although Y is a 64-bit register, its high-order 32 bits are
reserved and always read as 0." */
{ "y", &builtin_type_int64 }
};
/* Total number of registers. */
#define SPARC64_NUM_REGS \
(sizeof (sparc64_register_info) / sizeof (sparc64_register_info[0]))
/* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
registers as "psuedo" registers. */
static struct sparc64_register_info sparc64_pseudo_register_info[] =
{
{ "cwp", &builtin_type_int64 },
{ "pstate", &builtin_type_int64 },
{ "asi", &builtin_type_int64 },
{ "ccr", &builtin_type_int64 },
{ "d0", &builtin_type_double },
{ "d2", &builtin_type_double },
{ "d4", &builtin_type_double },
{ "d6", &builtin_type_double },
{ "d8", &builtin_type_double },
{ "d10", &builtin_type_double },
{ "d12", &builtin_type_double },
{ "d14", &builtin_type_double },
{ "d16", &builtin_type_double },
{ "d18", &builtin_type_double },
{ "d20", &builtin_type_double },
{ "d22", &builtin_type_double },
{ "d24", &builtin_type_double },
{ "d26", &builtin_type_double },
{ "d28", &builtin_type_double },
{ "d30", &builtin_type_double },
{ "d32", &builtin_type_double },
{ "d34", &builtin_type_double },
{ "d36", &builtin_type_double },
{ "d38", &builtin_type_double },
{ "d40", &builtin_type_double },
{ "d42", &builtin_type_double },
{ "d44", &builtin_type_double },
{ "d46", &builtin_type_double },
{ "d48", &builtin_type_double },
{ "d50", &builtin_type_double },
{ "d52", &builtin_type_double },
{ "d54", &builtin_type_double },
{ "d56", &builtin_type_double },
{ "d58", &builtin_type_double },
{ "d60", &builtin_type_double },
{ "d62", &builtin_type_double },
{ "q0", &builtin_type_long_double },
{ "q4", &builtin_type_long_double },
{ "q8", &builtin_type_long_double },
{ "q12", &builtin_type_long_double },
{ "q16", &builtin_type_long_double },
{ "q20", &builtin_type_long_double },
{ "q24", &builtin_type_long_double },
{ "q28", &builtin_type_long_double },
{ "q32", &builtin_type_long_double },
{ "q36", &builtin_type_long_double },
{ "q40", &builtin_type_long_double },
{ "q44", &builtin_type_long_double },
{ "q48", &builtin_type_long_double },
{ "q52", &builtin_type_long_double },
{ "q56", &builtin_type_long_double },
{ "q60", &builtin_type_long_double }
};
/* Total number of pseudo registers. */
#define SPARC64_NUM_PSEUDO_REGS \
(sizeof (sparc64_pseudo_register_info) \
/ sizeof (sparc64_pseudo_register_info[0]))
/* Return the name of register REGNUM. */
static const char *
sparc64_register_name (int regnum)
{
if (regnum >= 0 && regnum < SPARC64_NUM_REGS)
return sparc64_register_info[regnum].name;
if (regnum >= SPARC64_NUM_REGS
&& regnum < SPARC64_NUM_REGS + SPARC64_NUM_PSEUDO_REGS)
return sparc64_pseudo_register_info[regnum - SPARC64_NUM_REGS].name;
return NULL;
}
/* Return the GDB type object for the "standard" data type of data in
register REGNUM. */
static struct type *
sparc64_register_type (struct gdbarch *gdbarch, int regnum)
{
if (regnum >= SPARC64_NUM_REGS
&& regnum < SPARC64_NUM_REGS + SPARC64_NUM_PSEUDO_REGS)
return *sparc64_pseudo_register_info[regnum - SPARC64_NUM_REGS].type;
gdb_assert (regnum >= 0 && regnum < SPARC64_NUM_REGS);
return *sparc64_register_info[regnum].type;
}
static void
sparc64_pseudo_register_read (struct gdbarch *gdbarch,
struct regcache *regcache,
int regnum, void *buf)
{
gdb_assert (regnum >= SPARC64_NUM_REGS);
if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
{
regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
regcache_raw_read (regcache, regnum, buf);
regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4);
}
else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
{
regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
regcache_raw_read (regcache, regnum, buf);
}
else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
{
regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
regcache_raw_read (regcache, regnum, buf);
regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4);
regcache_raw_read (regcache, regnum + 2, ((char *)buf) + 8);
regcache_raw_read (regcache, regnum + 3, ((char *)buf) + 12);
}
else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
{
regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
regcache_raw_read (regcache, regnum, buf);
regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 8);
}
else if (regnum == SPARC64_CWP_REGNUM
|| regnum == SPARC64_PSTATE_REGNUM
|| regnum == SPARC64_ASI_REGNUM
|| regnum == SPARC64_CCR_REGNUM)
{
ULONGEST state;
regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
switch (regnum)
{
case SPARC64_CWP_REGNUM:
state = (state >> 0) & ((1 << 5) - 1);
break;
case SPARC64_PSTATE_REGNUM:
state = (state >> 8) & ((1 << 12) - 1);
break;
case SPARC64_ASI_REGNUM:
state = (state >> 24) & ((1 << 8) - 1);
break;
case SPARC64_CCR_REGNUM:
state = (state >> 32) & ((1 << 8) - 1);
break;
}
store_unsigned_integer (buf, 8, state);
}
}
static void
sparc64_pseudo_register_write (struct gdbarch *gdbarch,
struct regcache *regcache,
int regnum, const void *buf)
{
gdb_assert (regnum >= SPARC64_NUM_REGS);
if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
{
regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
regcache_raw_write (regcache, regnum, buf);
regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4);
}
else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
{
regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
regcache_raw_write (regcache, regnum, buf);
}
else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
{
regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
regcache_raw_write (regcache, regnum, buf);
regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4);
regcache_raw_write (regcache, regnum + 2, ((const char *)buf) + 8);
regcache_raw_write (regcache, regnum + 3, ((const char *)buf) + 12);
}
else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
{
regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
regcache_raw_write (regcache, regnum, buf);
regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 8);
}
else if (regnum == SPARC64_CWP_REGNUM
|| regnum == SPARC64_PSTATE_REGNUM
|| regnum == SPARC64_ASI_REGNUM
|| regnum == SPARC64_CCR_REGNUM)
{
ULONGEST state, bits;
regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
bits = extract_unsigned_integer (buf, 8);
switch (regnum)
{
case SPARC64_CWP_REGNUM:
state |= ((bits & ((1 << 5) - 1)) << 0);
break;
case SPARC64_PSTATE_REGNUM:
state |= ((bits & ((1 << 12) - 1)) << 8);
break;
case SPARC64_ASI_REGNUM:
state |= ((bits & ((1 << 8) - 1)) << 24);
break;
case SPARC64_CCR_REGNUM:
state |= ((bits & ((1 << 8) - 1)) << 32);
break;
}
regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
}
}
/* Use the program counter to determine the contents and size of a
breakpoint instruction. Return a pointer to a string of bytes that
encode a breakpoint instruction, store the length of the string in
*LEN and optionally adjust *PC to point to the correct memory
location for inserting the breakpoint. */
static const unsigned char *
sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
{
static unsigned char break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
*len = sizeof (break_insn);
return break_insn;
}
struct sparc64_frame_cache
{
/* Base address. */
CORE_ADDR base;
CORE_ADDR pc;
/* Do we have a frame? */
int frameless_p;
};
/* Allocate and initialize a frame cache. */
static struct sparc64_frame_cache *
sparc64_alloc_frame_cache (void)
{
struct sparc64_frame_cache *cache;
int i;
cache = FRAME_OBSTACK_ZALLOC (struct sparc64_frame_cache);
/* Base address. */
cache->base = 0;
cache->pc = 0;
/* Frameless until proven otherwise. */
cache->frameless_p = 1;
return cache;
}
static CORE_ADDR
sparc64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
struct sparc64_frame_cache *cache)
{
unsigned long insn;
if (current_pc <= pc)
return current_pc;
/* Check whether the function starts with a SAVE instruction. */
insn = sparc_fetch_instruction (pc);
if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
{
cache->frameless_p = 0;
return pc + 4;
}
return pc;
}
static CORE_ADDR
sparc64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, SPARC64_PC_REGNUM);
}
/* Return PC of first real instruction of the function starting at
START_PC. */
static CORE_ADDR
sparc64_skip_prologue (CORE_ADDR start_pc)
{
struct symtab_and_line sal;
CORE_ADDR func_start, func_end;
struct sparc64_frame_cache cache;
/* This is the preferred method, find the end of the prologue by
using the debugging information. */
if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
{
sal = find_pc_line (func_start, 0);
if (sal.end < func_end
&& start_pc <= sal.end)
return sal.end;
}
return sparc64_analyze_prologue (start_pc, 0xffffffffffffffffUL, &cache);
}
/* Normal frames. */
static struct sparc64_frame_cache *
sparc64_frame_cache (struct frame_info *next_frame, void **this_cache)
{
struct sparc64_frame_cache *cache;
if (*this_cache)
return *this_cache;
cache = sparc64_alloc_frame_cache ();
*this_cache = cache;
/* In priciple, for normal frames, %fp (%i6) holds the frame
pointer, which holds the base address for the current stack
frame. */
cache->base = frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
if (cache->base == 0)
return cache;
cache->pc = frame_func_unwind (next_frame);
if (cache->pc != 0)
sparc64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
if (cache->frameless_p)
{
/* We didn't find a valid frame, which means that CACHE->base
currently holds the frame pointer for our calling frame. */
cache->base = frame_unwind_register_unsigned (next_frame,
SPARC_SP_REGNUM);
}
return cache;
}
static void
sparc64_frame_this_id (struct frame_info *next_frame, void **this_cache,
struct frame_id *this_id)
{
struct sparc64_frame_cache *cache =
sparc64_frame_cache (next_frame, this_cache);
/* This marks the outermost frame. */
if (cache->base == 0)
return;
(*this_id) = frame_id_build (cache->base, cache->pc);
}
static void
sparc64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, void *valuep)
{
struct sparc64_frame_cache *cache =
sparc64_frame_cache (next_frame, this_cache);
if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
{
*optimizedp = 0;
*lvalp = not_lval;
*addrp = 0;
*realnump = -1;
if (valuep)
{
CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
store_unsigned_integer (valuep, 8, pc);
}
return;
}
/* The previous frame's `local' and `in' registers have been saved
in the register save area. */
if (!cache->frameless_p
&& regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
{
*optimizedp = 0;
*lvalp = lval_memory;
*addrp = cache->base + BIAS + (regnum - SPARC_L0_REGNUM) * 8;
*realnump = -1;
if (valuep)
{
struct gdbarch *gdbarch = get_frame_arch (next_frame);
/* Read the value in from memory. */
read_memory (*addrp, valuep, register_size (gdbarch, regnum));
}
return;
}
/* The previous frame's `out' registers are accessable as the
current frame's `in' registers. */
if (!cache->frameless_p
&& regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
frame_register_unwind (next_frame, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind sparc64_frame_unwind =
{
NORMAL_FRAME,
sparc64_frame_this_id,
sparc64_frame_prev_register
};
static const struct frame_unwind *
sparc64_frame_sniffer (struct frame_info *next_frame)
{
return &sparc64_frame_unwind;
}
static CORE_ADDR
sparc64_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
struct sparc64_frame_cache *cache =
sparc64_frame_cache (next_frame, this_cache);
/* ??? Should we take BIAS into account here? */
return cache->base;
}
static const struct frame_base sparc64_frame_base =
{
&sparc64_frame_unwind,
sparc64_frame_base_address,
sparc64_frame_base_address,
sparc64_frame_base_address
};
static struct frame_id
sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
CORE_ADDR sp;
sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
return frame_id_build (sp, frame_pc_unwind (next_frame));
}
/* Check whether TYPE must be 16-byte aligned. */
static int
sparc64_16_byte_align_p (struct type *type)
{
if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
return 1;
if (sparc64_structure_or_union_p (type))
{
int i;
for (i = 0; i < TYPE_NFIELDS (type); i++)
if (sparc64_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
return 1;
}
return 0;
}
/* Store floating fields of element ELEMENT of an "parameter array"
that has type TYPE and is stored at BITPOS in VALBUF in the
apropriate registers of REGCACHE. This function can be called
recursively and therefore handles floating types in addition to
structures. */
static void
sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
char *valbuf, int element, int bitpos)
{
gdb_assert (element < 16);
if (sparc64_floating_p (type))
{
int len = TYPE_LENGTH (type);
int regnum;
if (len == 16)
{
gdb_assert (bitpos == 0);
gdb_assert ((element % 2) == 0);
regnum = SPARC64_Q0_REGNUM + element / 2;
regcache_cooked_write (regcache, regnum, valbuf);
}
else if (len == 8)
{
gdb_assert (bitpos == 0 || bitpos == 64);
regnum = SPARC64_D0_REGNUM + element + bitpos / 64;
regcache_cooked_write (regcache, regnum, valbuf + (bitpos / 8));
}
else
{
gdb_assert (len == 4);
gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
regcache_cooked_write (regcache, regnum, valbuf + (bitpos / 8));
}
}
else if (sparc64_structure_or_union_p (type))
{
int i;
for (i = 0; i < TYPE_NFIELDS (type); i++)
sparc64_store_floating_fields (regcache, TYPE_FIELD_TYPE (type, i),
valbuf, element,
bitpos + TYPE_FIELD_BITPOS (type, i));
}
}
/* Fetch floating fields from a variable of type TYPE from the
appropriate registers for BITPOS in REGCACHE and store it at BITPOS
in VALBUF. This function can be called recursively and therefore
handles floating types in addition to structures. */
static void
sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
char *valbuf, int bitpos)
{
if (sparc64_floating_p (type))
{
int len = TYPE_LENGTH (type);
int regnum;
if (len == 16)
{
gdb_assert (bitpos == 0 || bitpos == 128);
regnum = SPARC64_Q0_REGNUM + bitpos / 128;
regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
}
else if (len == 8)
{
gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
regnum = SPARC64_D0_REGNUM + bitpos / 64;
regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
}
else
{
gdb_assert (len == 4);
gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
regnum = SPARC_F0_REGNUM + bitpos / 32;
regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
}
}
else if (sparc64_structure_or_union_p (type))
{
int i;
for (i = 0; i < TYPE_NFIELDS (type); i++)
sparc64_extract_floating_fields (regcache, TYPE_FIELD_TYPE (type, i),
valbuf,
bitpos + TYPE_FIELD_BITPOS (type, i));
}
}
/* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
non-zero) in REGCACHE and on the stack (starting from address SP). */
static CORE_ADDR
sparc64_store_arguments (struct regcache *regcache, int nargs,
struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
/* Number of extended words in the "parameter array". */
int num_elements = 0;
int element = 0;
int i;
/* Take BIAS into account. */
sp += BIAS;
/* First we calculate the number of extended words in the "parameter
array". While doing so we also convert some of the arguments. */
if (struct_return)
num_elements++;
for (i = 0; i < nargs; i++)
{
struct type *type = VALUE_TYPE (args[i]);
int len = TYPE_LENGTH (type);
if (sparc64_structure_or_union_p (type))
{
/* Structure or Union arguments. */
if (len <= 16)
{
if (num_elements % 2 && sparc64_16_byte_align_p (type))
num_elements++;
num_elements += ((len + 7) / 8);
}
else
{
/* The psABI says that "Structures or unions larger than
sixteen bytes are copied by the caller and passed
indirectly; the caller will pass the address of a
correctly aligned structure value. This sixty-four
bit address will occupy one word in the parameter
array, and may be promoted to an %o register like any
other pointer value." Allocate memory for these
values on the stack. */
sp -= len;
/* Use 16-byte alignment for these values. That's
always correct, and wasting a few bytes shouldn't be
a problem. */
sp &= ~0xf;
write_memory (sp, VALUE_CONTENTS (args[i]), len);
args[i] = value_from_pointer (lookup_pointer_type (type), sp);
num_elements++;
}
}
else if (sparc64_floating_p (type))
{
/* Floating arguments. */
if (len == 16)
{
/* The psABI says that "Each quad-precision parameter
value will be assigned to two extended words in the
parameter array. */
num_elements += 2;
/* The psABI says that "Long doubles must be
quad-aligned, and thus a hole might be introduced
into the parameter array to force alignment." Skip
an element if necessary. */
if (num_elements % 2)
num_elements++;
}
else
num_elements++;
}
else
{
/* Integral and pointer arguments. */
gdb_assert (sparc64_integral_or_pointer_p (type));
/* The psABI says that "Each argument value of integral type
smaller than an extended word will be widened by the
caller to an extended word according to the signed-ness
of the argument type." */
if (len < 8)
args[i] = value_cast (builtin_type_int64, args[i]);
num_elements++;
}
}
/* Allocate the "parameter array". */
sp -= num_elements * 8;
/* The psABI says that "Every stack frame must be 16-byte aligned." */
sp &= ~0xf;
/* Now we store the arguments in to the "paramater array". Some
Integer or Pointer arguments and Structure or Union arguments
will be passed in %o registers. Some Floating arguments and
floating members of structures are passed in floating-point
registers. However, for functions with variable arguments,
floating arguments are stored in an %0 register, and for
functions without a prototype floating arguments are stored in
both a floating-point and an %o registers, or a floating-point
register and memory. To simplify the logic here we always pass
arguments in memory, an %o register, and a floating-point
register if appropriate. This should be no problem since the
contents of any unused memory or registers in the "parameter
array" are undefined. */
if (struct_return)
{
regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
element++;
}
for (i = 0; i < nargs; i++)
{
char *valbuf = VALUE_CONTENTS (args[i]);
struct type *type = VALUE_TYPE (args[i]);
int len = TYPE_LENGTH (type);
int regnum = -1;
char buf[16];
if (sparc64_structure_or_union_p (type))
{
/* Structure or Union arguments. */
gdb_assert (len <= 16);
memset (buf, 0, sizeof (buf));
valbuf = memcpy (buf, valbuf, len);
if (element % 2 && sparc64_16_byte_align_p (type))
element++;
if (element < 6)
{
regnum = SPARC_O0_REGNUM + element;
if (len > 8 && element < 5)
regcache_cooked_write (regcache, regnum + 1, valbuf + 8);
}
if (element < 16)
sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
}
else if (sparc64_floating_p (type))
{
/* Floating arguments. */
if (len == 16)
{
if (element % 2)
element++;
if (element < 16)
regnum = SPARC64_Q0_REGNUM + element / 2;
}
else if (len == 8)
{
if (element < 16)
regnum = SPARC64_D0_REGNUM + element;
}
else
{
/* The psABI says "Each single-precision parameter value
will be assigned to one extended word in the
parameter array, and right-justified within that
word; the left half (even floatregister) is
undefined." Even though the psABI says that "the
left half is undefined", set it to zero here. */
memset (buf, 0, 4);
valbuf = memcpy (buf + 4, valbuf, 4);
len = 8;
if (element < 16)
regnum = SPARC64_D0_REGNUM;
}
}
else
{
/* Integral and pointer arguments. */
gdb_assert (len == 8);
if (element < 6)
regnum = SPARC_O0_REGNUM + element;
}
if (regnum != -1)
{
regcache_cooked_write (regcache, regnum, valbuf);
/* If we're storing the value in a floating-point register,
also store it in the corresponding %0 register(s). */
if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
{
gdb_assert (element < 6);
regnum = SPARC_O0_REGNUM + element;
regcache_cooked_write (regcache, regnum, valbuf);
}
else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
{
gdb_assert (element < 6);
regnum = SPARC_O0_REGNUM + element;
regcache_cooked_write (regcache, regnum, valbuf);
regcache_cooked_write (regcache, regnum + 1, valbuf);
}
}
/* Always store the argument in memeory. */
write_memory (sp + element * 8, valbuf, len);
element += ((len + 7) / 8);
}
gdb_assert (element == num_elements);
/* Take BIAS into account. */
sp -= BIAS;
return sp;
}
static CORE_ADDR
sparc64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
/* Set return address. */
regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
/* Set up function arguments. */
sp = sparc64_store_arguments (regcache, nargs, args, sp,
struct_return, struct_addr);
/* Allocate the register save area. */
sp -= 16 * 8;
/* Stack should be 16-byte aligned at this point. */
gdb_assert ((sp + BIAS) % 16 == 0);
/* Finally, update the stack pointer. */
regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
return sp;
}
/* Extract from an array REGBUF containing the (raw) register state, a
function return value of TYPE, and copy that into VALBUF. */
static void
sparc64_extract_return_value (struct type *type, struct regcache *regcache,
void *valbuf)
{
int len = TYPE_LENGTH (type);
char buf[32];
int i;
if (sparc64_structure_or_union_p (type))
{
/* Structure or Union return values. */
gdb_assert (len <= 32);
for (i = 0; i < ((len + 7) / 8); i++)
regcache_cooked_read (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
if (TYPE_CODE (type) != TYPE_CODE_UNION)
sparc64_extract_floating_fields (regcache, type, buf, 0);
memcpy (valbuf, buf, len);
}
else if (sparc64_floating_p (type))
{
/* Floating return values. */
for (i = 0; i < len / 4; i++)
regcache_cooked_read (regcache, SPARC_F0_REGNUM + i, buf + i * 4);
memcpy (valbuf, buf, len);
}
else
{
/* Integral and pointer return values. */
gdb_assert (sparc64_integral_or_pointer_p (type));
/* Just stripping off any unused bytes should preserve the
signed-ness just fine. */
regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
memcpy (valbuf, buf + 8 - len, len);
}
}
/* Write into the appropriate registers a function return value stored
in VALBUF of type TYPE. */
static void
sparc64_store_return_value (struct type *type, struct regcache *regcache,
const void *valbuf)
{
int len = TYPE_LENGTH (type);
char buf[16];
int i;
if (sparc64_structure_or_union_p (type))
{
/* Structure or Union return values. */
gdb_assert (len <= 32);
/* Simplify matters by storing the complete value (including
floating members) into %o0 and %o1. Floating members are
also store in the appropriate floating-point registers. */
memset (buf, 0, sizeof (buf));
memcpy (buf, valbuf, len);
for (i = 0; i < ((len + 7) / 8); i++)
regcache_cooked_write (regcache, SPARC_O0_REGNUM + i, buf + i * 4);
if (TYPE_CODE (type) != TYPE_CODE_UNION)
sparc64_store_floating_fields (regcache, type, buf, 0, 0);
}
else if (sparc64_floating_p (type))
{
/* Floating return values. */
memcpy (buf, valbuf, len);
for (i = 0; i < len / 4; i++)
regcache_cooked_write (regcache, SPARC_F0_REGNUM + i, buf + i * 4);
}
else
{
/* Integral and pointer return values. */
gdb_assert (sparc64_integral_or_pointer_p (type));
/* ??? Do we need to do any sign-extension here? */
memset (buf, 0, 8);
memcpy (buf + 8 - len, valbuf, len);
regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
}
}
/* Extract from REGCACHE, which contains the (raw) register state, the
address in which a function should return its structure value, as a
CORE_ADDR. */
static CORE_ADDR
sparc_extract_struct_value_address (struct regcache *regcache)
{
ULONGEST addr;
regcache_cooked_read_unsigned (regcache, SPARC_O0_REGNUM, &addr);
return addr;
}
static int
sparc64_use_struct_convention (int gcc_p, struct type *type)
{
/* Structure and union types up to 32 bytes in size are returned in
registers. */
return (TYPE_LENGTH (type) > 32);
}
/* The SPARC Architecture doesn't have hardware single-step support,
and most operating systems don't implement it either, so we provide
software single-step mechanism. */
static CORE_ADDR
sparc_analyze_control_transfer (CORE_ADDR pc, CORE_ADDR *npc)
{
unsigned long insn = sparc_fetch_instruction (pc);
int conditional_p = X_COND (insn) & 0x7;
int branch_p = 0;
long offset = 0; /* Must be signed for sign-extend. */
if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
{
/* Branch on Integer Register with Prediction (BPr). */
branch_p = 1;
conditional_p = 1;
}
else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
{
/* Branch on Floating-Point Condition Codes (FBfcc). */
branch_p = 1;
offset = 4 * X_DISP22 (insn);
}
else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
{
/* Branch on Floating-Point Condition Codes with Prediction
(FBPfcc). */
branch_p = 1;
offset = 4 * X_DISP19 (insn);
}
else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
{
/* Branch on Integer Condition Codes (Bicc). */
branch_p = 1;
offset = 4 * X_DISP22 (insn);
}
else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
{
/* Branch on Integer Condition Codes with Prediction (BPcc). */
branch_p = 1;
offset = 4 * X_DISP19 (insn);
}
/* FIXME: Handle DONE and RETRY instructions. */
/* FIXME: Handle the Trap instruction. */
if (branch_p)
{
if (conditional_p)
{
/* For conditional branches, return nPC + 4 iff the annul
bit is 1. */
return (X_A (insn) ? *npc + 4 : 0);
}
else
{
/* For unconditional branches, return the target if its
specified condition is "always" and return nPC + 4 if the
condition is "never". If the annul bit is 1, set *NPC to
zero. */
if (X_COND (insn) == 0x0)
pc = *npc, offset = 4;
if (X_A (insn))
*npc = 0;
gdb_assert (offset != 0);
return pc + offset;
}
}
return 0;
}
void
sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
{
static CORE_ADDR npc, nnpc;
static char npc_save[4], nnpc_save[4];
if (insert_breakpoints_p)
{
CORE_ADDR pc;
pc = sparc_address_from_register (SPARC64_PC_REGNUM);
npc = sparc_address_from_register (SPARC64_NPC_REGNUM);
/* Analyze the instruction at PC. */
nnpc = sparc_analyze_control_transfer (pc, &npc);
if (npc != 0)
target_insert_breakpoint (npc, npc_save);
if (nnpc != 0)
target_insert_breakpoint (nnpc, nnpc_save);
/* Assert that we have set at least one breakpoint. */
gdb_assert (npc != 0 || nnpc != 0);
}
else
{
if (npc != 0)
target_remove_breakpoint (npc, npc_save);
if (nnpc != 0)
target_remove_breakpoint (nnpc, nnpc_save);
npc = 0;
nnpc = 0;
}
}
static struct gdbarch *
sparc64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch_tdep *tdep;
struct gdbarch *gdbarch;
/* If there is already a candidate, use it. */
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
return arches->gdbarch;
/* Allocate space for the new architecture. */
tdep = XMALLOC (struct gdbarch_tdep);
gdbarch = gdbarch_alloc (&info, tdep);
set_gdbarch_long_bit (gdbarch, 64);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_ptr_bit (gdbarch, 64);
set_gdbarch_long_double_bit (gdbarch, 128);
set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
set_gdbarch_register_name (gdbarch, sparc64_register_name);
set_gdbarch_register_type (gdbarch, sparc64_register_type);
set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
/* Register numbers of various important registers. */
set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
/* Call dummy code. */
set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value);
set_gdbarch_store_return_value (gdbarch, sparc64_store_return_value);
set_gdbarch_extract_struct_value_address
(gdbarch, sparc_extract_struct_value_address);
set_gdbarch_use_struct_convention (gdbarch, sparc64_use_struct_convention);
set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
/* Stack grows downward. */
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
set_gdbarch_decr_pc_after_break (gdbarch, 0);
set_gdbarch_function_start_offset (gdbarch, 0);
set_gdbarch_frame_args_skip (gdbarch, 8);
set_gdbarch_print_insn (gdbarch, print_insn_sparc);
set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
set_gdbarch_unwind_pc (gdbarch, sparc64_unwind_pc);
frame_base_set_default (gdbarch, &sparc64_frame_base);
/* Hook in ABI-specific overrides, if they have been registered. */
gdbarch_init_osabi (info, gdbarch);
frame_unwind_append_sniffer (gdbarch, sparc64_frame_sniffer);
return gdbarch;
}
/* Helper functions for dealing with register windows. */
void
sparc_supply_rwindow (CORE_ADDR sp, int regnum)
{
int offset = 0;
char buf[8];
int i;
if (sp & 1)
{
/* Registers are 64-bit. */
sp += BIAS;
for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
{
if (regnum == i || regnum == -1)
{
target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
supply_register (i, buf);
}
}
}
else
{
/* Registers are 32-bit. Toss any sign-extension of the stack
pointer. */
sp &= 0xffffffffUL;
/* Clear out the top half of the temporary buffer, and put the
register value in the bottom half if we're in 64-bit mode. */
if (gdbarch_ptr_bit (current_gdbarch) == 64)
{
memset (buf, 0, 4);
offset = 4;
}
for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
{
if (regnum == i || regnum == -1)
{
target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
buf + offset, 4);
supply_register (i, buf);
}
}
}
}
void
sparc_fill_rwindow (CORE_ADDR sp, int regnum)
{
int offset = 0;
char buf[8];
int i;
if (sp & 1)
{
/* Registers are 64-bit. */
sp += BIAS;
for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
{
if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
{
regcache_collect (i, buf);
target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
}
}
}
else
{
/* Registers are 32-bit. Toss any sign-extension of the stack
pointer. */
sp &= 0xffffffffUL;
/* Only use the bottom half if we're in 64-bit mode. */
if (gdbarch_ptr_bit (current_gdbarch) == 64)
offset = 4;
for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
{
if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
{
regcache_collect (i, buf);
target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
buf + offset, 4);
}
}
}
}
/* Provide a prototype to silence -Wmissing-prototypes. */
void _initialize_sparc64_tdep (void);
void
_initialize_sparc64_tdep (void)
{
register_gdbarch_init (bfd_arch_sparc, sparc64_gdbarch_init);
}
|