aboutsummaryrefslogtreecommitdiff
path: root/gdb/sparc-stub.c
blob: d81b6e57ae4a19c8852258e3757480f7d5f97f3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
/****************************************************************************

		THIS SOFTWARE IS NOT COPYRIGHTED

   HP offers the following for use in the public domain.  HP makes no
   warranty with regard to the software or it's performance and the
   user accepts the software "AS IS" with all faults.

   HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
   TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

****************************************************************************/

/****************************************************************************
 *  Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
 *
 *  Module name: remcom.c $
 *  Revision: 1.34 $
 *  Date: 91/03/09 12:29:49 $
 *  Contributor:     Lake Stevens Instrument Division$
 *
 *  Description:     low level support for gdb debugger. $
 *
 *  Considerations:  only works on target hardware $
 *
 *  Written by:      Glenn Engel $
 *  ModuleState:     Experimental $
 *
 *  NOTES:           See Below $
 *
 *  Modified for SPARC by Stu Grossman, Cygnus Support.
 *
 *  To enable debugger support, two things need to happen.  One, a
 *  call to set_debug_traps() is necessary in order to allow any breakpoints
 *  or error conditions to be properly intercepted and reported to gdb.
 *  Two, a breakpoint needs to be generated to begin communication.  This
 *  is most easily accomplished by a call to breakpoint().  Breakpoint()
 *  simulates a breakpoint by executing a trap #1.
 *
 *************
 *
 *    The following gdb commands are supported:
 *
 * command          function                               Return value
 *
 *    g             return the value of the CPU registers  hex data or ENN
 *    G             set the value of the CPU registers     OK or ENN
 *
 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
 *
 *    c             Resume at current address              SNN   ( signal NN)
 *    cAA..AA       Continue at address AA..AA             SNN
 *
 *    s             Step one instruction                   SNN
 *    sAA..AA       Step one instruction from AA..AA       SNN
 *
 *    k             kill
 *
 *    ?             What was the last sigval ?             SNN   (signal NN)
 *
 * All commands and responses are sent with a packet which includes a
 * checksum.  A packet consists of
 *
 * $<packet info>#<checksum>.
 *
 * where
 * <packet info> :: <characters representing the command or response>
 * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
 *
 * When a packet is received, it is first acknowledged with either '+' or '-'.
 * '+' indicates a successful transfer.  '-' indicates a failed transfer.
 *
 * Example:
 *
 * Host:                  Reply:
 * $m0,10#2a               +$00010203040506070809101112131415#42
 *
 ****************************************************************************/

#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <memory.h>

/************************************************************************
 *
 * external low-level support routines
 */

extern putDebugChar();   /* write a single character      */
extern getDebugChar();   /* read and return a single char */

/************************************************************************/
/* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/
/* at least NUMREGBYTES*2 are needed for register packets */
#define BUFMAX 2048

static int initialized;  /* boolean flag. != 0 means we've been initialized */

static void set_mem_fault_trap();

int remote_debug;
/*  debug >  0 prints ill-formed commands in valid packets & checksum errors */

static const char hexchars[]="0123456789abcdef";

#define NUMREGS 72

/* Number of bytes of registers.  */
#define NUMREGBYTES (NUMREGS * 4)
enum regnames {G0, G1, G2, G3, G4, G5, G6, G7,
		 O0, O1, O2, O3, O4, O5, SP, O7,
		 L0, L1, L2, L3, L4, L5, L6, L7,
		 I0, I1, I2, I3, I4, I5, FP, I7,

		 F0, F1, F2, F3, F4, F5, F6, F7,
		 F8, F9, F10, F11, F12, F13, F14, F15,
		 F16, F17, F18, F19, F20, F21, F22, F23,
		 F24, F25, F26, F27, F28, F29, F30, F31,
		 Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR };

static unsigned long registers[NUMREGS] __attribute__ ((aligned (8)));

/***************************  ASSEMBLY CODE MACROS *************************/
/* 									   */

#define BREAKPOINT() asm("   ta 1");

extern unsigned long rdtbr();

asm("
	.text
!
! FUNCTION
!	_chk4ovflo
!
! DESCRIPTION
!	This code is branched to before each trap (except reset,
!	_win_unf, and _win_ovf) handler.
!	 It checks to see if we've moved into the invalid window
!	 and performs fixup ala _win_ovf.
!
! INPUTS
!	- %l1 = pc at trap time.
!	- %l2 = npc at trap time.
!	- %l7 = return address.
!
! INTERNAL DESCRIPTION
!
! RETURNS
!	- None.
!

	.align 4

_chk4ovflo:
	mov	%psr, %l0		! get the psr
	and	%l0, 0x1F, %l3		! get the cwp
	mov	1, %l4			! compare cwp with the wim
	sll	%l4, %l3, %l3 		! compare
	mov	%wim, %l4		! read the wim
	btst	%l4, %l3
	bz	_retsave		! not invalid window, just return
	nop
					! in line version of _win_ovf
	or	%l0, 0xf20, %l3		! enable traps, disable interrupts.
	mov	%l3, %psr
	mov	%g1, %l0		! Save %g1.
	srl	%l4, 1, %g1		! Next WIM = %g1 = rol(WIM, 1, NWINDOW)
	sll	%l4, 8-1, %l3
	bset	%l3, %g1
	save	%g0, %g0, %g0		! Get into window to be saved.
	mov	%g1, %wim		! Install new wim.
	nop				! must delay three instructions
	nop				! before using these registers, so
	nop				! put nops in just to be safe

	std	%l0, [%sp + 0 * 4]	! save all local registers
	std	%l2, [%sp + 2 * 4]
	std	%l4, [%sp + 4 * 4]
	std	%l6, [%sp + 6 * 4]

	std	%i0, [%sp + 8 * 4]
	std	%i2, [%sp + 10 * 4]
	std	%i4, [%sp + 12 * 4]
	std	%i6, [%sp + 14 * 4]

	restore				! Go back to trap window.
	mov	%l0, %g1		! Restore %g1.

_retsave:
	! It is safe now to allocate a stack frame for this window
	! because all overflow handling will have been accomplished
	! in the event we trapped into the invalid window.
	! ie. all of this window's %o regs (next window's %i regs)
	! will have been safely stored to the stack before we overwrite %sp.

	jmpl	%l7+8, %g0		! Window is valid, just return
	sub	%fp, (16+1+6+1)*4, %sp	! Make room for input & locals
 					! + hidden arg + arg spill
					! + doubleword alignment

! Read the TBR.

	.globl _rdtbr
_rdtbr:
	retl
	mov	%tbr, %o0

! This function is called when any SPARC trap (except window overflow or
! underflow) occurs.  It makes sure that the invalid register window is still
! available before jumping into C code.  It will also restore the world if you
! return from handle_exception.

_trap_low:
	set	_registers, %l0

	std	%g0, [%l0 + 0 * 4]	! registers[Gx]
	std	%g2, [%l0 + 2 * 4]
	std	%g4, [%l0 + 4 * 4]
	std	%g6, [%l0 + 6 * 4]

	std	%i0, [%l0 + 8 * 4]	! registers[Ox]
	std	%i2, [%l0 + 10 * 4]
	std	%i4, [%l0 + 12 * 4]
	std	%i6, [%l0 + 14 * 4]
					! F0->F31 not implemented
	mov	%y, %l4
	mov	%psr, %l5
	mov	%wim, %l6
	mov	%tbr, %l7
	std	%l4, [%l0 + 64 * 4]	! Y & PSR
	std	%l6, [%l0 + 66 * 4]	! WIM & TBR
	st	%l1, [%l0 + 68 * 4]	! PC
	st	%l2, [%l0 + 69 * 4]	! NPC

					! CPSR and FPSR not impl

	sethi	%hi(_chk4ovflo), %l7	! Must call this routine via %l7
	jmpl	%l7+%lo(_chk4ovflo), %l7 !  because o regs may not be available yet
	nop
	mov	%psr, %o1
	bset	0xf20, %o1
	mov	%o1, %psr		! Turn on traps, disable interrupts

	call	_handle_exception
	nop
	mov	%o0, %l7		! Save return value

! Reload all of the registers that aren't on the stack

	set	_registers, %l0		! Need to use reg immune from save/rest

	ld	[%l0 + 1 * 4], %g1	! registers[Gx]
	ldd	[%l0 + 2 * 4], %g2
	ldd	[%l0 + 4 * 4], %g4
	ldd	[%l0 + 6 * 4], %g6

	ldd	[%l0 + 8 * 4], %o0	! registers[Ox]
	ldd	[%l0 + 10 * 4], %o2
	ldd	[%l0 + 12 * 4], %o4
	ldd	[%l0 + 14 * 4], %o6

	restore				! Ensure that previous window is valid
	save	%g0, %g0, %g0		!  by causing a window_underflow trap

	ld	[%l0 + 64 * 4], %l3	! registers[Y]
	mov	%l3, %y
	ld	[%l0 + 65 * 4], %l3	! registers[PSR]
	ld	[%l0 + 68 * 4], %l1	! registers[PC]
	ld	[%l0 + 69 * 4], %l2	! registers[NPC]

	tst	%l7			! Did handle_exception tell
	bg	retskip			!  us to skip the next inst?
	nop

	mov	%l3, %psr		! Make sure that traps are disabled
					! for rett
	jmpl	%l1, %g0		! Restore old PC
	rett	%l2			! Restore old nPC

	mov	%l3, %psr		! Make sure that traps are disabled
					! for rett
retskip: ! Come here to skip the next instruction
	jmpl	%l2, %g0		! Old nPC
	rett	%l2+4			! Old nPC+4
");

/* Convert ch from a hex digit to an int */

static int
hex(ch)
     unsigned char ch;
{
  if (ch >= 'a' && ch <= 'f')
    return ch-'a'+10;
  if (ch >= '0' && ch <= '9')
    return ch-'0';
  if (ch >= 'A' && ch <= 'F')
    return ch-'A'+10;
  return -1;
}

/* scan for the sequence $<data>#<checksum>     */

static void
getpacket(buffer)
     char *buffer;
{
  unsigned char checksum;
  unsigned char xmitcsum;
  int i;
  int count;
  unsigned char ch;

  do
    {
      /* wait around for the start character, ignore all other characters */
      while ((ch = getDebugChar()) != '$') ;

      checksum = 0;
      xmitcsum = -1;

      count = 0;

      /* now, read until a # or end of buffer is found */
      while (count < BUFMAX)
	{
	  ch = getDebugChar();
	  if (ch == '#')
	    break;
	  checksum = checksum + ch;
	  buffer[count] = ch;
	  count = count + 1;
	}

      if (count >= BUFMAX)
	continue;

      buffer[count] = 0;

      if (ch == '#')
	{
	  xmitcsum = hex(getDebugChar()) << 4;
	  xmitcsum |= hex(getDebugChar());
#ifdef DEBUG
	  if (remote_debug && checksum != xmitcsum)
	    {
	      fprintf(stderr, "bad checksum.  My count = 0x%x, sent=0x%x. buf=%s\n",
		      checksum,xmitcsum,buffer);
	    }
#endif
#if 1
	  /* Humans shouldn't have to figure out checksums to type to it. */
	  putDebugChar ('+');
	  return;
#endif
	  if (checksum != xmitcsum)
	    putDebugChar('-');	/* failed checksum */
	  else
	    {
	      putDebugChar('+'); /* successful transfer */
	      /* if a sequence char is present, reply the sequence ID */
	      if (buffer[2] == ':')
		{
		  putDebugChar(buffer[0]);
		  putDebugChar(buffer[1]);
		  /* remove sequence chars from buffer */
		  count = strlen(buffer);
		  for (i=3; i <= count; i++)
		    buffer[i-3] = buffer[i];
		}
	    }
	}
    }
  while (checksum != xmitcsum);
}

/* send the packet in buffer.  */

static void
putpacket(buffer)
     unsigned char *buffer;
{
  unsigned char checksum;
  int count;
  unsigned char ch;

  /*  $<packet info>#<checksum>. */
  do
    {
      putDebugChar('$');
      checksum = 0;
      count = 0;

      while (ch = buffer[count])
	{
	  if (! putDebugChar(ch))
	    return;
	  checksum += ch;
	  count += 1;
	}

      putDebugChar('#');
      putDebugChar(hexchars[checksum >> 4]);
      putDebugChar(hexchars[checksum & 0xf]);

    }
  while (getDebugChar() != '+');
}

static unsigned char remcomInBuffer[BUFMAX];
static unsigned char remcomOutBuffer[BUFMAX];
static short error;

static void
debug_error(format, parm)
     char *format;
     char *parm;
{
#ifdef DEBUG
  if (remote_debug)
    fprintf(stderr,format,parm);
#endif
}

/* Address of a routine to RTE to if we get a memory fault.  */
static void (*mem_fault_routine)() = NULL;

/* Indicate to caller of mem2hex or hex2mem that there has been an
   error.  */

static volatile int mem_err = 0;

/* These are separate functions so that they are so short and sweet
   that the compiler won't save any registers (if there is a fault
   to mem_fault, they won't get restored, so there better not be any
   saved).  */
static int
get_char (addr)
     char *addr;
{
  return *addr;
}

static void
set_char (addr, val)
     char *addr;
     int val;
{
  *addr = val;
}

/* Convert the memory pointed to by mem into hex, placing result in buf.
 * Return a pointer to the last char put in buf (null), in case of mem fault,
 * return 0.
 * If MAY_FAULT is non-zero, then we will handle memory faults by returning
 * a 0, else treat a fault like any other fault in the stub.
 */

static unsigned char *
mem2hex(mem, buf, count, may_fault)
     unsigned char *mem;
     unsigned char *buf;
     int count;
     int may_fault;
{
  unsigned char ch;

  set_mem_fault_trap(may_fault);

  while (count-- > 0)
    {
      ch = get_char(mem++);
      if (mem_err)
	return 0;
      *buf++ = hexchars[ch >> 4];
      *buf++ = hexchars[ch & 0xf];
    }

  *buf = 0;

  set_mem_fault_trap(0);

  return buf;
}

/* convert the hex array pointed to by buf into binary to be placed in mem
 * return a pointer to the character AFTER the last byte written */

static char *
hex2mem(buf, mem, count, may_fault)
     unsigned char *buf;
     unsigned char *mem;
     int count;
     int may_fault;
{
  int i;
  unsigned char ch;

  set_mem_fault_trap(may_fault);

  for (i=0; i<count; i++)
    {
      ch = hex(*buf++) << 4;
      ch |= hex(*buf++);
      set_char(mem++, ch);
      if (mem_err)
	return 0;
    }

  set_mem_fault_trap(0);

  return mem;
}

/* this function takes the SPARC trap type code and attempts to
   translate this number into a unix compatible signal value */

static int
computeSignal(tt)
     int tt;
{
  int sigval;

  switch (tt)
    {
    case 1:
      sigval = SIGSEGV; break;	/* instruction access error */
    case 2:
      sigval = SIGILL; break;	/* privileged instruction */
    case 3:
      sigval = SIGILL; break;	/* illegal instruction */
    case 4:
      sigval = SIGEMT; break;	/* fp disabled */
    case 36:
      sigval = SIGEMT; break;	/* cp disabled */
    case 7:
      sigval = SIGBUS; break;	/* mem address not aligned */
    case 9:
      sigval = SIGSEGV; break;	/* data access exception */
    case 10:
      sigval = SIGEMT; break;	/* tag overflow */
    case 128+1:			/* ta 1 - normal breakpoint instruction */
    case 255:			/* breakpoint hardware unique to SPARClite */
      sigval = SIGTRAP; break;	/* breakpoint trap */
    default:
      sigval = SIGHUP;		/* "software generated"*/
    }
  return (sigval);
}

/*
 * While we find nice hex chars, build an int.
 * Return number of chars processed.
 */

static int
hexToInt(char **ptr, int *intValue)
{
  int numChars = 0;
  int hexValue;

  *intValue = 0;

  while (**ptr)
    {
      hexValue = hex(**ptr);
      if (hexValue >=0)
        {
	  *intValue = (*intValue <<4) | hexValue;
	  numChars ++;
        }
      else
	break;

      (*ptr)++;
    }

  return (numChars);
}

/*
 * This function does all command procesing for interfacing to gdb.  It
 * returns 1 if you should skip the instruction at the trap address, 0
 * otherwise.
 */

static int
handle_exception ()
{
  int tt;			/* Trap type */
  int sigval;
  int addr;
  int length;
  char *ptr;
  int newPC;
  unsigned char *sp;
  unsigned char *com;

/* First, we must force all of the windows to be spilled out */

  asm(" save %g0, -64, %g0
	save %g0, -64, %g0
	save %g0, -64, %g0
	save %g0, -64, %g0
	save %g0, -64, %g0
	save %g0, -64, %g0
	save %g0, -64, %g0
	save %g0, -64, %g0
	restore
	restore
	restore
	restore
	restore
	restore
	restore
	restore
");

#if 0
  writez(1, "Got to handle_exception()\r\n ");

  writez(1, "psr = 0x");
  numout(registers[PSR], 16);
  writez(1, " tbr = 0x");
  numout(registers[TBR], 16);
  writez(1, " oldpc = 0x");
  numout(registers[PC], 16);
  writez(1, " oldnpc = 0x");
  numout(registers[NPC], 16);
  writez(1, "\r\n");
#endif

  sp = (unsigned char *)registers[SP];

  tt = (registers[TBR] >> 4) & 0xff;

#ifdef DEBUG
  if (remote_debug)
    printf("tbr=0x%x, tt=%d, psr=0x%x, pc=0x%x, npc=0x%x\n",
	   registers[TBR], (registers[TBR] >> 4) & 0xff, registers[PSR], registers[PC], registers[NPC]);
#endif

  /* reply to host that an exception has occurred */
  sigval = computeSignal(tt);
  com = remcomOutBuffer;

  *com++ = 'T';
  *com++ = hexchars[sigval >> 4];
  *com++ = hexchars[sigval & 0xf];

  *com++ = hexchars[PC >> 4];
  *com++ = hexchars[PC & 0xf];
  com = mem2hex((char *)&registers[PC], com, 4, 0);

  *com++ = hexchars[FP >> 4];
  *com++ = hexchars[FP & 0xf];
  com = mem2hex(sp + (8 + 6) * 4, com, 4, 0); /* FP */

  *com++ = hexchars[SP >> 4];
  *com++ = hexchars[SP & 0xf];
  com = mem2hex((char *)&registers[SP], com, 4, 0);

  *com++ = hexchars[NPC >> 4];
  *com++ = hexchars[NPC & 0xf];
  com = mem2hex((char *)&registers[NPC], com, 4, 0);

  *com++ = 0;

  putpacket(remcomOutBuffer);

  while (1)
    {
      error = 0;
      remcomOutBuffer[0] = 0;

      getpacket(remcomInBuffer);
      switch (remcomInBuffer[0])
	{
	case '?':
	  remcomOutBuffer[0] = 'S';
	  remcomOutBuffer[1] = hexchars[sigval >> 4];
	  remcomOutBuffer[2] = hexchars[sigval & 0xf];
	  remcomOutBuffer[3] = 0;
	  break;

	case 'd':
	  remote_debug = !remote_debug; /* toggle debug flag */
	  break;

	case 'g':		/* return the value of the CPU registers */
	  {
	    com = remcomOutBuffer;
	    com = mem2hex((char *)registers, com, 16 * 4, 0); /* G & O regs */
	    com = mem2hex(sp + 0 * 4, com, 8 * 4, 0); /* L regs */
	    com = mem2hex(sp + 8 * 4, com, 8 * 4, 0); /* I regs */
	    memset(com, '0', 32 * 8); /* Floating point */
	    mem2hex((char *)&registers[Y],
		    com + 32 * 4 * 2,
		    8 * 4,
		    0);		/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
	  }
	  break;

	case 'G':	   /* set the value of the CPU registers - return OK */
	  {
	    com = &remcomInBuffer[1];
	    hex2mem(com, (char *)registers, 16 * 4, 0); /* G & O regs */
	    hex2mem(com + 16 * 4 * 2, sp + 0 * 4, 8 * 4, 0); /* L regs */
	    hex2mem(com + 24 * 4 * 2, sp + 8 * 4, 8 * 4, 0); /* I regs */
	    hex2mem(com + 64 * 4 * 2, (char *)&registers[Y],
		    8 * 4, 0);	/* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
	    strcpy(remcomOutBuffer,"OK");
	  }
	  break;

	case 'm':	  /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
	  /* TRY TO READ %x,%x.  IF SUCCEED, SET PTR = 0 */

	  ptr = &remcomInBuffer[1];

	  if (hexToInt(&ptr, &addr)
	      && *ptr++ == ','
	      && hexToInt(&ptr, &length))
	    {
	      if (mem2hex((char *)addr, remcomOutBuffer, length, 1))
		break;

	      strcpy (remcomOutBuffer, "E03");
	      debug_error ("memory fault");
	    }
	  else
	    {
	      strcpy(remcomOutBuffer,"E01");
	      debug_error("malformed read memory command: %s",remcomInBuffer);
	    }
	  break;

	case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
	  /* TRY TO READ '%x,%x:'.  IF SUCCEED, SET PTR = 0 */

	  ptr = &remcomInBuffer[1];

	  if (hexToInt(&ptr, &addr)
	      && *ptr++ == ','
	      && hexToInt(&ptr, &length)
	      && *ptr++ == ':')
	    {
	      if (hex2mem(ptr, (char *)addr, length, 1))
		strcpy(remcomOutBuffer, "OK");
	      else
		{
		  strcpy(remcomOutBuffer, "E03");
		  debug_error("memory fault");
		}
	    }
	  else
	    {
	      strcpy(remcomOutBuffer, "E02");
	      debug_error("malformed write memory command: %s",remcomInBuffer);
	    }
	  break;

	case 'c':    /* cAA..AA    Continue at address AA..AA(optional) */
	case 's':    /* sAA..AA   Step one instruction from AA..AA(optional) */
	  /* try to read optional parameter, pc unchanged if no parm */

	  ptr = &remcomInBuffer[1];
	  if (hexToInt(&ptr, &addr))
	    {
	      registers[PC] = addr;
	      registers[NPC] = addr + 4;
	    }

	  return 0;

	  /* kill the program */
	case 'k' :		/* do nothing */
	  break;
	}			/* switch */

      /* reply to the request */
      putpacket(remcomOutBuffer);
    }
}

/* Each entry in the trap vector occupies four words. */

struct trap_entry
{
  unsigned long ti[4];
};

#define NUMTRAPS 256

/* static struct trap_entry oldvec[NUMTRAPS];*/

extern struct trap_entry fltr_proto;
extern struct trap_entry fltr_set_mem_err;
asm ("
	.data
	.globl _fltr_proto
	.align 4
_fltr_proto:			! First level trap routine prototype
	sethi %hi(_trap_low), %l0
	jmpl %lo(_trap_low)+%l0, %g0
	nop
	nop

! Trap handler for memory errors.  This just sets mem_err to be non-zero.  It
! assumes that %l1 is non-zero.  This should be safe, as it is doubtful that
! 0 would ever contain code that could mem fault.  This routine will skip
! past the faulting instruction after setting mem_err.

_fltr_set_mem_err:
	sethi %hi(_mem_err), %l0
	st %l1, [%l0 + %lo(_mem_err)]
	jmpl %l2, %g0
	rett %l2+4

	.text
");

/* this function is used to set up exception handlers for tracing and
   breakpoints */

void
set_debug_traps()
{
  int exception;
  struct trap_entry *tb;	/* Trap vector base address */

  writez(1, "Got to set_debug_traps\r\n");

  tb = (struct trap_entry *)(rdtbr() & ~0xfff);

  writez(1, "tb = 0x");
  numout(tb, 16);
  writez(1, " trap ins = 0x");
  numout(fltr_proto, 16);
  writez(1, "\r\n");

  tb[1] = fltr_proto;		/* instruction access exception */
  tb[2] = fltr_proto;		/* privileged instruction */
  tb[3] = fltr_proto;		/* illegal instruction */
  tb[4] = fltr_proto;		/* fp disabled */
  tb[36] = fltr_proto;		/* cp disabled */
  tb[7] = fltr_proto;		/* mem address not aligned */
  tb[9] = fltr_proto;		/* data access exception */
  tb[10] = fltr_proto;		/* tag overflow */
  tb[128+1] = fltr_proto;	/* breakpoint instruction (ta 1) */
  tb[255] = fltr_proto;		/* hardware breakpoint trap */

  /* In case GDB is started before us, ack any packets (presumably
     "$?#xx") sitting there.  */

  putDebugChar ('+');

  initialized = 1;
}

static void
set_mem_fault_trap(enable)
     int enable;
{
  struct trap_entry *tb;	/* Trap vector base address */

  mem_err = 0;

  tb = (struct trap_entry *)(rdtbr() & ~0xfff);

  if (enable)
    tb[9] = fltr_set_mem_err;
  else
    tb[9] = fltr_proto;
}

/* This function will generate a breakpoint exception.  It is used at the
   beginning of a program to sync up with a debugger and can be used
   otherwise as a quick means to stop program execution and "break" into
   the debugger. */

void
breakpoint()
{
  writez(1, "About to do a breakpoint\r\n\n");
  if (initialized)
    BREAKPOINT();
}