aboutsummaryrefslogtreecommitdiff
path: root/gdb/sparc-tdep.c
blob: 005b5c59db0f1f2d62c5b88ceae18f4bbf3869f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
/* Target-dependent code for the SPARC for GDB, the GNU debugger.

   Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
   1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
   Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

/* ??? Support for calling functions from gdb in sparc64 is unfinished.  */

#include "defs.h"
#include "arch-utils.h"
#include "frame.h"
#include "inferior.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "regcache.h"
#include "osabi.h"

#ifdef	USE_PROC_FS
#include <sys/procfs.h>
/* Prototypes for supply_gregset etc. */
#include "gregset.h"
#endif

#include "gdbcore.h"
#include "gdb_assert.h"

#include "symfile.h" 	/* for 'entry_point_address' */

/*
 * Some local macros that have multi-arch and non-multi-arch versions:
 */

#if (GDB_MULTI_ARCH > 0)

#if 0
// OBSOLETE /* Does the target have Floating Point registers?  */
// OBSOLETE #define SPARC_HAS_FPU     (gdbarch_tdep (current_gdbarch)->has_fpu)
#endif
#define SPARC_HAS_FPU 1
/* Number of bytes devoted to Floating Point registers: */
#define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes)
/* Highest numbered Floating Point register.  */
#define FP_MAX_REGNUM     (gdbarch_tdep (current_gdbarch)->fp_max_regnum)
/* Size of a general (integer) register: */
#define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size)
/* Offset within the call dummy stack of the saved registers.  */
#define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset)

#else /* non-multi-arch */


/* Does the target have Floating Point registers?  */
#if 0
// OBSOLETE #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
// OBSOLETE #define SPARC_HAS_FPU 0
// OBSOLETE #else
// OBSOLETE #define SPARC_HAS_FPU 1
// OBSOLETE #endif
#endif
#define SPARC_HAS_FPU 1

/* Number of bytes devoted to Floating Point registers: */
#if (GDB_TARGET_IS_SPARC64)
#define FP_REGISTER_BYTES (64 * 4)
#else
#if (SPARC_HAS_FPU)
#define FP_REGISTER_BYTES (32 * 4)
#else
#define FP_REGISTER_BYTES 0
#endif
#endif

/* Highest numbered Floating Point register.  */
#if (GDB_TARGET_IS_SPARC64)
#define FP_MAX_REGNUM (FP0_REGNUM + 48)
#else
#define FP_MAX_REGNUM (FP0_REGNUM + 32)
#endif

/* Size of a general (integer) register: */
#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))

/* Offset within the call dummy stack of the saved registers.  */
#if (GDB_TARGET_IS_SPARC64)
#define DUMMY_REG_SAVE_OFFSET (128 + 16)
#else
#define DUMMY_REG_SAVE_OFFSET 0x60
#endif

#endif /* GDB_MULTI_ARCH */

struct gdbarch_tdep
  {
#if 0
    // OBSOLETE     int has_fpu;
#endif
    int fp_register_bytes;
    int y_regnum;
    int fp_max_regnum;
    int intreg_size;
    int reg_save_offset;
    int call_dummy_call_offset;
    int print_insn_mach;
  };

/* Now make GDB_TARGET_IS_SPARC64 a runtime test.  */
/* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ... 
 * define GDB_TARGET_IS_SPARC64 \
 *      (TARGET_ARCHITECTURE->arch == bfd_arch_sparc &&    \
 *      (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \
 *       TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a))
 */

/* From infrun.c */
extern int stop_after_trap;

/* We don't store all registers immediately when requested, since they
   get sent over in large chunks anyway.  Instead, we accumulate most
   of the changes and send them over once.  "deferred_stores" keeps
   track of which sets of registers we have locally-changed copies of,
   so we only need send the groups that have changed.  */

int deferred_stores = 0;    /* Accumulated stores we want to do eventually. */


#if 0
// OBSOLETE /* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
// OBSOLETE    where instructions are big-endian and data are little-endian.
// OBSOLETE    This flag is set when we detect that the target is of this type. */
// OBSOLETE 
// OBSOLETE int bi_endian = 0;
#endif


/* Fetch a single instruction.  Even on bi-endian machines
   such as sparc86x, instructions are always big-endian.  */

static unsigned long
fetch_instruction (CORE_ADDR pc)
{
  unsigned long retval;
  int i;
  unsigned char buf[4];

  read_memory (pc, buf, sizeof (buf));

  /* Start at the most significant end of the integer, and work towards
     the least significant.  */
  retval = 0;
  for (i = 0; i < sizeof (buf); ++i)
    retval = (retval << 8) | buf[i];
  return retval;
}


/* Branches with prediction are treated like their non-predicting cousins.  */
/* FIXME: What about floating point branches?  */

/* Macros to extract fields from sparc instructions.  */
#define X_OP(i) (((i) >> 30) & 0x3)
#define X_RD(i) (((i) >> 25) & 0x1f)
#define X_A(i) (((i) >> 29) & 1)
#define X_COND(i) (((i) >> 25) & 0xf)
#define X_OP2(i) (((i) >> 22) & 0x7)
#define X_IMM22(i) ((i) & 0x3fffff)
#define X_OP3(i) (((i) >> 19) & 0x3f)
#define X_RS1(i) (((i) >> 14) & 0x1f)
#define X_I(i) (((i) >> 13) & 1)
#define X_IMM13(i) ((i) & 0x1fff)
/* Sign extension macros.  */
#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
#define X_CC(i) (((i) >> 20) & 3)
#define X_P(i) (((i) >> 19) & 1)
#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
#define X_RCOND(i) (((i) >> 25) & 7)
#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
#define X_FCN(i) (((i) >> 25) & 31)

typedef enum
{
  Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry
} branch_type;

/* Simulate single-step ptrace call for sun4.  Code written by Gary
   Beihl (beihl@mcc.com).  */

/* npc4 and next_pc describe the situation at the time that the
   step-breakpoint was set, not necessary the current value of NPC_REGNUM.  */
static CORE_ADDR next_pc, npc4, target;
static int brknpc4, brktrg;
typedef char binsn_quantum[BREAKPOINT_MAX];
static binsn_quantum break_mem[3];

static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *);

/* single_step() is called just before we want to resume the inferior,
   if we want to single-step it but there is no hardware or kernel single-step
   support (as on all SPARCs).  We find all the possible targets of the
   coming instruction and breakpoint them.

   single_step is also called just after the inferior stops.  If we had
   set up a simulated single-step, we undo our damage.  */

void
sparc_software_single_step (enum target_signal ignore,	/* pid, but we don't need it */
			    int insert_breakpoints_p)
{
  branch_type br;
  CORE_ADDR pc;
  long pc_instruction;

  if (insert_breakpoints_p)
    {
      /* Always set breakpoint for NPC.  */
      next_pc = read_register (NPC_REGNUM);
      npc4 = next_pc + 4;	/* branch not taken */

      target_insert_breakpoint (next_pc, break_mem[0]);
      /* printf_unfiltered ("set break at %x\n",next_pc); */

      pc = read_register (PC_REGNUM);
      pc_instruction = fetch_instruction (pc);
      br = isbranch (pc_instruction, pc, &target);
      brknpc4 = brktrg = 0;

      if (br == bicca)
	{
	  /* Conditional annulled branch will either end up at
	     npc (if taken) or at npc+4 (if not taken).
	     Trap npc+4.  */
	  brknpc4 = 1;
	  target_insert_breakpoint (npc4, break_mem[1]);
	}
      else if (br == baa && target != next_pc)
	{
	  /* Unconditional annulled branch will always end up at
	     the target.  */
	  brktrg = 1;
	  target_insert_breakpoint (target, break_mem[2]);
	}
      else if (GDB_TARGET_IS_SPARC64 && br == done_retry)
	{
	  brktrg = 1;
	  target_insert_breakpoint (target, break_mem[2]);
	}
    }
  else
    {
      /* Remove breakpoints */
      target_remove_breakpoint (next_pc, break_mem[0]);

      if (brknpc4)
	target_remove_breakpoint (npc4, break_mem[1]);

      if (brktrg)
	target_remove_breakpoint (target, break_mem[2]);
    }
}

struct frame_extra_info 
{
  CORE_ADDR bottom;
  int in_prologue;
  int flat;
  /* Following fields only relevant for flat frames.  */
  CORE_ADDR pc_addr;
  CORE_ADDR fp_addr;
  /* Add this to ->frame to get the value of the stack pointer at the 
     time of the register saves.  */
  int sp_offset;
};

/* Call this for each newly created frame.  For SPARC, we need to
   calculate the bottom of the frame, and do some extra work if the
   prologue has been generated via the -mflat option to GCC.  In
   particular, we need to know where the previous fp and the pc have
   been stashed, since their exact position within the frame may vary.  */

void
sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
  char *name;
  CORE_ADDR prologue_start, prologue_end;
  int insn;

  frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
  frame_saved_regs_zalloc (fi);

  get_frame_extra_info (fi)->bottom =
    (get_next_frame (fi)
     ? (get_frame_base (fi) == get_frame_base (get_next_frame (fi))
	? get_frame_extra_info (get_next_frame (fi))->bottom
	: get_frame_base (get_next_frame (fi)))
     : read_sp ());

  /* If fi->next is NULL, then we already set ->frame by passing
     deprecated_read_fp() to create_new_frame.  */
  if (get_next_frame (fi))
    {
      char *buf;

      buf = alloca (MAX_REGISTER_RAW_SIZE);

      /* Compute ->frame as if not flat.  If it is flat, we'll change
         it later.  */
      if (get_next_frame (get_next_frame (fi)) != NULL
	  && ((get_frame_type (get_next_frame (get_next_frame (fi))) == SIGTRAMP_FRAME)
	      || deprecated_frame_in_dummy (get_next_frame (get_next_frame (fi))))
	  && frameless_look_for_prologue (get_next_frame (fi)))
	{
	  /* A frameless function interrupted by a signal did not change
	     the frame pointer, fix up frame pointer accordingly.  */
	  deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
	  get_frame_extra_info (fi)->bottom =
	    get_frame_extra_info (get_next_frame (fi))->bottom;
	}
      else
	{
	  /* Should we adjust for stack bias here? */
	  ULONGEST tmp;
	  frame_read_unsigned_register (fi, DEPRECATED_FP_REGNUM, &tmp);
	  deprecated_update_frame_base_hack (fi, tmp);
	  if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1))
	    deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047);
	}
    }

  /* Decide whether this is a function with a ``flat register window''
     frame.  For such functions, the frame pointer is actually in %i7.  */
  get_frame_extra_info (fi)->flat = 0;
  get_frame_extra_info (fi)->in_prologue = 0;
  if (find_pc_partial_function (get_frame_pc (fi), &name, &prologue_start, &prologue_end))
    {
      /* See if the function starts with an add (which will be of a
         negative number if a flat frame) to the sp.  FIXME: Does not
         handle large frames which will need more than one instruction
         to adjust the sp.  */
      insn = fetch_instruction (prologue_start);
      if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
	  && X_I (insn) && X_SIMM13 (insn) < 0)
	{
	  int offset = X_SIMM13 (insn);

	  /* Then look for a save of %i7 into the frame.  */
	  insn = fetch_instruction (prologue_start + 4);
	  if (X_OP (insn) == 3
	      && X_RD (insn) == 31
	      && X_OP3 (insn) == 4
	      && X_RS1 (insn) == 14)
	    {
	      char *buf;
	      
	      buf = alloca (MAX_REGISTER_RAW_SIZE);

	      /* We definitely have a flat frame now.  */
	      get_frame_extra_info (fi)->flat = 1;

	      get_frame_extra_info (fi)->sp_offset = offset;

	      /* Overwrite the frame's address with the value in %i7.  */
	      {
		ULONGEST tmp;
		frame_read_unsigned_register (fi, I7_REGNUM, &tmp);
		deprecated_update_frame_base_hack (fi, tmp);
	      }

	      if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1))
		deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047);

	      /* Record where the fp got saved.  */
	      get_frame_extra_info (fi)->fp_addr = 
		get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);

	      /* Also try to collect where the pc got saved to.  */
	      get_frame_extra_info (fi)->pc_addr = 0;
	      insn = fetch_instruction (prologue_start + 12);
	      if (X_OP (insn) == 3
		  && X_RD (insn) == 15
		  && X_OP3 (insn) == 4
		  && X_RS1 (insn) == 14)
		get_frame_extra_info (fi)->pc_addr = 
		  get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
	    }
	}
      else
	{
	  /* Check if the PC is in the function prologue before a SAVE
	     instruction has been executed yet.  If so, set the frame
	     to the current value of the stack pointer and set
	     the in_prologue flag.  */
	  CORE_ADDR addr;
	  struct symtab_and_line sal;

	  sal = find_pc_line (prologue_start, 0);
	  if (sal.line == 0)	/* no line info, use PC */
	    prologue_end = get_frame_pc (fi);
	  else if (sal.end < prologue_end)
	    prologue_end = sal.end;
	  if (get_frame_pc (fi) < prologue_end)
	    {
	      for (addr = prologue_start; addr < get_frame_pc (fi); addr += 4)
		{
		  insn = read_memory_integer (addr, 4);
		  if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
		    break;	/* SAVE seen, stop searching */
		}
	      if (addr >= get_frame_pc (fi))
		{
		  get_frame_extra_info (fi)->in_prologue = 1;
		  deprecated_update_frame_base_hack (fi, read_register (SP_REGNUM));
		}
	    }
	}
    }
  if (get_next_frame (fi) && get_frame_base (fi) == 0)
    {
      /* Kludge to cause init_prev_frame_info to destroy the new frame.  */
      deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
      deprecated_update_frame_pc_hack (fi, get_frame_pc (get_next_frame (fi)));
    }
}

CORE_ADDR
sparc_frame_chain (struct frame_info *frame)
{
  /* Value that will cause DEPRECATED_FRAME_CHAIN_VALID to not worry
     about the chain value.  If it really is zero, we detect it later
     in sparc_init_prev_frame.
     
     Note: kevinb/2003-02-18: The constant 1 used to be returned here,
     but, after some recent changes to legacy_frame_chain_valid(),
     this value is no longer suitable for causing
     legacy_frame_chain_valid() to "not worry about the chain value."
     The constant ~0 (i.e, 0xfff...) causes the failing test in
     legacy_frame_chain_valid() to succeed thus preserving the "not
     worry" property.  I had considered using something like
     ``get_frame_base (frame) + 1''.  However, I think a constant
     value is better, because when debugging this problem, I knew that
     something funny was going on as soon as I saw the constant 1
     being used as the frame chain elsewhere in GDB.  */

  return ~ (CORE_ADDR) 0;
}

CORE_ADDR
sparc_extract_struct_value_address (char *regbuf)
{
  return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
			  REGISTER_RAW_SIZE (O0_REGNUM));
}

/* Find the pc saved in frame FRAME.  */

CORE_ADDR
sparc_frame_saved_pc (struct frame_info *frame)
{
  char *buf;
  CORE_ADDR addr;

  buf = alloca (MAX_REGISTER_RAW_SIZE);
  if ((get_frame_type (frame) == SIGTRAMP_FRAME))
    {
      /* This is the signal trampoline frame.
         Get the saved PC from the sigcontext structure.  */

#ifndef SIGCONTEXT_PC_OFFSET
#define SIGCONTEXT_PC_OFFSET 12
#endif

      CORE_ADDR sigcontext_addr;
      char *scbuf;
      int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
      char *name = NULL;

      scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);

      /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
         as the third parameter.  The offset to the saved pc is 12.  */
      find_pc_partial_function (get_frame_pc (frame), &name,
				(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
      if (name && STREQ (name, "ucbsigvechandler"))
	saved_pc_offset = 12;

      /* The sigcontext address is contained in register O2.  */
      {
	ULONGEST tmp;
	frame_read_unsigned_register (frame, O0_REGNUM + 2, &tmp);
	sigcontext_addr = tmp;
      }

      /* Don't cause a memory_error when accessing sigcontext in case the
         stack layout has changed or the stack is corrupt.  */
      target_read_memory (sigcontext_addr + saved_pc_offset,
			  scbuf, sizeof (scbuf));
      return extract_address (scbuf, sizeof (scbuf));
    }
  else if (get_frame_extra_info (frame)->in_prologue ||
	   (get_next_frame (frame) != NULL &&
	    ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) ||
	     deprecated_frame_in_dummy (get_next_frame (frame))) &&
	    frameless_look_for_prologue (frame)))
    {
      /* A frameless function interrupted by a signal did not save
         the PC, it is still in %o7.  */
      ULONGEST tmp;
      frame_read_unsigned_register (frame, O7_REGNUM, &tmp);
      return PC_ADJUST (tmp);
    }
  if (get_frame_extra_info (frame)->flat)
    addr = get_frame_extra_info (frame)->pc_addr;
  else
    addr = get_frame_extra_info (frame)->bottom + FRAME_SAVED_I0 +
      SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);

  if (addr == 0)
    /* A flat frame leaf function might not save the PC anywhere,
       just leave it in %o7.  */
    return PC_ADJUST (read_register (O7_REGNUM));

  read_memory (addr, buf, SPARC_INTREG_SIZE);
  return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
}

/* Since an individual frame in the frame cache is defined by two
   arguments (a frame pointer and a stack pointer), we need two
   arguments to get info for an arbitrary stack frame.  This routine
   takes two arguments and makes the cached frames look as if these
   two arguments defined a frame on the cache.  This allows the rest
   of info frame to extract the important arguments without
   difficulty.  */

struct frame_info *
setup_arbitrary_frame (int argc, CORE_ADDR *argv)
{
  struct frame_info *frame;

  if (argc != 2)
    error ("Sparc frame specifications require two arguments: fp and sp");

  frame = create_new_frame (argv[0], 0);

  if (!frame)
    internal_error (__FILE__, __LINE__,
		    "create_new_frame returned invalid frame");

  get_frame_extra_info (frame)->bottom = argv[1];
  deprecated_update_frame_pc_hack (frame, DEPRECATED_FRAME_SAVED_PC (frame));
  return frame;
}

/* Given a pc value, skip it forward past the function prologue by
   disassembling instructions that appear to be a prologue.

   If FRAMELESS_P is set, we are only testing to see if the function
   is frameless.  This allows a quicker answer.

   This routine should be more specific in its actions; making sure
   that it uses the same register in the initial prologue section.  */

static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *,
				   CORE_ADDR *);

static CORE_ADDR
examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi,
		  CORE_ADDR *saved_regs)
{
  int insn;
  int dest = -1;
  CORE_ADDR pc = start_pc;
  int is_flat = 0;

  insn = fetch_instruction (pc);

  /* Recognize the `sethi' insn and record its destination.  */
  if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
    {
      dest = X_RD (insn);
      pc += 4;
      insn = fetch_instruction (pc);
    }

  /* Recognize an add immediate value to register to either %g1 or
     the destination register recorded above.  Actually, this might
     well recognize several different arithmetic operations.
     It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
     followed by "save %sp, %g1, %sp" is a valid prologue (Not that
     I imagine any compiler really does that, however).  */
  if (X_OP (insn) == 2
      && X_I (insn)
      && (X_RD (insn) == 1 || X_RD (insn) == dest))
    {
      pc += 4;
      insn = fetch_instruction (pc);
    }

  /* Recognize any SAVE insn.  */
  if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
    {
      pc += 4;
      if (frameless_p)		/* If the save is all we care about, */
	return pc;		/* return before doing more work */
      insn = fetch_instruction (pc);
    }
  /* Recognize add to %sp.  */
  else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
    {
      pc += 4;
      if (frameless_p)		/* If the add is all we care about, */
	return pc;		/* return before doing more work */
      is_flat = 1;
      insn = fetch_instruction (pc);
      /* Recognize store of frame pointer (i7).  */
      if (X_OP (insn) == 3
	  && X_RD (insn) == 31
	  && X_OP3 (insn) == 4
	  && X_RS1 (insn) == 14)
	{
	  pc += 4;
	  insn = fetch_instruction (pc);

	  /* Recognize sub %sp, <anything>, %i7.  */
	  if (X_OP (insn) == 2
	      && X_OP3 (insn) == 4
	      && X_RS1 (insn) == 14
	      && X_RD (insn) == 31)
	    {
	      pc += 4;
	      insn = fetch_instruction (pc);
	    }
	  else
	    return pc;
	}
      else
	return pc;
    }
  else
    /* Without a save or add instruction, it's not a prologue.  */
    return start_pc;

  while (1)
    {
      /* Recognize stores into the frame from the input registers.
         This recognizes all non alternate stores of an input register,
         into a location offset from the frame pointer between
	 +68 and +92.  */

      /* The above will fail for arguments that are promoted 
	 (eg. shorts to ints or floats to doubles), because the compiler
	 will pass them in positive-offset frame space, but the prologue
	 will save them (after conversion) in negative frame space at an
	 unpredictable offset.  Therefore I am going to remove the 
	 restriction on the target-address of the save, on the theory
	 that any unbroken sequence of saves from input registers must
	 be part of the prologue.  In un-optimized code (at least), I'm
	 fairly sure that the compiler would emit SOME other instruction
	 (eg. a move or add) before emitting another save that is actually
	 a part of the function body.

	 Besides, the reserved stack space is different for SPARC64 anyway.

	 MVS  4/23/2000  */

      if (X_OP (insn) == 3
	  && (X_OP3 (insn) & 0x3c)	 == 4	/* Store, non-alternate.  */
	  && (X_RD (insn) & 0x18) == 0x18	/* Input register.  */
	  && X_I (insn)				/* Immediate mode.  */
	  && X_RS1 (insn) == 30)		/* Off of frame pointer.  */
	; /* empty statement -- fall thru to end of loop */
      else if (GDB_TARGET_IS_SPARC64
	       && X_OP (insn) == 3
	       && (X_OP3 (insn) & 0x3c) == 12	/* store, extended (64-bit) */
	       && (X_RD (insn) & 0x18) == 0x18	/* input register */
	       && X_I (insn)			/* immediate mode */
	       && X_RS1 (insn) == 30)		/* off of frame pointer */
	; /* empty statement -- fall thru to end of loop */
      else if (X_OP (insn) == 3
	       && (X_OP3 (insn) & 0x3c) == 36	/* store, floating-point */
	       && X_I (insn)			/* immediate mode */
	       && X_RS1 (insn) == 30)		/* off of frame pointer */
	; /* empty statement -- fall thru to end of loop */
      else if (is_flat
	       && X_OP (insn) == 3
	       && X_OP3 (insn) == 4		/* store? */
	       && X_RS1 (insn) == 14)		/* off of frame pointer */
	{
	  if (saved_regs && X_I (insn))
	    saved_regs[X_RD (insn)] =
	      get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
	}
      else
	break;
      pc += 4;
      insn = fetch_instruction (pc);
    }

  return pc;
}

/* Advance PC across any function entry prologue instructions to reach
   some "real" code.  */

CORE_ADDR
sparc_skip_prologue (CORE_ADDR start_pc)
{
  struct symtab_and_line sal;
  CORE_ADDR func_start, func_end;

  /* This is the preferred method, find the end of the prologue by
     using the debugging information.  */
  if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
    {
      sal = find_pc_line (func_start, 0);

      if (sal.end < func_end
	  && start_pc <= sal.end)
	return sal.end;
    }

  /* Oh well, examine the code by hand.  */
  return examine_prologue (start_pc, 0, NULL, NULL);
}

/* Is the prologue at IP frameless?  */

int
sparc_prologue_frameless_p (CORE_ADDR ip)
{
  return ip == examine_prologue (ip, 1, NULL, NULL);
}

/* Check instruction at ADDR to see if it is a branch.
   All non-annulled instructions will go to NPC or will trap.
   Set *TARGET if we find a candidate branch; set to zero if not.

   This isn't static as it's used by remote-sa.sparc.c.  */

static branch_type
isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target)
{
  branch_type val = not_branch;
  long int offset = 0;		/* Must be signed for sign-extend.  */

  *target = 0;

  if (X_OP (instruction) == 0
      && (X_OP2 (instruction) == 2
	  || X_OP2 (instruction) == 6
	  || X_OP2 (instruction) == 1
	  || X_OP2 (instruction) == 3
	  || X_OP2 (instruction) == 5
	  || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7)))
    {
      if (X_COND (instruction) == 8)
	val = X_A (instruction) ? baa : ba;
      else
	val = X_A (instruction) ? bicca : bicc;
      switch (X_OP2 (instruction))
	{
	case 7:
	if (!GDB_TARGET_IS_SPARC64)
	  break;
	/* else fall thru */
	case 2:
	case 6:
	  offset = 4 * X_DISP22 (instruction);
	  break;
	case 1:
	case 5:
	  offset = 4 * X_DISP19 (instruction);
	  break;
	case 3:
	  offset = 4 * X_DISP16 (instruction);
	  break;
	}
      *target = addr + offset;
    }
  else if (GDB_TARGET_IS_SPARC64
	   && X_OP (instruction) == 2
	   && X_OP3 (instruction) == 62)
    {
      if (X_FCN (instruction) == 0)
	{
	  /* done */
	  *target = read_register (TNPC_REGNUM);
	  val = done_retry;
	}
      else if (X_FCN (instruction) == 1)
	{
	  /* retry */
	  *target = read_register (TPC_REGNUM);
	  val = done_retry;
	}
    }

  return val;
}

/* Find register number REGNUM relative to FRAME and put its
   (raw) contents in *RAW_BUFFER.  Set *OPTIMIZED if the variable
   was optimized out (and thus can't be fetched).  If the variable
   was fetched from memory, set *ADDRP to where it was fetched from,
   otherwise it was fetched from a register.

   The argument RAW_BUFFER must point to aligned memory.  */

void
sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
			  struct frame_info *frame, int regnum,
			  enum lval_type *lval)
{
  struct frame_info *frame1;
  CORE_ADDR addr;

  if (!target_has_registers)
    error ("No registers.");

  if (optimized)
    *optimized = 0;

  addr = 0;

  /* FIXME This code extracted from infcmd.c; should put elsewhere! */
  if (frame == NULL)
    {
      /* error ("No selected frame."); */
      if (!target_has_registers)
	error ("The program has no registers now.");
      if (deprecated_selected_frame == NULL)
	error ("No selected frame.");
      /* Try to use selected frame */
      frame = get_prev_frame (deprecated_selected_frame);
      if (frame == 0)
	error ("Cmd not meaningful in the outermost frame.");
    }


  frame1 = get_next_frame (frame);

  /* Get saved PC from the frame info if not in innermost frame.  */
  if (regnum == PC_REGNUM && frame1 != NULL)
    {
      if (lval != NULL)
	*lval = not_lval;
      if (raw_buffer != NULL)
	{
	  /* Put it back in target format.  */
	  store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), get_frame_pc (frame));
	}
      if (addrp != NULL)
	*addrp = 0;
      return;
    }

  while (frame1 != NULL)
    {
      /* FIXME MVS: wrong test for dummy frame at entry.  */

      if (get_frame_pc (frame1) >= (get_frame_extra_info (frame1)->bottom
				    ? get_frame_extra_info (frame1)->bottom
				    : read_sp ())
	  && get_frame_pc (frame1) <= get_frame_base (frame1))
	{
	  /* Dummy frame.  All but the window regs are in there somewhere.
	     The window registers are saved on the stack, just like in a
	     normal frame.  */
	  if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
	    addr = get_frame_base (frame1) + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
	      - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
	  else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
	    /* NOTE: cagney/2002-05-04: The call to get_prev_frame()
               is safe/cheap - there will always be a prev frame.
               This is because frame1 is initialized to frame->next
               (frame1->prev == frame) and is then advanced towards
               the innermost (next) frame.  */
	    addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
		    + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
		    + FRAME_SAVED_I0);
	  else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
	    /* NOTE: cagney/2002-05-04: The call to get_prev_frame()
               is safe/cheap - there will always be a prev frame.
               This is because frame1 is initialized to frame->next
               (frame1->prev == frame) and is then advanced towards
               the innermost (next) frame.  */
	    addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
		    + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
		    + FRAME_SAVED_L0);
	  else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
	    addr = get_frame_base (frame1) + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
	      - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
	  else if (SPARC_HAS_FPU &&
		   regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
	    addr = get_frame_base (frame1) + (regnum - FP0_REGNUM) * 4
	      - (FP_REGISTER_BYTES);
	  else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU && 
		   regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
	    addr = get_frame_base (frame1) + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
	      - (FP_REGISTER_BYTES);
	  else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
	    addr = get_frame_base (frame1) + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
	      - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
	}
      else if (get_frame_extra_info (frame1)->flat)
	{

	  if (regnum == RP_REGNUM)
	    addr = get_frame_extra_info (frame1)->pc_addr;
	  else if (regnum == I7_REGNUM)
	    addr = get_frame_extra_info (frame1)->fp_addr;
	  else
	    {
	      CORE_ADDR func_start;
	      CORE_ADDR *regs;

	      regs = alloca (NUM_REGS * sizeof (CORE_ADDR)); 
	      memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR));

	      find_pc_partial_function (get_frame_pc (frame1), NULL, &func_start, NULL);
	      examine_prologue (func_start, 0, frame1, regs);
	      addr = regs[regnum];
	    }
	}
      else
	{
	  /* Normal frame.  Local and In registers are saved on stack.  */
	  if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
	    addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
		    + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
		    + FRAME_SAVED_I0);
	  else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
	    addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
		    + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
		    + FRAME_SAVED_L0);
	  else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
	    {
	      /* Outs become ins.  */
	      int realnum;
	      frame_register (frame1, (regnum - O0_REGNUM + I0_REGNUM),
			      optimized, lval, addrp, &realnum, raw_buffer);
	      return;
	    }
	}
      if (addr != 0)
	break;
      frame1 = get_next_frame (frame1);
    }
  if (addr != 0)
    {
      if (lval != NULL)
	*lval = lval_memory;
      if (regnum == SP_REGNUM)
	{
	  if (raw_buffer != NULL)
	    {
	      /* Put it back in target format.  */
	      store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
	    }
	  if (addrp != NULL)
	    *addrp = 0;
	  return;
	}
      if (raw_buffer != NULL)
	read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
    }
  else
    {
      if (lval != NULL)
	*lval = lval_register;
      addr = REGISTER_BYTE (regnum);
      if (raw_buffer != NULL)
	deprecated_read_register_gen (regnum, raw_buffer);
    }
  if (addrp != NULL)
    *addrp = addr;
}

/* Push an empty stack frame, and record in it the current PC, regs, etc.

   We save the non-windowed registers and the ins.  The locals and outs
   are new; they don't need to be saved. The i's and l's of
   the last frame were already saved on the stack.  */

/* Definitely see tm-sparc.h for more doc of the frame format here.  */

/* See tm-sparc.h for how this is calculated.  */

#define DUMMY_STACK_REG_BUF_SIZE \
     (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
#define DUMMY_STACK_SIZE \
     (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)

void
sparc_push_dummy_frame (void)
{
  CORE_ADDR sp, old_sp;
  char *register_temp;

  register_temp = alloca (DUMMY_STACK_SIZE);

  old_sp = sp = read_sp ();

  if (GDB_TARGET_IS_SPARC64)
    {
      /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
      deprecated_read_register_bytes (REGISTER_BYTE (PC_REGNUM),
				      &register_temp[0],
				      REGISTER_RAW_SIZE (PC_REGNUM) * 7);
      deprecated_read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), 
				      &register_temp[7 * SPARC_INTREG_SIZE],
				      REGISTER_RAW_SIZE (PSTATE_REGNUM));
      /* FIXME: not sure what needs to be saved here.  */
    }
  else
    {
      /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
      deprecated_read_register_bytes (REGISTER_BYTE (Y_REGNUM),
				      &register_temp[0],
				      REGISTER_RAW_SIZE (Y_REGNUM) * 8);
    }

  deprecated_read_register_bytes (REGISTER_BYTE (O0_REGNUM),
				  &register_temp[8 * SPARC_INTREG_SIZE],
				  SPARC_INTREG_SIZE * 8);

  deprecated_read_register_bytes (REGISTER_BYTE (G0_REGNUM),
				  &register_temp[16 * SPARC_INTREG_SIZE],
				  SPARC_INTREG_SIZE * 8);

  if (SPARC_HAS_FPU)
    deprecated_read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
				    &register_temp[24 * SPARC_INTREG_SIZE],
				    FP_REGISTER_BYTES);

  sp -= DUMMY_STACK_SIZE;

  DEPRECATED_DUMMY_WRITE_SP (sp);

  write_memory (sp + DUMMY_REG_SAVE_OFFSET, &register_temp[0],
		DUMMY_STACK_REG_BUF_SIZE);

  if (strcmp (target_shortname, "sim") != 0)
    {
      /* NOTE: cagney/2002-04-04: The code below originally contained
         GDB's _only_ call to write_fp().  That call was eliminated by
         inlining the corresponding code.  For the 64 bit case, the
         old function (sparc64_write_fp) did the below although I'm
         not clear why.  The same goes for why this is only done when
         the underlying target is a simulator.  */
      if (GDB_TARGET_IS_SPARC64)
	{
	  /* Target is a 64 bit SPARC.  */
	  CORE_ADDR oldfp = read_register (DEPRECATED_FP_REGNUM);
	  if (oldfp & 1)
	    write_register (DEPRECATED_FP_REGNUM, old_sp - 2047);
	  else
	    write_register (DEPRECATED_FP_REGNUM, old_sp);
	}
      else
	{
	  /* Target is a 32 bit SPARC.  */
	  write_register (DEPRECATED_FP_REGNUM, old_sp);
	}
      /* Set return address register for the call dummy to the current PC.  */
      write_register (I7_REGNUM, read_pc () - 8);
    }
  else
    {
      /* The call dummy will write this value to FP before executing
         the 'save'.  This ensures that register window flushes work
         correctly in the simulator.  */
      write_register (G0_REGNUM + 1, read_register (DEPRECATED_FP_REGNUM));

      /* The call dummy will write this value to FP after executing
         the 'save'. */
      write_register (G0_REGNUM + 2, old_sp);

      /* The call dummy will write this value to the return address (%i7) after
         executing the 'save'. */
      write_register (G0_REGNUM + 3, read_pc () - 8);

      /* Set the FP that the call dummy will be using after the 'save'.
         This makes backtraces from an inferior function call work properly.  */
      write_register (DEPRECATED_FP_REGNUM, old_sp);
    }
}

/* sparc_frame_find_saved_regs ().  This function is here only because
   pop_frame uses it.  Note there is an interesting corner case which
   I think few ports of GDB get right--if you are popping a frame
   which does not save some register that *is* saved by a more inner
   frame (such a frame will never be a dummy frame because dummy
   frames save all registers).

   NOTE: cagney/2003-03-12: Since pop_frame has been rewritten to use
   frame_unwind_register() the need for this function is questionable.

   Stores, into an array of CORE_ADDR, 
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.

   Note that on register window machines, we are currently making the
   assumption that window registers are being saved somewhere in the
   frame in which they are being used.  If they are stored in an
   inferior frame, find_saved_register will break.

   On the Sun 4, the only time all registers are saved is when
   a dummy frame is involved.  Otherwise, the only saved registers
   are the LOCAL and IN registers which are saved as a result
   of the "save/restore" opcodes.  This condition is determined
   by address rather than by value.

   The "pc" is not stored in a frame on the SPARC.  (What is stored
   is a return address minus 8.)  sparc_pop_frame knows how to
   deal with that.  Other routines might or might not.

   See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
   about how this works.  */

static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *);

static void
sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr)
{
  register int regnum;
  CORE_ADDR frame_addr = get_frame_base (fi);

  gdb_assert (fi != NULL);

  memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR));

  if (get_frame_pc (fi) >= (get_frame_extra_info (fi)->bottom
			    ? get_frame_extra_info (fi)->bottom
			    : read_sp ())
      && get_frame_pc (fi) <= get_frame_base (fi))
    {
      /* Dummy frame.  All but the window regs are in there somewhere. */
      for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
	saved_regs_addr[regnum] =
	  frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
	  - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;

      for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
	saved_regs_addr[regnum] =
	  frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
	  - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;

      if (SPARC_HAS_FPU)
	for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++)
	  saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4
	    - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;

      if (GDB_TARGET_IS_SPARC64)
	{
	  for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
	    {
	      saved_regs_addr[regnum] =
		frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
		- DUMMY_STACK_REG_BUF_SIZE;
	    }
	  saved_regs_addr[PSTATE_REGNUM] =
	    frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
	}
      else
	for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
	  saved_regs_addr[regnum] =
	    frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
	    - DUMMY_STACK_REG_BUF_SIZE;

      frame_addr = (get_frame_extra_info (fi)->bottom
		    ? get_frame_extra_info (fi)->bottom
		    : read_sp ());
    }
  else if (get_frame_extra_info (fi)->flat)
    {
      CORE_ADDR func_start;
      find_pc_partial_function (get_frame_pc (fi), NULL, &func_start, NULL);
      examine_prologue (func_start, 0, fi, saved_regs_addr);

      /* Flat register window frame.  */
      saved_regs_addr[RP_REGNUM] = get_frame_extra_info (fi)->pc_addr;
      saved_regs_addr[I7_REGNUM] = get_frame_extra_info (fi)->fp_addr;
    }
  else
    {
      /* Normal frame.  Just Local and In registers */
      frame_addr = (get_frame_extra_info (fi)->bottom
		    ? get_frame_extra_info (fi)->bottom
		    : read_sp ());
      for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
	saved_regs_addr[regnum] =
	  (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
	   + FRAME_SAVED_L0);
      for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
	saved_regs_addr[regnum] =
	  (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
	   + FRAME_SAVED_I0);
    }
  if (get_next_frame (fi))
    {
      if (get_frame_extra_info (fi)->flat)
	{
	  saved_regs_addr[O7_REGNUM] = get_frame_extra_info (fi)->pc_addr;
	}
      else
	{
	  /* Pull off either the next frame pointer or the stack pointer */
	  CORE_ADDR next_next_frame_addr =
	  (get_frame_extra_info (get_next_frame (fi))->bottom
	   ? get_frame_extra_info (get_next_frame (fi))->bottom
	   : read_sp ());
	  for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
	    saved_regs_addr[regnum] =
	      (next_next_frame_addr
	       + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
	       + FRAME_SAVED_I0);
	}
    }
  /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
  /* FIXME -- should this adjust for the sparc64 offset? */
  saved_regs_addr[SP_REGNUM] = get_frame_base (fi);
}

/* Discard from the stack the innermost frame, restoring all saved registers.

   Note that the values stored in fsr by
   deprecated_get_frame_saved_regs are *in the context of the called
   frame*.  What this means is that the i regs of fsr must be restored
   into the o regs of the (calling) frame that we pop into.  We don't
   care about the output regs of the calling frame, since unless it's
   a dummy frame, it won't have any output regs in it.

   We never have to bother with %l (local) regs, since the called routine's
   locals get tossed, and the calling routine's locals are already saved
   on its stack.  */

/* Definitely see tm-sparc.h for more doc of the frame format here.  */

void
sparc_pop_frame (void)
{
  register struct frame_info *frame = get_current_frame ();
  register CORE_ADDR pc;
  CORE_ADDR *fsr;
  char *raw_buffer;
  int regnum;

  fsr = alloca (NUM_REGS * sizeof (CORE_ADDR));
  raw_buffer = alloca (REGISTER_BYTES);
  sparc_frame_find_saved_regs (frame, &fsr[0]);
  if (SPARC_HAS_FPU)
    {
      if (fsr[FP0_REGNUM])
	{
	  read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
	  deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
					   raw_buffer, FP_REGISTER_BYTES);
	}
      if (!(GDB_TARGET_IS_SPARC64))
	{
	  if (fsr[FPS_REGNUM])
	    {
	      read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
	      deprecated_write_register_gen (FPS_REGNUM, raw_buffer);
	    }
	  if (fsr[CPS_REGNUM])
	    {
	      read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
	      deprecated_write_register_gen (CPS_REGNUM, raw_buffer);
	    }
	}
    }
  if (fsr[G1_REGNUM])
    {
      read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
      deprecated_write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
				       7 * SPARC_INTREG_SIZE);
    }

  if (get_frame_extra_info (frame)->flat)
    {
      /* Each register might or might not have been saved, need to test
         individually.  */
      for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
	if (fsr[regnum])
	  write_register (regnum, read_memory_integer (fsr[regnum],
						       SPARC_INTREG_SIZE));
      for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
	if (fsr[regnum])
	  write_register (regnum, read_memory_integer (fsr[regnum],
						       SPARC_INTREG_SIZE));

      /* Handle all outs except stack pointer (o0-o5; o7).  */
      for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
	if (fsr[regnum])
	  write_register (regnum, read_memory_integer (fsr[regnum],
						       SPARC_INTREG_SIZE));
      if (fsr[O0_REGNUM + 7])
	write_register (O0_REGNUM + 7,
			read_memory_integer (fsr[O0_REGNUM + 7],
					     SPARC_INTREG_SIZE));

      DEPRECATED_DUMMY_WRITE_SP (get_frame_base (frame));
    }
  else if (fsr[I0_REGNUM])
    {
      CORE_ADDR sp;

      char *reg_temp;

      reg_temp = alloca (SPARC_INTREG_SIZE * 16);

      read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);

      /* Get the ins and locals which we are about to restore.  Just
         moving the stack pointer is all that is really needed, except
         store_inferior_registers is then going to write the ins and
         locals from the registers array, so we need to muck with the
         registers array.  */
      sp = fsr[SP_REGNUM];
 
      if (GDB_TARGET_IS_SPARC64 && (sp & 1))
	sp += 2047;

      read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);

      /* Restore the out registers.
         Among other things this writes the new stack pointer.  */
      deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
				       SPARC_INTREG_SIZE * 8);

      deprecated_write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
				       SPARC_INTREG_SIZE * 16);
    }

  if (!(GDB_TARGET_IS_SPARC64))
    if (fsr[PS_REGNUM])
      write_register (PS_REGNUM, 
		      read_memory_integer (fsr[PS_REGNUM], 
					   REGISTER_RAW_SIZE (PS_REGNUM)));

  if (fsr[Y_REGNUM])
    write_register (Y_REGNUM, 
		    read_memory_integer (fsr[Y_REGNUM], 
					 REGISTER_RAW_SIZE (Y_REGNUM)));
  if (fsr[PC_REGNUM])
    {
      /* Explicitly specified PC (and maybe NPC) -- just restore them. */
      write_register (PC_REGNUM, 
		      read_memory_integer (fsr[PC_REGNUM],
					   REGISTER_RAW_SIZE (PC_REGNUM)));
      if (fsr[NPC_REGNUM])
	write_register (NPC_REGNUM,
			read_memory_integer (fsr[NPC_REGNUM],
					     REGISTER_RAW_SIZE (NPC_REGNUM)));
    }
  else if (get_frame_extra_info (frame)->flat)
    {
      if (get_frame_extra_info (frame)->pc_addr)
	pc = PC_ADJUST ((CORE_ADDR)
			read_memory_integer (get_frame_extra_info (frame)->pc_addr,
					     REGISTER_RAW_SIZE (PC_REGNUM)));
      else
	{
	  /* I think this happens only in the innermost frame, if so then
	     it is a complicated way of saying
	     "pc = read_register (O7_REGNUM);".  */
	  ULONGEST tmp;
	  frame_read_unsigned_register (frame, O7_REGNUM, &tmp);
	  pc = PC_ADJUST (tmp);
	}

      write_register (PC_REGNUM, pc);
      write_register (NPC_REGNUM, pc + 4);
    }
  else if (fsr[I7_REGNUM])
    {
      /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
      pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM],
						       SPARC_INTREG_SIZE));
      write_register (PC_REGNUM, pc);
      write_register (NPC_REGNUM, pc + 4);
    }
  flush_cached_frames ();
}

/* On the Sun 4 under SunOS, the compile will leave a fake insn which
   encodes the structure size being returned.  If we detect such
   a fake insn, step past it.  */

CORE_ADDR
sparc_pc_adjust (CORE_ADDR pc)
{
  unsigned long insn;
  char buf[4];
  int err;

  err = target_read_memory (pc + 8, buf, 4);
  insn = extract_unsigned_integer (buf, 4);
  if ((err == 0) && (insn & 0xffc00000) == 0)
    return pc + 12;
  else
    return pc + 8;
}

/* If pc is in a shared library trampoline, return its target.
   The SunOs 4.x linker rewrites the jump table entries for PIC
   compiled modules in the main executable to bypass the dynamic linker
   with jumps of the form
   sethi %hi(addr),%g1
   jmp %g1+%lo(addr)
   and removes the corresponding jump table relocation entry in the
   dynamic relocations.
   find_solib_trampoline_target relies on the presence of the jump
   table relocation entry, so we have to detect these jump instructions
   by hand.  */

CORE_ADDR
sunos4_skip_trampoline_code (CORE_ADDR pc)
{
  unsigned long insn1;
  char buf[4];
  int err;

  err = target_read_memory (pc, buf, 4);
  insn1 = extract_unsigned_integer (buf, 4);
  if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
    {
      unsigned long insn2;

      err = target_read_memory (pc + 4, buf, 4);
      insn2 = extract_unsigned_integer (buf, 4);
      if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
	{
	  CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
	  int delta = insn2 & 0x1fff;

	  /* Sign extend the displacement.  */
	  if (delta & 0x1000)
	    delta |= ~0x1fff;
	  return target_pc + delta;
	}
    }
  return find_solib_trampoline_target (pc);
}

#ifdef USE_PROC_FS		/* Target dependent support for /proc */
/* *INDENT-OFF* */
/*  The /proc interface divides the target machine's register set up into
    two different sets, the general register set (gregset) and the floating
    point register set (fpregset).  For each set, there is an ioctl to get
    the current register set and another ioctl to set the current values.

    The actual structure passed through the ioctl interface is, of course,
    naturally machine dependent, and is different for each set of registers.
    For the sparc for example, the general register set is typically defined
    by:

	typedef int gregset_t[38];

	#define	R_G0	0
	...
	#define	R_TBR	37

    and the floating point set by:

	typedef struct prfpregset {
		union { 
			u_long  pr_regs[32]; 
			double  pr_dregs[16];
		} pr_fr;
		void *  pr_filler;
		u_long  pr_fsr;
		u_char  pr_qcnt;
		u_char  pr_q_entrysize;
		u_char  pr_en;
		u_long  pr_q[64];
	} prfpregset_t;

    These routines provide the packing and unpacking of gregset_t and
    fpregset_t formatted data.

 */
/* *INDENT-ON* */

/* Given a pointer to a general register set in /proc format (gregset_t *),
   unpack the register contents and supply them as gdb's idea of the current
   register values. */

void
supply_gregset (gdb_gregset_t *gregsetp)
{
  prgreg_t *regp = (prgreg_t *) gregsetp;
  int regi, offset = 0;

  /* If the host is 64-bit sparc, but the target is 32-bit sparc, 
     then the gregset may contain 64-bit ints while supply_register
     is expecting 32-bit ints.  Compensate.  */
  if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
    offset = 4;

  /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers.  */
  /* FIXME MVS: assumes the order of the first 32 elements... */
  for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
    {
      supply_register (regi, ((char *) (regp + regi)) + offset);
    }

  /* These require a bit more care.  */
  supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset);
  supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset);
  supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset);

  if (GDB_TARGET_IS_SPARC64)
    {
#ifdef R_CCR
      supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
#else
      supply_register (CCR_REGNUM, NULL);
#endif
#ifdef R_FPRS
      supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
#else
      supply_register (FPRS_REGNUM, NULL);
#endif
#ifdef R_ASI
      supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
#else
      supply_register (ASI_REGNUM, NULL);
#endif
    }
  else	/* sparc32 */
    {
#ifdef R_PS
      supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
#else
      supply_register (PS_REGNUM, NULL);
#endif

      /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
	 Steal R_ASI and R_FPRS, and hope for the best!  */

#if !defined (R_WIM) && defined (R_ASI)
#define R_WIM R_ASI
#endif

#if !defined (R_TBR) && defined (R_FPRS)
#define R_TBR R_FPRS
#endif

#if defined (R_WIM)
      supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
#else
      supply_register (WIM_REGNUM, NULL);
#endif

#if defined (R_TBR)
      supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
#else
      supply_register (TBR_REGNUM, NULL);
#endif
    }

  /* Fill inaccessible registers with zero.  */
  if (GDB_TARGET_IS_SPARC64)
    {
      /*
       * don't know how to get value of any of the following:
       */
      supply_register (VER_REGNUM, NULL);
      supply_register (TICK_REGNUM, NULL);
      supply_register (PIL_REGNUM, NULL);
      supply_register (PSTATE_REGNUM, NULL);
      supply_register (TSTATE_REGNUM, NULL);
      supply_register (TBA_REGNUM, NULL);
      supply_register (TL_REGNUM, NULL);
      supply_register (TT_REGNUM, NULL);
      supply_register (TPC_REGNUM, NULL);
      supply_register (TNPC_REGNUM, NULL);
      supply_register (WSTATE_REGNUM, NULL);
      supply_register (CWP_REGNUM, NULL);
      supply_register (CANSAVE_REGNUM, NULL);
      supply_register (CANRESTORE_REGNUM, NULL);
      supply_register (CLEANWIN_REGNUM, NULL);
      supply_register (OTHERWIN_REGNUM, NULL);
      supply_register (ASR16_REGNUM, NULL);
      supply_register (ASR17_REGNUM, NULL);
      supply_register (ASR18_REGNUM, NULL);
      supply_register (ASR19_REGNUM, NULL);
      supply_register (ASR20_REGNUM, NULL);
      supply_register (ASR21_REGNUM, NULL);
      supply_register (ASR22_REGNUM, NULL);
      supply_register (ASR23_REGNUM, NULL);
      supply_register (ASR24_REGNUM, NULL);
      supply_register (ASR25_REGNUM, NULL);
      supply_register (ASR26_REGNUM, NULL);
      supply_register (ASR27_REGNUM, NULL);
      supply_register (ASR28_REGNUM, NULL);
      supply_register (ASR29_REGNUM, NULL);
      supply_register (ASR30_REGNUM, NULL);
      supply_register (ASR31_REGNUM, NULL);
      supply_register (ICC_REGNUM, NULL);
      supply_register (XCC_REGNUM, NULL);
    }
  else
    {
      supply_register (CPS_REGNUM, NULL);
    }
}

void
fill_gregset (gdb_gregset_t *gregsetp, int regno)
{
  prgreg_t *regp = (prgreg_t *) gregsetp;
  int regi, offset = 0;

  /* If the host is 64-bit sparc, but the target is 32-bit sparc, 
     then the gregset may contain 64-bit ints while supply_register
     is expecting 32-bit ints.  Compensate.  */
  if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
    offset = 4;

  for (regi = 0; regi <= R_I7; regi++)
    if ((regno == -1) || (regno == regi))
      deprecated_read_register_gen (regi, (char *) (regp + regi) + offset);

  if ((regno == -1) || (regno == PC_REGNUM))
    deprecated_read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset);

  if ((regno == -1) || (regno == NPC_REGNUM))
    deprecated_read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset);

  if ((regno == -1) || (regno == Y_REGNUM))
    deprecated_read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset);

  if (GDB_TARGET_IS_SPARC64)
    {
#ifdef R_CCR
      if (regno == -1 || regno == CCR_REGNUM)
	deprecated_read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
#endif
#ifdef R_FPRS
      if (regno == -1 || regno == FPRS_REGNUM)
	deprecated_read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
#endif
#ifdef R_ASI
      if (regno == -1 || regno == ASI_REGNUM)
	deprecated_read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
#endif
    }
  else /* sparc32 */
    {
#ifdef R_PS
      if (regno == -1 || regno == PS_REGNUM)
	deprecated_read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
#endif

      /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
	 Steal R_ASI and R_FPRS, and hope for the best!  */

#if !defined (R_WIM) && defined (R_ASI)
#define R_WIM R_ASI
#endif

#if !defined (R_TBR) && defined (R_FPRS)
#define R_TBR R_FPRS
#endif

#if defined (R_WIM)
      if (regno == -1 || regno == WIM_REGNUM)
	deprecated_read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
#else
      if (regno == -1 || regno == WIM_REGNUM)
	deprecated_read_register_gen (WIM_REGNUM, NULL);
#endif

#if defined (R_TBR)
      if (regno == -1 || regno == TBR_REGNUM)
	deprecated_read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
#else
      if (regno == -1 || regno == TBR_REGNUM)
	deprecated_read_register_gen (TBR_REGNUM, NULL);
#endif
    }
}

/*  Given a pointer to a floating point register set in /proc format
   (fpregset_t *), unpack the register contents and supply them as gdb's
   idea of the current floating point register values. */

void
supply_fpregset (gdb_fpregset_t *fpregsetp)
{
  register int regi;
  char *from;

  if (!SPARC_HAS_FPU)
    return;

  for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
    {
      from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
      supply_register (regi, from);
    }

  if (GDB_TARGET_IS_SPARC64)
    {
      /*
       * don't know how to get value of the following.  
       */
      supply_register (FSR_REGNUM, NULL);	/* zero it out for now */
      supply_register (FCC0_REGNUM, NULL);
      supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */
      supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */
      supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */
    }
  else
    {
      supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
    }
}

/*  Given a pointer to a floating point register set in /proc format
   (fpregset_t *), update the register specified by REGNO from gdb's idea
   of the current floating point register set.  If REGNO is -1, update
   them all. */
/* This will probably need some changes for sparc64.  */

void
fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
{
  int regi;
  char *to;
  char *from;

  if (!SPARC_HAS_FPU)
    return;

  for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
    {
      if ((regno == -1) || (regno == regi))
	{
	  from = (char *) &deprecated_registers[REGISTER_BYTE (regi)];
	  to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
	  memcpy (to, from, REGISTER_RAW_SIZE (regi));
	}
    }

  if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */
    if ((regno == -1) || (regno == FPS_REGNUM))
      {
	from = (char *)&deprecated_registers[REGISTER_BYTE (FPS_REGNUM)];
	to = (char *) &fpregsetp->pr_fsr;
	memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM));
      }
}

#endif /* USE_PROC_FS */

/* Because of Multi-arch, GET_LONGJMP_TARGET is always defined.  So test
   for a definition of JB_PC.  */
#ifdef JB_PC

/* Figure out where the longjmp will land.  We expect that we have just entered
   longjmp and haven't yet setup the stack frame, so the args are still in the
   output regs.  %o0 (O0_REGNUM) points at the jmp_buf structure from which we
   extract the pc (JB_PC) that we will land at.  The pc is copied into ADDR.
   This routine returns true on success */

int
get_longjmp_target (CORE_ADDR *pc)
{
  CORE_ADDR jb_addr;
#define LONGJMP_TARGET_SIZE 4
  char buf[LONGJMP_TARGET_SIZE];

  jb_addr = read_register (O0_REGNUM);

  if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
			  LONGJMP_TARGET_SIZE))
    return 0;

  *pc = extract_address (buf, LONGJMP_TARGET_SIZE);

  return 1;
}
#endif /* GET_LONGJMP_TARGET */

#ifdef STATIC_TRANSFORM_NAME
/* SunPRO (3.0 at least), encodes the static variables.  This is not
   related to C++ mangling, it is done for C too.  */

char *
sunpro_static_transform_name (char *name)
{
  char *p;
  if (name[0] == '$')
    {
      /* For file-local statics there will be a dollar sign, a bunch
         of junk (the contents of which match a string given in the
         N_OPT), a period and the name.  For function-local statics
         there will be a bunch of junk (which seems to change the
         second character from 'A' to 'B'), a period, the name of the
         function, and the name.  So just skip everything before the
         last period.  */
      p = strrchr (name, '.');
      if (p != NULL)
	name = p + 1;
    }
  return name;
}
#endif /* STATIC_TRANSFORM_NAME */


/* Utilities for printing registers.
   Page numbers refer to the SPARC Architecture Manual.  */

static void dump_ccreg (char *, int);

static void
dump_ccreg (char *reg, int val)
{
  /* page 41 */
  printf_unfiltered ("%s:%s,%s,%s,%s", reg,
		     val & 8 ? "N" : "NN",
		     val & 4 ? "Z" : "NZ",
		     val & 2 ? "O" : "NO",
		     val & 1 ? "C" : "NC");
}

static char *
decode_asi (int val)
{
  /* page 72 */
  switch (val)
    {
    case 4:
      return "ASI_NUCLEUS";
    case 0x0c:
      return "ASI_NUCLEUS_LITTLE";
    case 0x10:
      return "ASI_AS_IF_USER_PRIMARY";
    case 0x11:
      return "ASI_AS_IF_USER_SECONDARY";
    case 0x18:
      return "ASI_AS_IF_USER_PRIMARY_LITTLE";
    case 0x19:
      return "ASI_AS_IF_USER_SECONDARY_LITTLE";
    case 0x80:
      return "ASI_PRIMARY";
    case 0x81:
      return "ASI_SECONDARY";
    case 0x82:
      return "ASI_PRIMARY_NOFAULT";
    case 0x83:
      return "ASI_SECONDARY_NOFAULT";
    case 0x88:
      return "ASI_PRIMARY_LITTLE";
    case 0x89:
      return "ASI_SECONDARY_LITTLE";
    case 0x8a:
      return "ASI_PRIMARY_NOFAULT_LITTLE";
    case 0x8b:
      return "ASI_SECONDARY_NOFAULT_LITTLE";
    default:
      return NULL;
    }
}

/* Pretty print various registers.  */
/* FIXME: Would be nice if this did some fancy things for 32 bit sparc.  */

static void
sparc_print_register_hook (int regno)
{
  ULONGEST val;

  /* Handle double/quad versions of lower 32 fp regs.  */
  if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
      && (regno & 1) == 0)
    {
      char value[16];

      if (frame_register_read (deprecated_selected_frame, regno, value)
	  && frame_register_read (deprecated_selected_frame, regno + 1, value + 4))
	{
	  printf_unfiltered ("\t");
	  print_floating (value, builtin_type_double, gdb_stdout);
	}
#if 0				/* FIXME: gdb doesn't handle long doubles */
      if ((regno & 3) == 0)
	{
	  if (frame_register_read (deprecated_selected_frame, regno + 2, value + 8)
	      && frame_register_read (deprecated_selected_frame, regno + 3, value + 12))
	    {
	      printf_unfiltered ("\t");
	      print_floating (value, builtin_type_long_double, gdb_stdout);
	    }
	}
#endif
      return;
    }

#if 0				/* FIXME: gdb doesn't handle long doubles */
  /* Print upper fp regs as long double if appropriate.  */
  if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
  /* We test for even numbered regs and not a multiple of 4 because
     the upper fp regs are recorded as doubles.  */
      && (regno & 1) == 0)
    {
      char value[16];

      if (frame_register_read (deprecated_selected_frame, regno, value)
	  && frame_register_read (deprecated_selected_frame, regno + 1, value + 8))
	{
	  printf_unfiltered ("\t");
	  print_floating (value, builtin_type_long_double, gdb_stdout);
	}
      return;
    }
#endif

  /* FIXME: Some of these are priviledged registers.
     Not sure how they should be handled.  */

#define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))

  val = read_register (regno);

  /* pages 40 - 60 */
  if (GDB_TARGET_IS_SPARC64)
    switch (regno)
      {
      case CCR_REGNUM:
	printf_unfiltered ("\t");
	dump_ccreg ("xcc", val >> 4);
	printf_unfiltered (", ");
	dump_ccreg ("icc", val & 15);
	break;
      case FPRS_REGNUM:
	printf ("\tfef:%d, du:%d, dl:%d",
		BITS (2, 1), BITS (1, 1), BITS (0, 1));
	break;
      case FSR_REGNUM:
	{
	  static char *fcc[4] =
	  {"=", "<", ">", "?"};
	  static char *rd[4] =
	  {"N", "0", "+", "-"};
	  /* Long, but I'd rather leave it as is and use a wide screen.  */
	  printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ",
			   fcc[BITS (10, 3)], fcc[BITS (32, 3)],
			   fcc[BITS (34, 3)], fcc[BITS (36, 3)],
			   rd[BITS (30, 3)], BITS (23, 31));
	  printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
			   BITS (22, 1), BITS (17, 7), BITS (14, 7), 
			   BITS (13, 1), BITS (5, 31), BITS (0, 31));
	  break;
	}
      case ASI_REGNUM:
	{
	  char *asi = decode_asi (val);
	  if (asi != NULL)
	    printf ("\t%s", asi);
	  break;
	}
      case VER_REGNUM:
	printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
		BITS (48, 0xffff), BITS (32, 0xffff),
		BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
	break;
      case PSTATE_REGNUM:
	{
	  static char *mm[4] =
	  {"tso", "pso", "rso", "?"};
	  printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ",
			   BITS (9, 1), BITS (8, 1), 
			   mm[BITS (6, 3)], BITS (5, 1));
	  printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
			   BITS (4, 1), BITS (3, 1), BITS (2, 1), 
			   BITS (1, 1), BITS (0, 1));
	  break;
	}
      case TSTATE_REGNUM:
	/* FIXME: print all 4? */
	break;
      case TT_REGNUM:
	/* FIXME: print all 4? */
	break;
      case TPC_REGNUM:
	/* FIXME: print all 4? */
	break;
      case TNPC_REGNUM:
	/* FIXME: print all 4? */
	break;
      case WSTATE_REGNUM:
	printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
	break;
      case CWP_REGNUM:
	printf ("\t%d", BITS (0, 31));
	break;
      case CANSAVE_REGNUM:
	printf ("\t%-2d before spill", BITS (0, 31));
	break;
      case CANRESTORE_REGNUM:
	printf ("\t%-2d before fill", BITS (0, 31));
	break;
      case CLEANWIN_REGNUM:
	printf ("\t%-2d before clean", BITS (0, 31));
	break;
      case OTHERWIN_REGNUM:
	printf ("\t%d", BITS (0, 31));
	break;
      }
  else	/* Sparc32 */
    switch (regno) 
      {
      case PS_REGNUM:
	printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
		BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
		BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
		BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
		BITS (0, 31));
	break;
      case FPS_REGNUM:
	{
	  static char *fcc[4] =
	  {"=", "<", ">", "?"};
	  static char *rd[4] =
	  {"N", "0", "+", "-"};
	  /* Long, but I'd rather leave it as is and use a wide screen.  */
	  printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
		  "fcc:%s, aexc:%d, cexc:%d",
		  rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
		  BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
		  BITS (0, 31));
	  break;
	}
      }

#undef BITS
}

static void
sparc_print_registers (struct gdbarch *gdbarch,
		       struct ui_file *file,
		       struct frame_info *frame,
		       int regnum, int print_all,
		       void (*print_register_hook) (int))
{
  int i;
  const int numregs = NUM_REGS + NUM_PSEUDO_REGS;
  char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
  char *virtual_buffer = alloca (MAX_REGISTER_VIRTUAL_SIZE);

  for (i = 0; i < numregs; i++)
    {
      /* Decide between printing all regs, non-float / vector regs, or
         specific reg.  */
      if (regnum == -1)
	{
	  if (!print_all)
	    {
	      if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
		continue;
	      if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)))
		continue;
	    }
	}
      else
	{
	  if (i != regnum)
	    continue;
	}

      /* If the register name is empty, it is undefined for this
         processor, so don't display anything.  */
      if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
	continue;

      fputs_filtered (REGISTER_NAME (i), file);
      print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), file);

      /* Get the data in raw format.  */
      if (! frame_register_read (frame, i, raw_buffer))
	{
	  fprintf_filtered (file, "*value not available*\n");
	  continue;
	}

      /* FIXME: cagney/2002-08-03: This code shouldn't be necessary.
         The function frame_register_read() should have returned the
         pre-cooked register so no conversion is necessary.  */
      /* Convert raw data to virtual format if necessary.  */
      if (REGISTER_CONVERTIBLE (i))
	{
	  REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
				       raw_buffer, virtual_buffer);
	}
      else
	{
	  memcpy (virtual_buffer, raw_buffer,
		  REGISTER_VIRTUAL_SIZE (i));
	}

      /* If virtual format is floating, print it that way, and in raw
         hex.  */
      if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
	{
	  int j;

	  val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
		     file, 0, 1, 0, Val_pretty_default);

	  fprintf_filtered (file, "\t(raw 0x");
	  for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
	    {
	      int idx;
	      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
		idx = j;
	      else
		idx = REGISTER_RAW_SIZE (i) - 1 - j;
	      fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
	    }
	  fprintf_filtered (file, ")");
	}
      else
	{
	  /* Print the register in hex.  */
	  val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
		     file, 'x', 1, 0, Val_pretty_default);
          /* If not a vector register, print it also according to its
             natural format.  */
	  if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)) == 0)
	    {
	      fprintf_filtered (file, "\t");
	      val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
			 file, 0, 1, 0, Val_pretty_default);
	    }
	}

      /* Some sparc specific info.  */
      if (print_register_hook != NULL)
	print_register_hook (i);

      fprintf_filtered (file, "\n");
    }
}

static void
sparc_print_registers_info (struct gdbarch *gdbarch,
			    struct ui_file *file,
			    struct frame_info *frame,
			    int regnum, int print_all)
{
  sparc_print_registers (gdbarch, file, frame, regnum, print_all,
			 sparc_print_register_hook);
}

void
sparc_do_registers_info (int regnum, int all)
{
  sparc_print_registers_info (current_gdbarch, gdb_stdout, deprecated_selected_frame,
			      regnum, all);
}

#if 0
// OBSOLETE static void
// OBSOLETE sparclet_print_registers_info (struct gdbarch *gdbarch,
// OBSOLETE 			       struct ui_file *file,
// OBSOLETE 			       struct frame_info *frame,
// OBSOLETE 			       int regnum, int print_all)
// OBSOLETE {
// OBSOLETE   sparc_print_registers (gdbarch, file, frame, regnum, print_all, NULL);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE void
// OBSOLETE sparclet_do_registers_info (int regnum, int all)
// OBSOLETE {
// OBSOLETE   sparclet_print_registers_info (current_gdbarch, gdb_stdout,
// OBSOLETE 				 deprecated_selected_frame, regnum, all);
// OBSOLETE }
#endif


int
gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info)
{
  /* It's necessary to override mach again because print_insn messes it up. */
  info->mach = TARGET_ARCHITECTURE->mach;
  return print_insn_sparc (memaddr, info);
}

/* The SPARC passes the arguments on the stack; arguments smaller
   than an int are promoted to an int.  The first 6 words worth of 
   args are also passed in registers o0 - o5.  */

CORE_ADDR
sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
			int struct_return, CORE_ADDR struct_addr)
{
  int i, j, oregnum;
  int accumulate_size = 0;
  struct sparc_arg
    {
      char *contents;
      int len;
      int offset;
    };
  struct sparc_arg *sparc_args =
    (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
  struct sparc_arg *m_arg;

  /* Promote arguments if necessary, and calculate their stack offsets
     and sizes. */
  for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
    {
      struct value *arg = args[i];
      struct type *arg_type = check_typedef (VALUE_TYPE (arg));
      /* Cast argument to long if necessary as the compiler does it too.  */
      switch (TYPE_CODE (arg_type))
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_BOOL:
	case TYPE_CODE_CHAR:
	case TYPE_CODE_RANGE:
	case TYPE_CODE_ENUM:
	  if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
	    {
	      arg_type = builtin_type_long;
	      arg = value_cast (arg_type, arg);
	    }
	  break;
	default:
	  break;
	}
      m_arg->len = TYPE_LENGTH (arg_type);
      m_arg->offset = accumulate_size;
      accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
      m_arg->contents = VALUE_CONTENTS (arg);
    }

  /* Make room for the arguments on the stack.  */
  accumulate_size += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
  sp = ((sp - accumulate_size) & ~7) + DEPRECATED_CALL_DUMMY_STACK_ADJUST;

  /* `Push' arguments on the stack.  */
  for (i = 0, oregnum = 0, m_arg = sparc_args; 
       i < nargs;
       i++, m_arg++)
    {
      write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
      for (j = 0; 
	   j < m_arg->len && oregnum < 6; 
	   j += SPARC_INTREG_SIZE, oregnum++)
	deprecated_write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j);
    }

  return sp;
}


/* Extract from an array REGBUF containing the (raw) register state
   a function return value of type TYPE, and copy that, in virtual format,
   into VALBUF.  */

void
sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
  int typelen = TYPE_LENGTH (type);
  int regsize = REGISTER_RAW_SIZE (O0_REGNUM);

  if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
    memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
  else
    memcpy (valbuf,
	    &regbuf[O0_REGNUM * regsize +
		    (typelen >= regsize
		     || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0
		     : regsize - typelen)],
	    typelen);
}


/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  On SPARCs with FPUs,
   float values are returned in %f0 (and %f1).  In all other cases,
   values are returned in register %o0.  */

void
sparc_store_return_value (struct type *type, char *valbuf)
{
  int regno;
  char *buffer;

  buffer = alloca (MAX_REGISTER_RAW_SIZE);

  if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
    /* Floating-point values are returned in the register pair */
    /* formed by %f0 and %f1 (doubles are, anyway).  */
    regno = FP0_REGNUM;
  else
    /* Other values are returned in register %o0.  */
    regno = O0_REGNUM;

  /* Add leading zeros to the value. */
  if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
    {
      memset (buffer, 0, REGISTER_RAW_SIZE (regno));
      memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
	      TYPE_LENGTH (type));
      deprecated_write_register_gen (regno, buffer);
    }
  else
    deprecated_write_register_bytes (REGISTER_BYTE (regno), valbuf,
				     TYPE_LENGTH (type));
}

#if 0
// OBSOLETE extern void
// OBSOLETE sparclet_store_return_value (struct type *type, char *valbuf)
// OBSOLETE {
// OBSOLETE   /* Other values are returned in register %o0.  */
// OBSOLETE   deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf,
// OBSOLETE 				   TYPE_LENGTH (type));
// OBSOLETE }
#endif


#ifndef CALL_DUMMY_CALL_OFFSET
#define CALL_DUMMY_CALL_OFFSET \
     (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset)
#endif /* CALL_DUMMY_CALL_OFFSET */

/* Insert the function address into a call dummy instruction sequence
   stored at DUMMY.

   For structs and unions, if the function was compiled with Sun cc,
   it expects 'unimp' after the call.  But gcc doesn't use that
   (twisted) convention.  So leave a nop there for gcc (FIX_CALL_DUMMY
   can assume it is operating on a pristine CALL_DUMMY, not one that
   has already been customized for a different function).  */

void
sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
		      struct type *value_type, int using_gcc)
{
  int i;

  /* Store the relative adddress of the target function into the
     'call' instruction. */
  store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
			  (0x40000000
			   | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
			      & 0x3fffffff)));

  /* If the called function returns an aggregate value, fill in the UNIMP
     instruction containing the size of the returned aggregate return value,
     which follows the call instruction.
     For details see the SPARC Architecture Manual Version 8, Appendix D.3.

     Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint
     to the proper address in the call dummy, so that `finish' after a stop
     in a call dummy works.

     Tweeking current_gdbarch is not an optimal solution, but the call
     to sparc_fix_call_dummy is immediately followed by a call to
     call_function_by_hand, which is the only function where
     dummy_breakpoint_offset is actually used, if it is non-zero.  */
  if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
       || TYPE_CODE (value_type) == TYPE_CODE_UNION)
    {
      store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
			      TYPE_LENGTH (value_type) & 0x1fff);
      set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x30);
    }
  else
    set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x2c);

  if (!(GDB_TARGET_IS_SPARC64))
    {
      /* If this is not a simulator target, change the first four
	 instructions of the call dummy to NOPs.  Those instructions
	 include a 'save' instruction and are designed to work around
	 problems with register window flushing in the simulator. */
      
      if (strcmp (target_shortname, "sim") != 0)
	{
	  for (i = 0; i < 4; i++)
	    store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
	}
    }

#if 0
// OBSOLETE   /* If this is a bi-endian target, GDB has written the call dummy
// OBSOLETE      in little-endian order.  We must byte-swap it back to big-endian. */
// OBSOLETE   if (bi_endian)
// OBSOLETE     {
// OBSOLETE       for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
// OBSOLETE 	{
// OBSOLETE 	  char tmp = dummy[i];
// OBSOLETE 	  dummy[i] = dummy[i + 3];
// OBSOLETE 	  dummy[i + 3] = tmp;
// OBSOLETE 	  tmp = dummy[i + 1];
// OBSOLETE 	  dummy[i + 1] = dummy[i + 2];
// OBSOLETE 	  dummy[i + 2] = tmp;
// OBSOLETE 	}
// OBSOLETE     }
#endif
}


#if 0
// OBSOLETE /* Set target byte order based on machine type. */
// OBSOLETE 
// OBSOLETE static int
// OBSOLETE sparc_target_architecture_hook (const bfd_arch_info_type *ap)
// OBSOLETE {
// OBSOLETE   int i, j;
// OBSOLETE 
// OBSOLETE   if (ap->mach == bfd_mach_sparc_sparclite_le)
// OBSOLETE     {
// OBSOLETE       target_byte_order = BFD_ENDIAN_LITTLE;
// OBSOLETE       bi_endian = 1;
// OBSOLETE     }
// OBSOLETE   else
// OBSOLETE     bi_endian = 0;
// OBSOLETE   return 1;
// OBSOLETE }
#endif

/*
 * Module "constructor" function. 
 */

static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info,
					    struct gdbarch_list *arches);
static void sparc_dump_tdep (struct gdbarch *, struct ui_file *);

void
_initialize_sparc_tdep (void)
{
  /* Hook us into the gdbarch mechanism.  */
  gdbarch_register (bfd_arch_sparc, sparc_gdbarch_init, sparc_dump_tdep);

  deprecated_tm_print_insn = gdb_print_insn_sparc;
  tm_print_insn_info.mach = TM_PRINT_INSN_MACH;		/* Selects sparc/sparclite */
  /* OBSOLETE target_architecture_hook = sparc_target_architecture_hook; */
}

/* Compensate for stack bias. Note that we currently don't handle
   mixed 32/64 bit code. */

CORE_ADDR
sparc64_read_sp (void)
{
  CORE_ADDR sp = read_register (SP_REGNUM);

  if (sp & 1)
    sp += 2047;
  return sp;
}

CORE_ADDR
sparc64_read_fp (void)
{
  CORE_ADDR fp = read_register (DEPRECATED_FP_REGNUM);

  if (fp & 1)
    fp += 2047;
  return fp;
}

void
sparc64_write_sp (CORE_ADDR val)
{
  CORE_ADDR oldsp = read_register (SP_REGNUM);
  if (oldsp & 1)
    write_register (SP_REGNUM, val - 2047);
  else
    write_register (SP_REGNUM, val);
}

/* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31,
   and all other arguments in O0 to O5.  They are also copied onto
   the stack in the correct places.  Apparently (empirically), 
   structs of less than 16 bytes are passed member-by-member in
   separate registers, but I am unable to figure out the algorithm.
   Some members go in floating point regs, but I don't know which.

   FIXME: Handle small structs (less than 16 bytes containing floats).

   The counting regimen for using both integer and FP registers
   for argument passing is rather odd -- a single counter is used
   for both; this means that if the arguments alternate between
   int and float, we will waste every other register of both types.  */

CORE_ADDR
sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
			int struct_return, CORE_ADDR struct_retaddr)
{
  int i, j, register_counter = 0;
  CORE_ADDR tempsp;
  struct type *sparc_intreg_type = 
    TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ?
    builtin_type_long : builtin_type_long_long;

  sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL));

  /* Figure out how much space we'll need. */
  for (i = nargs - 1; i >= 0; i--)
    {
      int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
      struct value *copyarg = args[i];
      int copylen = len;

      if (copylen < SPARC_INTREG_SIZE)
	{
	  copyarg = value_cast (sparc_intreg_type, copyarg);
	  copylen = SPARC_INTREG_SIZE;
	}
      sp -= copylen;
    }

  /* Round down. */
  sp = sp & ~7;
  tempsp = sp;

  /* if STRUCT_RETURN, then first argument is the struct return location. */
  if (struct_return)
    write_register (O0_REGNUM + register_counter++, struct_retaddr);

  /* Now write the arguments onto the stack, while writing FP
     arguments into the FP registers, and other arguments into the
     first six 'O' registers.  */

  for (i = 0; i < nargs; i++)
    {
      int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
      struct value *copyarg = args[i];
      enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i]));
      int copylen = len;

      if (typecode == TYPE_CODE_INT   ||
	  typecode == TYPE_CODE_BOOL  ||
	  typecode == TYPE_CODE_CHAR  ||
	  typecode == TYPE_CODE_RANGE ||
	  typecode == TYPE_CODE_ENUM)
	if (len < SPARC_INTREG_SIZE)
	  {
	    /* Small ints will all take up the size of one intreg on
	       the stack.  */
	    copyarg = value_cast (sparc_intreg_type, copyarg);
	    copylen = SPARC_INTREG_SIZE;
	  }

      write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
      tempsp += copylen;

      /* Corner case: Structs consisting of a single float member are floats.
       * FIXME!  I don't know about structs containing multiple floats!
       * Structs containing mixed floats and ints are even more weird.
       */



      /* Separate float args from all other args.  */
      if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
	{
	  if (register_counter < 16)
	    {
	      /* This arg gets copied into a FP register. */
	      int fpreg;

	      switch (len) {
	      case 4:	/* Single-precision (float) */
		fpreg = FP0_REGNUM + 2 * register_counter + 1;
		register_counter += 1;
		break;
	      case 8:	/* Double-precision (double) */
		fpreg = FP0_REGNUM + 2 * register_counter;
		register_counter += 1;
		break;
	      case 16:	/* Quad-precision (long double) */
		fpreg = FP0_REGNUM + 2 * register_counter;
		register_counter += 2;
		break;
	      default:
		internal_error (__FILE__, __LINE__, "bad switch");
	      }
	      deprecated_write_register_bytes (REGISTER_BYTE (fpreg),
					       VALUE_CONTENTS (args[i]),
					       len);
	    }
	}
      else /* all other args go into the first six 'o' registers */
        {
          for (j = 0; 
	       j < len && register_counter < 6; 
	       j += SPARC_INTREG_SIZE)
	    {
	      int oreg = O0_REGNUM + register_counter;

	      deprecated_write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j);
	      register_counter += 1;
	    }
        }
    }
  return sp;
}

/* Values <= 32 bytes are returned in o0-o3 (floating-point values are
   returned in f0-f3). */

void
sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf,
			   int bitoffset)
{
  int typelen = TYPE_LENGTH (type);
  int regsize = REGISTER_RAW_SIZE (O0_REGNUM);

  if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
    {
      memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
      return;
    }

  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
      || (TYPE_LENGTH (type) > 32))
    {
      memcpy (valbuf,
	      &regbuf[O0_REGNUM * regsize +
		      (typelen >= regsize ? 0 : regsize - typelen)],
	      typelen);
      return;
    }
  else
    {
      char *o0 = &regbuf[O0_REGNUM * regsize];
      char *f0 = &regbuf[FP0_REGNUM * regsize];
      int x;

      for (x = 0; x < TYPE_NFIELDS (type); x++)
	{
	  struct field *f = &TYPE_FIELDS (type)[x];
	  /* FIXME: We may need to handle static fields here. */
	  int whichreg = (f->loc.bitpos + bitoffset) / 32;
	  int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
	  int where = (f->loc.bitpos + bitoffset) / 8;
	  int size = TYPE_LENGTH (f->type);
	  int typecode = TYPE_CODE (f->type);

	  if (typecode == TYPE_CODE_STRUCT)
	    {
	      sp64_extract_return_value (f->type,
					 regbuf,
					 valbuf,
					 bitoffset + f->loc.bitpos);
	    }
	  else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
	    {
	      memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
	    }
	  else
	    {
	      memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
	    }
	}
    }
}

extern void
sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
  sp64_extract_return_value (type, regbuf, valbuf, 0);
}

#if 0
// OBSOLETE extern void 
// OBSOLETE sparclet_extract_return_value (struct type *type,
// OBSOLETE 			       char *regbuf, 
// OBSOLETE 			       char *valbuf)
// OBSOLETE {
// OBSOLETE   regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8;
// OBSOLETE   if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM))
// OBSOLETE     regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type);
// OBSOLETE 
// OBSOLETE   memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type));
// OBSOLETE }
#endif

extern CORE_ADDR
sparc32_stack_align (CORE_ADDR addr)
{
  return ((addr + 7) & -8);
}

extern CORE_ADDR
sparc64_stack_align (CORE_ADDR addr)
{
  return ((addr + 15) & -16);
}

extern void
sparc_print_extra_frame_info (struct frame_info *fi)
{
  if (fi && get_frame_extra_info (fi) && get_frame_extra_info (fi)->flat)
    printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n",
		     paddr_nz (get_frame_extra_info (fi)->pc_addr), 
		     paddr_nz (get_frame_extra_info (fi)->fp_addr));
}

/* MULTI_ARCH support */

static const char *
sparc32_register_name (int regno)
{
  static char *register_names[] = 
  { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
    "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
    "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
    "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",

    "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",
    "f8",  "f9",  "f10", "f11", "f12", "f13", "f14", "f15",
    "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
    "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",

    "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr"
  };

  if (regno < 0 ||
      regno >= (sizeof (register_names) / sizeof (register_names[0])))
    return NULL;
  else
    return register_names[regno];
}

static const char *
sparc64_register_name (int regno)
{
  static char *register_names[] = 
  { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
    "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
    "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
    "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",

    "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",
    "f8",  "f9",  "f10", "f11", "f12", "f13", "f14", "f15",
    "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
    "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
    "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
    "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",

    "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver", 
    "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc", 
    "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin",
    "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23", 
    "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31",
    /* These are here at the end to simplify removing them if we have to.  */
    "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3"
  };

  if (regno < 0 ||
      regno >= (sizeof (register_names) / sizeof (register_names[0])))
    return NULL;
  else
    return register_names[regno];
}

#if 0
// OBSOLETE static const char *
// OBSOLETE sparclite_register_name (int regno)
// OBSOLETE {
// OBSOLETE   static char *register_names[] = 
// OBSOLETE   { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
// OBSOLETE     "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
// OBSOLETE     "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
// OBSOLETE     "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
// OBSOLETE 
// OBSOLETE     "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",
// OBSOLETE     "f8",  "f9",  "f10", "f11", "f12", "f13", "f14", "f15",
// OBSOLETE     "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
// OBSOLETE     "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
// OBSOLETE 
// OBSOLETE     "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr",
// OBSOLETE     "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr" 
// OBSOLETE   };
// OBSOLETE 
// OBSOLETE   if (regno < 0 ||
// OBSOLETE       regno >= (sizeof (register_names) / sizeof (register_names[0])))
// OBSOLETE     return NULL;
// OBSOLETE   else
// OBSOLETE     return register_names[regno];
// OBSOLETE }
#endif

#if 0
// OBSOLETE static const char *
// OBSOLETE sparclet_register_name (int regno)
// OBSOLETE {
// OBSOLETE   static char *register_names[] = 
// OBSOLETE   { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
// OBSOLETE     "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
// OBSOLETE     "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
// OBSOLETE     "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
// OBSOLETE 
// OBSOLETE     "", "", "", "", "", "", "", "", /* no floating point registers */
// OBSOLETE     "", "", "", "", "", "", "", "",
// OBSOLETE     "", "", "", "", "", "", "", "",
// OBSOLETE     "", "", "", "", "", "", "", "",
// OBSOLETE 
// OBSOLETE     "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */
// OBSOLETE     "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "", 
// OBSOLETE 
// OBSOLETE     /*       ASR15                 ASR19 (don't display them) */    
// OBSOLETE     "asr1",  "", "asr17", "asr18", "", "asr20", "asr21", "asr22"
// OBSOLETE     /* None of the rest get displayed */
// OBSOLETE #if 0
// OBSOLETE     "awr0",  "awr1",  "awr2",  "awr3",  "awr4",  "awr5",  "awr6",  "awr7",  
// OBSOLETE     "awr8",  "awr9",  "awr10", "awr11", "awr12", "awr13", "awr14", "awr15", 
// OBSOLETE     "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23", 
// OBSOLETE     "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31", 
// OBSOLETE     "apsr"
// OBSOLETE #endif /* 0 */
// OBSOLETE   };
// OBSOLETE 
// OBSOLETE   if (regno < 0 ||
// OBSOLETE       regno >= (sizeof (register_names) / sizeof (register_names[0])))
// OBSOLETE     return NULL;
// OBSOLETE   else
// OBSOLETE     return register_names[regno];
// OBSOLETE }
#endif

CORE_ADDR
sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp)
{
  if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
    {
      /* The return PC of the dummy_frame is the former 'current' PC
	 (where we were before we made the target function call).
	 This is saved in %i7 by push_dummy_frame.

	 We will save the 'call dummy location' (ie. the address
	 to which the target function will return) in %o7.  
	 This address will actually be the program's entry point.  
	 There will be a special call_dummy breakpoint there.  */

      write_register (O7_REGNUM, 
		      CALL_DUMMY_ADDRESS () - 8);
    }

  return sp;
}

/* Should call_function allocate stack space for a struct return?  */

static int
sparc64_use_struct_convention (int gcc_p, struct type *type)
{
  return (TYPE_LENGTH (type) > 32);
}

/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function_by_hand.
   The ultimate mystery is, tho, what is the value "16"?

   MVS: That's the offset from where the sp is now, to where the
   subroutine is gonna expect to find the struct return address.  */

static void
sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  char *val;
  CORE_ADDR o7;

  val = alloca (SPARC_INTREG_SIZE); 
  store_unsigned_integer (val, SPARC_INTREG_SIZE, addr);
  write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE); 

  if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
    {
      /* Now adjust the value of the link register, which was previously
	 stored by push_return_address.  Functions that return structs are
	 peculiar in that they return to link register + 12, rather than
	 link register + 8.  */

      o7 = read_register (O7_REGNUM);
      write_register (O7_REGNUM, o7 - 4);
    }
}

static void
sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  /* FIXME: V9 uses %o0 for this.  */
  /* FIXME MVS: Only for small enough structs!!! */

  target_write_memory (sp + (16 * SPARC_INTREG_SIZE), 
		       (char *) &addr, SPARC_INTREG_SIZE); 
#if 0
  if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
    {
      /* Now adjust the value of the link register, which was previously
	 stored by push_return_address.  Functions that return structs are
	 peculiar in that they return to link register + 12, rather than
	 link register + 8.  */

      write_register (O7_REGNUM, read_register (O7_REGNUM) - 4);
    }
#endif
}

/* Default target data type for register REGNO.  */

static struct type *
sparc32_register_virtual_type (int regno)
{
  if (regno == PC_REGNUM ||
      regno == DEPRECATED_FP_REGNUM ||
      regno == SP_REGNUM)
    return builtin_type_unsigned_int;
  if (regno < 32)
    return builtin_type_int;
  if (regno < 64)
    return builtin_type_float;
  return builtin_type_int;
}

static struct type *
sparc64_register_virtual_type (int regno)
{
  if (regno == PC_REGNUM ||
      regno == DEPRECATED_FP_REGNUM ||
      regno == SP_REGNUM)
    return builtin_type_unsigned_long_long;
  if (regno < 32)
    return builtin_type_long_long;
  if (regno < 64)
    return builtin_type_float;
  if (regno < 80)
    return builtin_type_double;
  return builtin_type_long_long;
}

/* Number of bytes of storage in the actual machine representation for
   register REGNO.  */

static int
sparc32_register_size (int regno)
{
  return 4;
}

static int
sparc64_register_size (int regno)
{
  return (regno < 32 ? 8 : regno < 64 ? 4 : 8);
}

/* Index within the `registers' buffer of the first byte of the space
   for register REGNO.  */

static int
sparc32_register_byte (int regno)
{
  return (regno * 4);
}

static int
sparc64_register_byte (int regno)
{
  if (regno < 32)
    return regno * 8;
  else if (regno < 64)
    return 32 * 8 + (regno - 32) * 4;
  else if (regno < 80)
    return 32 * 8 + 32 * 4 + (regno - 64) * 8;
  else
    return 64 * 8 + (regno - 80) * 8;
}

/* Immediately after a function call, return the saved pc.
   Can't go through the frames for this because on some machines
   the new frame is not set up until the new function executes
   some instructions.  */

static CORE_ADDR
sparc_saved_pc_after_call (struct frame_info *fi)
{
  return sparc_pc_adjust (read_register (RP_REGNUM));
}

/* Convert registers between 'raw' and 'virtual' formats.
   They are the same on sparc, so there's nothing to do.  */

static void
sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to)
{	/* do nothing (should never be called) */
}

static void
sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to)
{	/* do nothing (should never be called) */
}

/* Init saved regs: nothing to do, just a place-holder function.  */

static void
sparc_frame_init_saved_regs (struct frame_info *fi_ignored)
{	/* no-op */
}

/* gdbarch fix call dummy:
   All this function does is rearrange the arguments before calling
   sparc_fix_call_dummy (which does the real work).  */

static void
sparc_gdbarch_fix_call_dummy (char *dummy, 
			      CORE_ADDR pc, 
			      CORE_ADDR fun, 
			      int nargs, 
			      struct value **args, 
			      struct type *type, 
			      int gcc_p)
{
  if (CALL_DUMMY_LOCATION == ON_STACK)
    sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p);
}

/* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy.  */

static CORE_ADDR
sparc_call_dummy_address (void)
{
  return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET;
}

/* Supply the Y register number to those that need it.  */

int
sparc_y_regnum (void)
{
  return gdbarch_tdep (current_gdbarch)->y_regnum;
}

int
sparc_reg_struct_has_addr (int gcc_p, struct type *type)
{
  if (GDB_TARGET_IS_SPARC64)
    return (TYPE_LENGTH (type) > 32);
  else
    return (gcc_p != 1);
}

int
sparc_intreg_size (void)
{
  return SPARC_INTREG_SIZE;
}

static int
sparc_return_value_on_stack (struct type *type)
{
  if (TYPE_CODE (type) == TYPE_CODE_FLT &&
      TYPE_LENGTH (type) > 8)
    return 1;
  else
    return 0;
}

/*
 * Gdbarch "constructor" function.
 */

#define SPARC32_CALL_DUMMY_ON_STACK

#define SPARC_SP_REGNUM    14
#define SPARC_FP_REGNUM    30
#define SPARC_FP0_REGNUM   32
#define SPARC32_NPC_REGNUM 69
#define SPARC32_PC_REGNUM  68
#define SPARC32_Y_REGNUM   64
#define SPARC64_PC_REGNUM  80
#define SPARC64_NPC_REGNUM 81
#define SPARC64_Y_REGNUM   85

static struct gdbarch *
sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;

  static LONGEST call_dummy_32[] = 
    { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003,
      0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c,
      0xd203a048, 0x40000000, 0xd003a044, 0x01000000,
      0x91d02001, 0x01000000
    };
  static LONGEST call_dummy_64[] = 
    { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,
      0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,
      0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,
      0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,
      0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,
      0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,
      0xf03fa73f01000000LL, 0x0100000001000000LL,
      0x0100000091580000LL, 0xd027a72b93500000LL,
      0xd027a72791480000LL, 0xd027a72391400000LL,
      0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,
      0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,
      0x0100000091d02001LL, 0x0100000001000000LL 
    };
  static LONGEST call_dummy_nil[] = {0};

  /* Try to determine the OS ABI of the object we are loading.  */

  if (info.abfd != NULL
      && info.osabi == GDB_OSABI_UNKNOWN)
    {
      /* If it's an ELF file, assume it's Solaris.  */
      if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
	info.osabi = GDB_OSABI_SOLARIS;
    }

  /* First see if there is already a gdbarch that can satisfy the request.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found: is the request for a sparc architecture? */
  if (info.bfd_arch_info->arch != bfd_arch_sparc)
    return NULL;	/* No; then it's not for us.  */

  /* Yes: create a new gdbarch for the specified machine type.  */
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);

  /* First set settings that are common for all sparc architectures.  */
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sparc_extract_struct_value_address);
  set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy);
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_deprecated_fp_regnum (gdbarch, SPARC_FP_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM);
  set_gdbarch_deprecated_frame_chain (gdbarch, sparc_frame_chain);
  set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs);
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
  set_gdbarch_deprecated_frame_saved_pc (gdbarch, sparc_frame_saved_pc);
  set_gdbarch_frameless_function_invocation (gdbarch, 
					     frameless_look_for_prologue);
  set_gdbarch_deprecated_get_saved_register (gdbarch, sparc_get_saved_register);
  set_gdbarch_deprecated_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8);
  set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
  set_gdbarch_deprecated_pop_frame (gdbarch, sparc_pop_frame);
  set_gdbarch_deprecated_push_return_address (gdbarch, sparc_push_return_address);
  set_gdbarch_deprecated_push_dummy_frame (gdbarch, sparc_push_dummy_frame);
  set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
  set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw);
  set_gdbarch_register_convert_to_virtual (gdbarch, 
					   sparc_convert_to_virtual);
  set_gdbarch_register_convertible (gdbarch, 
				    generic_register_convertible_not);
  set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr);
  set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack);
  set_gdbarch_deprecated_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call);
  set_gdbarch_prologue_frameless_p (gdbarch, sparc_prologue_frameless_p);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_skip_prologue (gdbarch, sparc_skip_prologue);
  set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM);
  set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0);
  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);

  /*
   * Settings that depend only on 32/64 bit word size 
   */

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_sparc:
#if 0
      // OBSOLETE     case bfd_mach_sparc_sparclet:
      // OBSOLETE     case bfd_mach_sparc_sparclite:
#endif
    case bfd_mach_sparc_v8plus:
    case bfd_mach_sparc_v8plusa:
#if 0
      // OBSOLETE     case bfd_mach_sparc_sparclite_le:
#endif
      /* 32-bit machine types: */

#ifdef SPARC32_CALL_DUMMY_ON_STACK
      set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
      set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
      set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30);
      set_gdbarch_call_dummy_length (gdbarch, 0x38);

      /* NOTE: cagney/2002-04-26: Based from info posted by Peter
	 Schauer around Oct '99.  Briefly, due to aspects of the SPARC
	 ABI, it isn't possible to use ON_STACK with a strictly
	 compliant compiler.

	 Peter Schauer writes ...

	 No, any call from GDB to a user function returning a
	 struct/union will fail miserably. Try this:

	 *NOINDENT*
	 struct x
	 {
           int a[4];
         };

	 struct x gx;

	 struct x
	 sret ()
	 {
	   return gx;
	 }

	 main ()
	 {
	   int i;
	   for (i = 0; i < 4; i++)
	     gx.a[i] = i + 1;
	   gx = sret ();
	 }
	 *INDENT*

	 Set a breakpoint at the gx = sret () statement, run to it and
	 issue a `print sret()'. It will not succed with your
	 approach, and I doubt that continuing the program will work
	 as well.

	 For details of the ABI see the Sparc Architecture Manual.  I
	 have Version 8 (Prentice Hall ISBN 0-13-825001-4) and the
	 calling conventions for functions returning aggregate values
	 are explained in Appendix D.3.  */

      set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
      set_gdbarch_call_dummy_words (gdbarch, call_dummy_32);
#else
      set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
      set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
#endif
      set_gdbarch_deprecated_call_dummy_stack_adjust (gdbarch, 68);
      set_gdbarch_frame_args_skip (gdbarch, 68);
      set_gdbarch_function_start_offset (gdbarch, 0);
      set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
      set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM);
      set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM);
      set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
      set_gdbarch_deprecated_push_arguments (gdbarch, sparc32_push_arguments);
      set_gdbarch_read_sp (gdbarch, generic_target_read_sp);

      set_gdbarch_register_byte (gdbarch, sparc32_register_byte);
      set_gdbarch_register_raw_size (gdbarch, sparc32_register_size);
      set_gdbarch_register_size (gdbarch, 4);
      set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size);
      set_gdbarch_register_virtual_type (gdbarch, 
					 sparc32_register_virtual_type);
#ifdef SPARC32_CALL_DUMMY_ON_STACK
      set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32));
#else
      set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
#endif
      set_gdbarch_stack_align (gdbarch, sparc32_stack_align);
      set_gdbarch_deprecated_extra_stack_alignment_needed (gdbarch, 1);
      set_gdbarch_deprecated_store_struct_return (gdbarch, sparc32_store_struct_return);
      set_gdbarch_use_struct_convention (gdbarch, 
					 generic_use_struct_convention);
      set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
      tdep->y_regnum = SPARC32_Y_REGNUM;
      tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32;
      tdep->intreg_size = 4;
      tdep->reg_save_offset = 0x60;
      tdep->call_dummy_call_offset = 0x24;
      break;

    case bfd_mach_sparc_v9:
    case bfd_mach_sparc_v9a:
      /* 64-bit machine types: */
    default:	/* Any new machine type is likely to be 64-bit.  */

#ifdef SPARC64_CALL_DUMMY_ON_STACK
      set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
      set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
      set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4);
      set_gdbarch_call_dummy_length (gdbarch, 192);
      set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
      set_gdbarch_call_dummy_start_offset (gdbarch, 148);
      set_gdbarch_call_dummy_words (gdbarch, call_dummy_64);
#else
      set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
      set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
#endif
      set_gdbarch_deprecated_call_dummy_stack_adjust (gdbarch, 128);
      set_gdbarch_frame_args_skip (gdbarch, 136);
      set_gdbarch_function_start_offset (gdbarch, 0);
      set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
      set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
      set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM);
      set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
      set_gdbarch_deprecated_push_arguments (gdbarch, sparc64_push_arguments);
      /* NOTE different for at_entry */
      set_gdbarch_deprecated_target_read_fp (gdbarch, sparc64_read_fp);
      set_gdbarch_read_sp (gdbarch, sparc64_read_sp);
      /* Some of the registers aren't 64 bits, but it's a lot simpler just
	 to assume they all are (since most of them are).  */
      set_gdbarch_register_byte (gdbarch, sparc64_register_byte);
      set_gdbarch_register_raw_size (gdbarch, sparc64_register_size);
      set_gdbarch_register_size (gdbarch, 8);
      set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size);
      set_gdbarch_register_virtual_type (gdbarch, 
					 sparc64_register_virtual_type);
#ifdef SPARC64_CALL_DUMMY_ON_STACK
      set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64));
#else
      set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
#endif
      set_gdbarch_stack_align (gdbarch, sparc64_stack_align);
      set_gdbarch_deprecated_extra_stack_alignment_needed (gdbarch, 1);
      set_gdbarch_deprecated_store_struct_return (gdbarch, sparc64_store_struct_return);
      set_gdbarch_use_struct_convention (gdbarch, 
					 sparc64_use_struct_convention);
      set_gdbarch_deprecated_dummy_write_sp (gdbarch, sparc64_write_sp);
      tdep->y_regnum = SPARC64_Y_REGNUM;
      tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48;
      tdep->intreg_size = 8;
      tdep->reg_save_offset = 0x90;
      tdep->call_dummy_call_offset = 148 + 4 * 5;
      break;
    }

  /* 
   * Settings that vary per-architecture:
   */

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_sparc:
      set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
      set_gdbarch_num_regs (gdbarch, 72);
      set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
      set_gdbarch_register_name (gdbarch, sparc32_register_name);
      set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
#if 0
      // OBSOLETE       tdep->has_fpu = 1;	/* (all but sparclet and sparclite) */
#endif
      tdep->fp_register_bytes = 32 * 4;
      tdep->print_insn_mach = bfd_mach_sparc;
      break;
#if 0
      // OBSOLETE     case bfd_mach_sparc_sparclet:
      // OBSOLETE       set_gdbarch_deprecated_extract_return_value (gdbarch, sparclet_extract_return_value);
      // OBSOLETE       set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8);
      // OBSOLETE       set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4);
      // OBSOLETE       set_gdbarch_register_name (gdbarch, sparclet_register_name);
      // OBSOLETE       set_gdbarch_deprecated_store_return_value (gdbarch, sparclet_store_return_value);
      // OBSOLETE       tdep->has_fpu = 0;	/* (all but sparclet and sparclite) */
      // OBSOLETE       tdep->fp_register_bytes = 0;
      // OBSOLETE       tdep->print_insn_mach = bfd_mach_sparc_sparclet;
      // OBSOLETE       break;
#endif
#if 0
      // OBSOLETE     case bfd_mach_sparc_sparclite:
      // OBSOLETE       set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
      // OBSOLETE       set_gdbarch_num_regs (gdbarch, 80);
      // OBSOLETE       set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
      // OBSOLETE       set_gdbarch_register_name (gdbarch, sparclite_register_name);
      // OBSOLETE       set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
      // OBSOLETE       tdep->has_fpu = 0;	/* (all but sparclet and sparclite) */
      // OBSOLETE       tdep->fp_register_bytes = 0;
      // OBSOLETE       tdep->print_insn_mach = bfd_mach_sparc_sparclite;
      // OBSOLETE       break;
#endif
    case bfd_mach_sparc_v8plus:
      set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
      set_gdbarch_num_regs (gdbarch, 72);
      set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
      set_gdbarch_register_name (gdbarch, sparc32_register_name);
      set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
      tdep->print_insn_mach = bfd_mach_sparc;
      tdep->fp_register_bytes = 32 * 4;
#if 0
      // OBSOLETE       tdep->has_fpu = 1;	/* (all but sparclet and sparclite) */
#endif
      break;
    case bfd_mach_sparc_v8plusa:
      set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
      set_gdbarch_num_regs (gdbarch, 72);
      set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
      set_gdbarch_register_name (gdbarch, sparc32_register_name);
      set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
#if 0
      // OBSOLETE       tdep->has_fpu = 1;	/* (all but sparclet and sparclite) */
#endif
      tdep->fp_register_bytes = 32 * 4;
      tdep->print_insn_mach = bfd_mach_sparc;
      break;
#if 0
// OBSOLETE     case bfd_mach_sparc_sparclite_le:
// OBSOLETE       set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
// OBSOLETE       set_gdbarch_num_regs (gdbarch, 80);
// OBSOLETE       set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
// OBSOLETE       set_gdbarch_register_name (gdbarch, sparclite_register_name);
// OBSOLETE       set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
// OBSOLETE       tdep->has_fpu = 0;	/* (all but sparclet and sparclite) */
// OBSOLETE       tdep->fp_register_bytes = 0;
// OBSOLETE       tdep->print_insn_mach = bfd_mach_sparc_sparclite;
// OBSOLETE       break;
#endif
    case bfd_mach_sparc_v9:
      set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
      set_gdbarch_num_regs (gdbarch, 125);
      set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
      set_gdbarch_register_name (gdbarch, sparc64_register_name);
      set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
#if 0
      // OBSOLETE       tdep->has_fpu = 1;	/* (all but sparclet and sparclite) */
#endif
      tdep->fp_register_bytes = 64 * 4;
      tdep->print_insn_mach = bfd_mach_sparc_v9a;
      break;
    case bfd_mach_sparc_v9a:
      set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
      set_gdbarch_num_regs (gdbarch, 125);
      set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
      set_gdbarch_register_name (gdbarch, sparc64_register_name);
      set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
#if 0
      // OBSOLETE       tdep->has_fpu = 1;	/* (all but sparclet and sparclite) */
#endif
      tdep->fp_register_bytes = 64 * 4;
      tdep->print_insn_mach = bfd_mach_sparc_v9a;
      break;
    }

  /* Hook in OS ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  return gdbarch;
}

static void
sparc_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  if (tdep == NULL)
    return;

#if 0
  // OBSOLETE   fprintf_unfiltered (file, "sparc_dump_tdep: has_fpu = %d\n",
  // OBSOLETE 		      tdep->has_fpu);
#endif
  fprintf_unfiltered (file, "sparc_dump_tdep: fp_register_bytes = %d\n",
		      tdep->fp_register_bytes);
  fprintf_unfiltered (file, "sparc_dump_tdep: y_regnum = %d\n",
		      tdep->y_regnum);
  fprintf_unfiltered (file, "sparc_dump_tdep: fp_max_regnum = %d\n",
		      tdep->fp_max_regnum);
  fprintf_unfiltered (file, "sparc_dump_tdep: intreg_size = %d\n",
		      tdep->intreg_size);
  fprintf_unfiltered (file, "sparc_dump_tdep: reg_save_offset = %d\n",
		      tdep->reg_save_offset);
  fprintf_unfiltered (file, "sparc_dump_tdep: call_dummy_call_offset = %d\n",
		      tdep->call_dummy_call_offset);
  fprintf_unfiltered (file, "sparc_dump_tdep: print_insn_match = %d\n",
		      tdep->print_insn_mach);
}