1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
|
/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
2001, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "elf/external.h"
#include "elf/common.h"
#include "elf/mips.h"
#include "symtab.h"
#include "bfd.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbcore.h"
#include "target.h"
#include "inferior.h"
#include "gdb_assert.h"
#include "solist.h"
#include "solib.h"
#include "solib-svr4.h"
#include "bfd-target.h"
#include "elf-bfd.h"
#include "exec.h"
#include "auxv.h"
#include "exceptions.h"
static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
static int svr4_have_link_map_offsets (void);
/* Link map info to include in an allocated so_list entry */
struct lm_info
{
/* Pointer to copy of link map from inferior. The type is char *
rather than void *, so that we may use byte offsets to find the
various fields without the need for a cast. */
gdb_byte *lm;
/* Amount by which addresses in the binary should be relocated to
match the inferior. This could most often be taken directly
from lm, but when prelinking is involved and the prelink base
address changes, we may need a different offset, we want to
warn about the difference and compute it only once. */
CORE_ADDR l_addr;
/* The target location of lm. */
CORE_ADDR lm_addr;
};
/* On SVR4 systems, a list of symbols in the dynamic linker where
GDB can try to place a breakpoint to monitor shared library
events.
If none of these symbols are found, or other errors occur, then
SVR4 systems will fall back to using a symbol as the "startup
mapping complete" breakpoint address. */
static char *solib_break_names[] =
{
"r_debug_state",
"_r_debug_state",
"_dl_debug_state",
"rtld_db_dlactivity",
"_rtld_debug_state",
NULL
};
static char *bkpt_names[] =
{
"_start",
"__start",
"main",
NULL
};
static char *main_name_list[] =
{
"main_$main",
NULL
};
/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
the same shared library. */
static int
svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
{
if (strcmp (gdb_so_name, inferior_so_name) == 0)
return 1;
/* On Solaris, when starting inferior we think that dynamic linker is
/usr/lib/ld.so.1, but later on, the table of loaded shared libraries
contains /lib/ld.so.1. Sometimes one file is a link to another, but
sometimes they have identical content, but are not linked to each
other. We don't restrict this check for Solaris, but the chances
of running into this situation elsewhere are very low. */
if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
&& strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
return 1;
/* Similarly, we observed the same issue with sparc64, but with
different locations. */
if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
&& strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
return 1;
return 0;
}
static int
svr4_same (struct so_list *gdb, struct so_list *inferior)
{
return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
}
/* link map access functions */
static CORE_ADDR
LM_ADDR_FROM_LINK_MAP (struct so_list *so)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
builtin_type_void_data_ptr);
}
static int
HAS_LM_DYNAMIC_FROM_LINK_MAP ()
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
return lmo->l_ld_offset >= 0;
}
static CORE_ADDR
LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
builtin_type_void_data_ptr);
}
static CORE_ADDR
LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
{
if (so->lm_info->l_addr == (CORE_ADDR)-1)
{
struct bfd_section *dyninfo_sect;
CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
l_addr = LM_ADDR_FROM_LINK_MAP (so);
if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
goto set_addr;
l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
if (dyninfo_sect == NULL)
goto set_addr;
dynaddr = bfd_section_vma (abfd, dyninfo_sect);
if (dynaddr + l_addr != l_dynaddr)
{
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
{
Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
int i;
align = 1;
for (i = 0; i < ehdr->e_phnum; i++)
if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
align = phdr[i].p_align;
}
/* Turn it into a mask. */
align--;
/* If the changes match the alignment requirements, we
assume we're using a core file that was generated by the
same binary, just prelinked with a different base offset.
If it doesn't match, we may have a different binary, the
same binary with the dynamic table loaded at an unrelated
location, or anything, really. To avoid regressions,
don't adjust the base offset in the latter case, although
odds are that, if things really changed, debugging won't
quite work. */
if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
{
l_addr = l_dynaddr - dynaddr;
warning (_(".dynamic section for \"%s\" "
"is not at the expected address"), so->so_name);
warning (_("difference appears to be caused by prelink, "
"adjusting expectations"));
}
else
warning (_(".dynamic section for \"%s\" "
"is not at the expected address "
"(wrong library or version mismatch?)"), so->so_name);
}
set_addr:
so->lm_info->l_addr = l_addr;
}
return so->lm_info->l_addr;
}
static CORE_ADDR
LM_NEXT (struct so_list *so)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
builtin_type_void_data_ptr);
}
static CORE_ADDR
LM_NAME (struct so_list *so)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
builtin_type_void_data_ptr);
}
static int
IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
/* Assume that everything is a library if the dynamic loader was loaded
late by a static executable. */
if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
return 0;
return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
builtin_type_void_data_ptr) == 0;
}
static CORE_ADDR debug_base; /* Base of dynamic linker structures */
/* Validity flag for debug_loader_offset. */
static int debug_loader_offset_p;
/* Load address for the dynamic linker, inferred. */
static CORE_ADDR debug_loader_offset;
/* Name of the dynamic linker, valid if debug_loader_offset_p. */
static char *debug_loader_name;
/* Load map address for the main executable. */
static CORE_ADDR main_lm_addr;
/* Local function prototypes */
static int match_main (char *);
static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
/*
LOCAL FUNCTION
bfd_lookup_symbol -- lookup the value for a specific symbol
SYNOPSIS
CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
DESCRIPTION
An expensive way to lookup the value of a single symbol for
bfd's that are only temporary anyway. This is used by the
shared library support to find the address of the debugger
notification routine in the shared library.
The returned symbol may be in a code or data section; functions
will normally be in a code section, but may be in a data section
if this architecture uses function descriptors.
Note that 0 is specifically allowed as an error return (no
such symbol).
*/
static CORE_ADDR
bfd_lookup_symbol (bfd *abfd, char *symname)
{
long storage_needed;
asymbol *sym;
asymbol **symbol_table;
unsigned int number_of_symbols;
unsigned int i;
struct cleanup *back_to;
CORE_ADDR symaddr = 0;
storage_needed = bfd_get_symtab_upper_bound (abfd);
if (storage_needed > 0)
{
symbol_table = (asymbol **) xmalloc (storage_needed);
back_to = make_cleanup (xfree, symbol_table);
number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
for (i = 0; i < number_of_symbols; i++)
{
sym = *symbol_table++;
if (strcmp (sym->name, symname) == 0
&& (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
{
/* BFD symbols are section relative. */
symaddr = sym->value + sym->section->vma;
break;
}
}
do_cleanups (back_to);
}
if (symaddr)
return symaddr;
/* On FreeBSD, the dynamic linker is stripped by default. So we'll
have to check the dynamic string table too. */
storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
if (storage_needed > 0)
{
symbol_table = (asymbol **) xmalloc (storage_needed);
back_to = make_cleanup (xfree, symbol_table);
number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
for (i = 0; i < number_of_symbols; i++)
{
sym = *symbol_table++;
if (strcmp (sym->name, symname) == 0
&& (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
{
/* BFD symbols are section relative. */
symaddr = sym->value + sym->section->vma;
break;
}
}
do_cleanups (back_to);
}
return symaddr;
}
/* Read program header TYPE from inferior memory. The header is found
by scanning the OS auxillary vector.
Return a pointer to allocated memory holding the program header contents,
or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
size of those contents is returned to P_SECT_SIZE. Likewise, the target
architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
static gdb_byte *
read_program_header (int type, int *p_sect_size, int *p_arch_size)
{
CORE_ADDR at_phdr, at_phent, at_phnum;
int arch_size, sect_size;
CORE_ADDR sect_addr;
gdb_byte *buf;
/* Get required auxv elements from target. */
if (target_auxv_search (¤t_target, AT_PHDR, &at_phdr) <= 0)
return 0;
if (target_auxv_search (¤t_target, AT_PHENT, &at_phent) <= 0)
return 0;
if (target_auxv_search (¤t_target, AT_PHNUM, &at_phnum) <= 0)
return 0;
if (!at_phdr || !at_phnum)
return 0;
/* Determine ELF architecture type. */
if (at_phent == sizeof (Elf32_External_Phdr))
arch_size = 32;
else if (at_phent == sizeof (Elf64_External_Phdr))
arch_size = 64;
else
return 0;
/* Find .dynamic section via the PT_DYNAMIC PHDR. */
if (arch_size == 32)
{
Elf32_External_Phdr phdr;
int i;
/* Search for requested PHDR. */
for (i = 0; i < at_phnum; i++)
{
if (target_read_memory (at_phdr + i * sizeof (phdr),
(gdb_byte *)&phdr, sizeof (phdr)))
return 0;
if (extract_unsigned_integer ((gdb_byte *)phdr.p_type, 4) == type)
break;
}
if (i == at_phnum)
return 0;
/* Retrieve address and size. */
sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, 4);
sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, 4);
}
else
{
Elf64_External_Phdr phdr;
int i;
/* Search for requested PHDR. */
for (i = 0; i < at_phnum; i++)
{
if (target_read_memory (at_phdr + i * sizeof (phdr),
(gdb_byte *)&phdr, sizeof (phdr)))
return 0;
if (extract_unsigned_integer ((gdb_byte *)phdr.p_type, 4) == type)
break;
}
if (i == at_phnum)
return 0;
/* Retrieve address and size. */
sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, 8);
sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, 8);
}
/* Read in requested program header. */
buf = xmalloc (sect_size);
if (target_read_memory (sect_addr, buf, sect_size))
{
xfree (buf);
return NULL;
}
if (p_arch_size)
*p_arch_size = arch_size;
if (p_sect_size)
*p_sect_size = sect_size;
return buf;
}
/* Return program interpreter string. */
static gdb_byte *
find_program_interpreter (void)
{
gdb_byte *buf = NULL;
/* If we have an exec_bfd, use its section table. */
if (exec_bfd
&& bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
{
struct bfd_section *interp_sect;
interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
if (interp_sect != NULL)
{
CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
int sect_size = bfd_section_size (exec_bfd, interp_sect);
buf = xmalloc (sect_size);
bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
}
}
/* If we didn't find it, use the target auxillary vector. */
if (!buf)
buf = read_program_header (PT_INTERP, NULL, NULL);
return buf;
}
/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
returned and the corresponding PTR is set. */
static int
scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
{
int arch_size, step, sect_size;
long dyn_tag;
CORE_ADDR dyn_ptr, dyn_addr;
gdb_byte *bufend, *bufstart, *buf;
Elf32_External_Dyn *x_dynp_32;
Elf64_External_Dyn *x_dynp_64;
struct bfd_section *sect;
if (abfd == NULL)
return 0;
arch_size = bfd_get_arch_size (abfd);
if (arch_size == -1)
return 0;
/* Find the start address of the .dynamic section. */
sect = bfd_get_section_by_name (abfd, ".dynamic");
if (sect == NULL)
return 0;
dyn_addr = bfd_section_vma (abfd, sect);
/* Read in .dynamic from the BFD. We will get the actual value
from memory later. */
sect_size = bfd_section_size (abfd, sect);
buf = bufstart = alloca (sect_size);
if (!bfd_get_section_contents (abfd, sect,
buf, 0, sect_size))
return 0;
/* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
: sizeof (Elf64_External_Dyn);
for (bufend = buf + sect_size;
buf < bufend;
buf += step)
{
if (arch_size == 32)
{
x_dynp_32 = (Elf32_External_Dyn *) buf;
dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
}
else
{
x_dynp_64 = (Elf64_External_Dyn *) buf;
dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
}
if (dyn_tag == DT_NULL)
return 0;
if (dyn_tag == dyntag)
{
/* If requested, try to read the runtime value of this .dynamic
entry. */
if (ptr)
{
gdb_byte ptr_buf[8];
CORE_ADDR ptr_addr;
ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
dyn_ptr = extract_typed_address (ptr_buf,
builtin_type_void_data_ptr);
*ptr = dyn_ptr;
}
return 1;
}
}
return 0;
}
/* Scan for DYNTAG in .dynamic section of the target's main executable,
found by consulting the OS auxillary vector. If DYNTAG is found 1 is
returned and the corresponding PTR is set. */
static int
scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
{
int sect_size, arch_size, step;
long dyn_tag;
CORE_ADDR dyn_ptr;
gdb_byte *bufend, *bufstart, *buf;
/* Read in .dynamic section. */
buf = bufstart = read_program_header (PT_DYNAMIC, §_size, &arch_size);
if (!buf)
return 0;
/* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
: sizeof (Elf64_External_Dyn);
for (bufend = buf + sect_size;
buf < bufend;
buf += step)
{
if (arch_size == 32)
{
Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, 4);
dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, 4);
}
else
{
Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, 8);
dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, 8);
}
if (dyn_tag == DT_NULL)
break;
if (dyn_tag == dyntag)
{
if (ptr)
*ptr = dyn_ptr;
xfree (bufstart);
return 1;
}
}
xfree (bufstart);
return 0;
}
/*
LOCAL FUNCTION
elf_locate_base -- locate the base address of dynamic linker structs
for SVR4 elf targets.
SYNOPSIS
CORE_ADDR elf_locate_base (void)
DESCRIPTION
For SVR4 elf targets the address of the dynamic linker's runtime
structure is contained within the dynamic info section in the
executable file. The dynamic section is also mapped into the
inferior address space. Because the runtime loader fills in the
real address before starting the inferior, we have to read in the
dynamic info section from the inferior address space.
If there are any errors while trying to find the address, we
silently return 0, otherwise the found address is returned.
*/
static CORE_ADDR
elf_locate_base (void)
{
struct minimal_symbol *msymbol;
CORE_ADDR dyn_ptr;
/* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
instead of DT_DEBUG, although they sometimes contain an unused
DT_DEBUG. */
if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
|| scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
{
gdb_byte *pbuf;
int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
pbuf = alloca (pbuf_size);
/* DT_MIPS_RLD_MAP contains a pointer to the address
of the dynamic link structure. */
if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
return 0;
return extract_typed_address (pbuf, builtin_type_void_data_ptr);
}
/* Find DT_DEBUG. */
if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
|| scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
return dyn_ptr;
/* This may be a static executable. Look for the symbol
conventionally named _r_debug, as a last resort. */
msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
if (msymbol != NULL)
return SYMBOL_VALUE_ADDRESS (msymbol);
/* DT_DEBUG entry not found. */
return 0;
}
/*
LOCAL FUNCTION
locate_base -- locate the base address of dynamic linker structs
SYNOPSIS
CORE_ADDR locate_base (void)
DESCRIPTION
For both the SunOS and SVR4 shared library implementations, if the
inferior executable has been linked dynamically, there is a single
address somewhere in the inferior's data space which is the key to
locating all of the dynamic linker's runtime structures. This
address is the value of the debug base symbol. The job of this
function is to find and return that address, or to return 0 if there
is no such address (the executable is statically linked for example).
For SunOS, the job is almost trivial, since the dynamic linker and
all of it's structures are statically linked to the executable at
link time. Thus the symbol for the address we are looking for has
already been added to the minimal symbol table for the executable's
objfile at the time the symbol file's symbols were read, and all we
have to do is look it up there. Note that we explicitly do NOT want
to find the copies in the shared library.
The SVR4 version is a bit more complicated because the address
is contained somewhere in the dynamic info section. We have to go
to a lot more work to discover the address of the debug base symbol.
Because of this complexity, we cache the value we find and return that
value on subsequent invocations. Note there is no copy in the
executable symbol tables.
*/
static CORE_ADDR
locate_base (void)
{
/* Check to see if we have a currently valid address, and if so, avoid
doing all this work again and just return the cached address. If
we have no cached address, try to locate it in the dynamic info
section for ELF executables. There's no point in doing any of this
though if we don't have some link map offsets to work with. */
if (debug_base == 0 && svr4_have_link_map_offsets ())
{
if (exec_bfd != NULL
&& bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
debug_base = elf_locate_base ();
}
return (debug_base);
}
/* Find the first element in the inferior's dynamic link map, and
return its address in the inferior.
FIXME: Perhaps we should validate the info somehow, perhaps by
checking r_version for a known version number, or r_state for
RT_CONSISTENT. */
static CORE_ADDR
solib_svr4_r_map (void)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
return read_memory_typed_address (debug_base + lmo->r_map_offset,
builtin_type_void_data_ptr);
}
/* Find r_brk from the inferior's debug base. */
static CORE_ADDR
solib_svr4_r_brk (void)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
return read_memory_typed_address (debug_base + lmo->r_brk_offset,
builtin_type_void_data_ptr);
}
/* Find the link map for the dynamic linker (if it is not in the
normal list of loaded shared objects). */
static CORE_ADDR
solib_svr4_r_ldsomap (void)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
ULONGEST version;
/* Check version, and return zero if `struct r_debug' doesn't have
the r_ldsomap member. */
version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
lmo->r_version_size);
if (version < 2 || lmo->r_ldsomap_offset == -1)
return 0;
return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
builtin_type_void_data_ptr);
}
/*
LOCAL FUNCTION
open_symbol_file_object
SYNOPSIS
void open_symbol_file_object (void *from_tty)
DESCRIPTION
If no open symbol file, attempt to locate and open the main symbol
file. On SVR4 systems, this is the first link map entry. If its
name is here, we can open it. Useful when attaching to a process
without first loading its symbol file.
If FROM_TTYP dereferences to a non-zero integer, allow messages to
be printed. This parameter is a pointer rather than an int because
open_symbol_file_object() is called via catch_errors() and
catch_errors() requires a pointer argument. */
static int
open_symbol_file_object (void *from_ttyp)
{
CORE_ADDR lm, l_name;
char *filename;
int errcode;
int from_tty = *(int *)from_ttyp;
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
gdb_byte *l_name_buf = xmalloc (l_name_size);
struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
if (symfile_objfile)
if (!query ("Attempt to reload symbols from process? "))
return 0;
/* Always locate the debug struct, in case it has moved. */
debug_base = 0;
if (locate_base () == 0)
return 0; /* failed somehow... */
/* First link map member should be the executable. */
lm = solib_svr4_r_map ();
if (lm == 0)
return 0; /* failed somehow... */
/* Read address of name from target memory to GDB. */
read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
/* Convert the address to host format. */
l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
/* Free l_name_buf. */
do_cleanups (cleanups);
if (l_name == 0)
return 0; /* No filename. */
/* Now fetch the filename from target memory. */
target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
make_cleanup (xfree, filename);
if (errcode)
{
warning (_("failed to read exec filename from attached file: %s"),
safe_strerror (errcode));
return 0;
}
/* Have a pathname: read the symbol file. */
symbol_file_add_main (filename, from_tty);
return 1;
}
/* If no shared library information is available from the dynamic
linker, build a fallback list from other sources. */
static struct so_list *
svr4_default_sos (void)
{
struct so_list *head = NULL;
struct so_list **link_ptr = &head;
if (debug_loader_offset_p)
{
struct so_list *new = XZALLOC (struct so_list);
new->lm_info = xmalloc (sizeof (struct lm_info));
/* Nothing will ever check the cached copy of the link
map if we set l_addr. */
new->lm_info->l_addr = debug_loader_offset;
new->lm_info->lm_addr = 0;
new->lm_info->lm = NULL;
strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
strcpy (new->so_original_name, new->so_name);
*link_ptr = new;
link_ptr = &new->next;
}
return head;
}
/* LOCAL FUNCTION
current_sos -- build a list of currently loaded shared objects
SYNOPSIS
struct so_list *current_sos ()
DESCRIPTION
Build a list of `struct so_list' objects describing the shared
objects currently loaded in the inferior. This list does not
include an entry for the main executable file.
Note that we only gather information directly available from the
inferior --- we don't examine any of the shared library files
themselves. The declaration of `struct so_list' says which fields
we provide values for. */
static struct so_list *
svr4_current_sos (void)
{
CORE_ADDR lm;
struct so_list *head = 0;
struct so_list **link_ptr = &head;
CORE_ADDR ldsomap = 0;
/* Always locate the debug struct, in case it has moved. */
debug_base = 0;
locate_base ();
/* If we can't find the dynamic linker's base structure, this
must not be a dynamically linked executable. Hmm. */
if (! debug_base)
return svr4_default_sos ();
/* Walk the inferior's link map list, and build our list of
`struct so_list' nodes. */
lm = solib_svr4_r_map ();
while (lm)
{
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
struct so_list *new = XZALLOC (struct so_list);
struct cleanup *old_chain = make_cleanup (xfree, new);
new->lm_info = xmalloc (sizeof (struct lm_info));
make_cleanup (xfree, new->lm_info);
new->lm_info->l_addr = (CORE_ADDR)-1;
new->lm_info->lm_addr = lm;
new->lm_info->lm = xzalloc (lmo->link_map_size);
make_cleanup (xfree, new->lm_info->lm);
read_memory (lm, new->lm_info->lm, lmo->link_map_size);
lm = LM_NEXT (new);
/* For SVR4 versions, the first entry in the link map is for the
inferior executable, so we must ignore it. For some versions of
SVR4, it has no name. For others (Solaris 2.3 for example), it
does have a name, so we can no longer use a missing name to
decide when to ignore it. */
if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
{
main_lm_addr = new->lm_info->lm_addr;
free_so (new);
}
else
{
int errcode;
char *buffer;
/* Extract this shared object's name. */
target_read_string (LM_NAME (new), &buffer,
SO_NAME_MAX_PATH_SIZE - 1, &errcode);
if (errcode != 0)
warning (_("Can't read pathname for load map: %s."),
safe_strerror (errcode));
else
{
strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
strcpy (new->so_original_name, new->so_name);
}
xfree (buffer);
/* If this entry has no name, or its name matches the name
for the main executable, don't include it in the list. */
if (! new->so_name[0]
|| match_main (new->so_name))
free_so (new);
else
{
new->next = 0;
*link_ptr = new;
link_ptr = &new->next;
}
}
/* On Solaris, the dynamic linker is not in the normal list of
shared objects, so make sure we pick it up too. Having
symbol information for the dynamic linker is quite crucial
for skipping dynamic linker resolver code. */
if (lm == 0 && ldsomap == 0)
lm = ldsomap = solib_svr4_r_ldsomap ();
discard_cleanups (old_chain);
}
if (head == NULL)
return svr4_default_sos ();
return head;
}
/* Get the address of the link_map for a given OBJFILE. */
CORE_ADDR
svr4_fetch_objfile_link_map (struct objfile *objfile)
{
struct so_list *so;
/* Cause svr4_current_sos() to be run if it hasn't been already. */
if (main_lm_addr == 0)
solib_add (NULL, 0, ¤t_target, auto_solib_add);
/* svr4_current_sos() will set main_lm_addr for the main executable. */
if (objfile == symfile_objfile)
return main_lm_addr;
/* The other link map addresses may be found by examining the list
of shared libraries. */
for (so = master_so_list (); so; so = so->next)
if (so->objfile == objfile)
return so->lm_info->lm_addr;
/* Not found! */
return 0;
}
/* On some systems, the only way to recognize the link map entry for
the main executable file is by looking at its name. Return
non-zero iff SONAME matches one of the known main executable names. */
static int
match_main (char *soname)
{
char **mainp;
for (mainp = main_name_list; *mainp != NULL; mainp++)
{
if (strcmp (soname, *mainp) == 0)
return (1);
}
return (0);
}
/* Return 1 if PC lies in the dynamic symbol resolution code of the
SVR4 run time loader. */
static CORE_ADDR interp_text_sect_low;
static CORE_ADDR interp_text_sect_high;
static CORE_ADDR interp_plt_sect_low;
static CORE_ADDR interp_plt_sect_high;
int
svr4_in_dynsym_resolve_code (CORE_ADDR pc)
{
return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
|| (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
|| in_plt_section (pc, NULL));
}
/* Given an executable's ABFD and target, compute the entry-point
address. */
static CORE_ADDR
exec_entry_point (struct bfd *abfd, struct target_ops *targ)
{
/* KevinB wrote ... for most targets, the address returned by
bfd_get_start_address() is the entry point for the start
function. But, for some targets, bfd_get_start_address() returns
the address of a function descriptor from which the entry point
address may be extracted. This address is extracted by
gdbarch_convert_from_func_ptr_addr(). The method
gdbarch_convert_from_func_ptr_addr() is the merely the identify
function for targets which don't use function descriptors. */
return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
bfd_get_start_address (abfd),
targ);
}
/*
LOCAL FUNCTION
enable_break -- arrange for dynamic linker to hit breakpoint
SYNOPSIS
int enable_break (void)
DESCRIPTION
Both the SunOS and the SVR4 dynamic linkers have, as part of their
debugger interface, support for arranging for the inferior to hit
a breakpoint after mapping in the shared libraries. This function
enables that breakpoint.
For SunOS, there is a special flag location (in_debugger) which we
set to 1. When the dynamic linker sees this flag set, it will set
a breakpoint at a location known only to itself, after saving the
original contents of that place and the breakpoint address itself,
in it's own internal structures. When we resume the inferior, it
will eventually take a SIGTRAP when it runs into the breakpoint.
We handle this (in a different place) by restoring the contents of
the breakpointed location (which is only known after it stops),
chasing around to locate the shared libraries that have been
loaded, then resuming.
For SVR4, the debugger interface structure contains a member (r_brk)
which is statically initialized at the time the shared library is
built, to the offset of a function (_r_debug_state) which is guaran-
teed to be called once before mapping in a library, and again when
the mapping is complete. At the time we are examining this member,
it contains only the unrelocated offset of the function, so we have
to do our own relocation. Later, when the dynamic linker actually
runs, it relocates r_brk to be the actual address of _r_debug_state().
The debugger interface structure also contains an enumeration which
is set to either RT_ADD or RT_DELETE prior to changing the mapping,
depending upon whether or not the library is being mapped or unmapped,
and then set to RT_CONSISTENT after the library is mapped/unmapped.
*/
static int
enable_break (void)
{
struct minimal_symbol *msymbol;
char **bkpt_namep;
asection *interp_sect;
gdb_byte *interp_name;
CORE_ADDR sym_addr;
/* First, remove all the solib event breakpoints. Their addresses
may have changed since the last time we ran the program. */
remove_solib_event_breakpoints ();
interp_text_sect_low = interp_text_sect_high = 0;
interp_plt_sect_low = interp_plt_sect_high = 0;
/* If we already have a shared library list in the target, and
r_debug contains r_brk, set the breakpoint there - this should
mean r_brk has already been relocated. Assume the dynamic linker
is the object containing r_brk. */
solib_add (NULL, 0, ¤t_target, auto_solib_add);
sym_addr = 0;
if (debug_base && solib_svr4_r_map () != 0)
sym_addr = solib_svr4_r_brk ();
if (sym_addr != 0)
{
struct obj_section *os;
sym_addr = gdbarch_addr_bits_remove
(target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
sym_addr,
¤t_target));
os = find_pc_section (sym_addr);
if (os != NULL)
{
/* Record the relocated start and end address of the dynamic linker
text and plt section for svr4_in_dynsym_resolve_code. */
bfd *tmp_bfd;
CORE_ADDR load_addr;
tmp_bfd = os->objfile->obfd;
load_addr = ANOFFSET (os->objfile->section_offsets,
os->objfile->sect_index_text);
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
if (interp_sect)
{
interp_text_sect_low =
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
interp_text_sect_high =
interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
}
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
if (interp_sect)
{
interp_plt_sect_low =
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
interp_plt_sect_high =
interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
}
create_solib_event_breakpoint (sym_addr);
return 1;
}
}
/* Find the program interpreter; if not found, warn the user and drop
into the old breakpoint at symbol code. */
interp_name = find_program_interpreter ();
if (interp_name)
{
CORE_ADDR load_addr = 0;
int load_addr_found = 0;
int loader_found_in_list = 0;
struct so_list *so;
bfd *tmp_bfd = NULL;
struct target_ops *tmp_bfd_target;
volatile struct gdb_exception ex;
sym_addr = 0;
/* Now we need to figure out where the dynamic linker was
loaded so that we can load its symbols and place a breakpoint
in the dynamic linker itself.
This address is stored on the stack. However, I've been unable
to find any magic formula to find it for Solaris (appears to
be trivial on GNU/Linux). Therefore, we have to try an alternate
mechanism to find the dynamic linker's base address. */
TRY_CATCH (ex, RETURN_MASK_ALL)
{
tmp_bfd = solib_bfd_open (interp_name);
}
if (tmp_bfd == NULL)
goto bkpt_at_symbol;
/* Now convert the TMP_BFD into a target. That way target, as
well as BFD operations can be used. Note that closing the
target will also close the underlying bfd. */
tmp_bfd_target = target_bfd_reopen (tmp_bfd);
/* On a running target, we can get the dynamic linker's base
address from the shared library table. */
so = master_so_list ();
while (so)
{
if (svr4_same_1 (interp_name, so->so_original_name))
{
load_addr_found = 1;
loader_found_in_list = 1;
load_addr = LM_ADDR_CHECK (so, tmp_bfd);
break;
}
so = so->next;
}
/* If we were not able to find the base address of the loader
from our so_list, then try using the AT_BASE auxilliary entry. */
if (!load_addr_found)
if (target_auxv_search (¤t_target, AT_BASE, &load_addr) > 0)
load_addr_found = 1;
/* Otherwise we find the dynamic linker's base address by examining
the current pc (which should point at the entry point for the
dynamic linker) and subtracting the offset of the entry point.
This is more fragile than the previous approaches, but is a good
fallback method because it has actually been working well in
most cases. */
if (!load_addr_found)
load_addr = (read_pc ()
- exec_entry_point (tmp_bfd, tmp_bfd_target));
if (!loader_found_in_list)
{
debug_loader_name = xstrdup (interp_name);
debug_loader_offset_p = 1;
debug_loader_offset = load_addr;
solib_add (NULL, 0, ¤t_target, auto_solib_add);
}
/* Record the relocated start and end address of the dynamic linker
text and plt section for svr4_in_dynsym_resolve_code. */
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
if (interp_sect)
{
interp_text_sect_low =
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
interp_text_sect_high =
interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
}
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
if (interp_sect)
{
interp_plt_sect_low =
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
interp_plt_sect_high =
interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
}
/* Now try to set a breakpoint in the dynamic linker. */
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
{
sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
if (sym_addr != 0)
break;
}
if (sym_addr != 0)
/* Convert 'sym_addr' from a function pointer to an address.
Because we pass tmp_bfd_target instead of the current
target, this will always produce an unrelocated value. */
sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
sym_addr,
tmp_bfd_target);
/* We're done with both the temporary bfd and target. Remember,
closing the target closes the underlying bfd. */
target_close (tmp_bfd_target, 0);
if (sym_addr != 0)
{
create_solib_event_breakpoint (load_addr + sym_addr);
xfree (interp_name);
return 1;
}
/* For whatever reason we couldn't set a breakpoint in the dynamic
linker. Warn and drop into the old code. */
bkpt_at_symbol:
xfree (interp_name);
warning (_("Unable to find dynamic linker breakpoint function.\n"
"GDB will be unable to debug shared library initializers\n"
"and track explicitly loaded dynamic code."));
}
/* Scan through the lists of symbols, trying to look up the symbol and
set a breakpoint there. Terminate loop when we/if we succeed. */
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
{
msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
{
create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
return 1;
}
}
for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
{
msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
{
create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
return 1;
}
}
return 0;
}
/*
LOCAL FUNCTION
special_symbol_handling -- additional shared library symbol handling
SYNOPSIS
void special_symbol_handling ()
DESCRIPTION
Once the symbols from a shared object have been loaded in the usual
way, we are called to do any system specific symbol handling that
is needed.
For SunOS4, this consisted of grunging around in the dynamic
linkers structures to find symbol definitions for "common" symbols
and adding them to the minimal symbol table for the runtime common
objfile.
However, for SVR4, there's nothing to do.
*/
static void
svr4_special_symbol_handling (void)
{
}
/* Relocate the main executable. This function should be called upon
stopping the inferior process at the entry point to the program.
The entry point from BFD is compared to the PC and if they are
different, the main executable is relocated by the proper amount.
As written it will only attempt to relocate executables which
lack interpreter sections. It seems likely that only dynamic
linker executables will get relocated, though it should work
properly for a position-independent static executable as well. */
static void
svr4_relocate_main_executable (void)
{
asection *interp_sect;
CORE_ADDR pc = read_pc ();
/* Decide if the objfile needs to be relocated. As indicated above,
we will only be here when execution is stopped at the beginning
of the program. Relocation is necessary if the address at which
we are presently stopped differs from the start address stored in
the executable AND there's no interpreter section. The condition
regarding the interpreter section is very important because if
there *is* an interpreter section, execution will begin there
instead. When there is an interpreter section, the start address
is (presumably) used by the interpreter at some point to start
execution of the program.
If there is an interpreter, it is normal for it to be set to an
arbitrary address at the outset. The job of finding it is
handled in enable_break().
So, to summarize, relocations are necessary when there is no
interpreter section and the start address obtained from the
executable is different from the address at which GDB is
currently stopped.
[ The astute reader will note that we also test to make sure that
the executable in question has the DYNAMIC flag set. It is my
opinion that this test is unnecessary (undesirable even). It
was added to avoid inadvertent relocation of an executable
whose e_type member in the ELF header is not ET_DYN. There may
be a time in the future when it is desirable to do relocations
on other types of files as well in which case this condition
should either be removed or modified to accomodate the new file
type. (E.g, an ET_EXEC executable which has been built to be
position-independent could safely be relocated by the OS if
desired. It is true that this violates the ABI, but the ABI
has been known to be bent from time to time.) - Kevin, Nov 2000. ]
*/
interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
if (interp_sect == NULL
&& (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
&& (exec_entry_point (exec_bfd, &exec_ops) != pc))
{
struct cleanup *old_chain;
struct section_offsets *new_offsets;
int i, changed;
CORE_ADDR displacement;
/* It is necessary to relocate the objfile. The amount to
relocate by is simply the address at which we are stopped
minus the starting address from the executable.
We relocate all of the sections by the same amount. This
behavior is mandated by recent editions of the System V ABI.
According to the System V Application Binary Interface,
Edition 4.1, page 5-5:
... Though the system chooses virtual addresses for
individual processes, it maintains the segments' relative
positions. Because position-independent code uses relative
addressesing between segments, the difference between
virtual addresses in memory must match the difference
between virtual addresses in the file. The difference
between the virtual address of any segment in memory and
the corresponding virtual address in the file is thus a
single constant value for any one executable or shared
object in a given process. This difference is the base
address. One use of the base address is to relocate the
memory image of the program during dynamic linking.
The same language also appears in Edition 4.0 of the System V
ABI and is left unspecified in some of the earlier editions. */
displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
changed = 0;
new_offsets = xcalloc (symfile_objfile->num_sections,
sizeof (struct section_offsets));
old_chain = make_cleanup (xfree, new_offsets);
for (i = 0; i < symfile_objfile->num_sections; i++)
{
if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
changed = 1;
new_offsets->offsets[i] = displacement;
}
if (changed)
objfile_relocate (symfile_objfile, new_offsets);
do_cleanups (old_chain);
}
}
/*
GLOBAL FUNCTION
svr4_solib_create_inferior_hook -- shared library startup support
SYNOPSIS
void svr4_solib_create_inferior_hook ()
DESCRIPTION
When gdb starts up the inferior, it nurses it along (through the
shell) until it is ready to execute it's first instruction. At this
point, this function gets called via expansion of the macro
SOLIB_CREATE_INFERIOR_HOOK.
For SunOS executables, this first instruction is typically the
one at "_start", or a similar text label, regardless of whether
the executable is statically or dynamically linked. The runtime
startup code takes care of dynamically linking in any shared
libraries, once gdb allows the inferior to continue.
For SVR4 executables, this first instruction is either the first
instruction in the dynamic linker (for dynamically linked
executables) or the instruction at "start" for statically linked
executables. For dynamically linked executables, the system
first exec's /lib/libc.so.N, which contains the dynamic linker,
and starts it running. The dynamic linker maps in any needed
shared libraries, maps in the actual user executable, and then
jumps to "start" in the user executable.
For both SunOS shared libraries, and SVR4 shared libraries, we
can arrange to cooperate with the dynamic linker to discover the
names of shared libraries that are dynamically linked, and the
base addresses to which they are linked.
This function is responsible for discovering those names and
addresses, and saving sufficient information about them to allow
their symbols to be read at a later time.
FIXME
Between enable_break() and disable_break(), this code does not
properly handle hitting breakpoints which the user might have
set in the startup code or in the dynamic linker itself. Proper
handling will probably have to wait until the implementation is
changed to use the "breakpoint handler function" method.
Also, what if child has exit()ed? Must exit loop somehow.
*/
static void
svr4_solib_create_inferior_hook (void)
{
/* Relocate the main executable if necessary. */
svr4_relocate_main_executable ();
if (!svr4_have_link_map_offsets ())
return;
if (!enable_break ())
return;
#if defined(_SCO_DS)
/* SCO needs the loop below, other systems should be using the
special shared library breakpoints and the shared library breakpoint
service routine.
Now run the target. It will eventually hit the breakpoint, at
which point all of the libraries will have been mapped in and we
can go groveling around in the dynamic linker structures to find
out what we need to know about them. */
clear_proceed_status ();
stop_soon = STOP_QUIETLY;
stop_signal = TARGET_SIGNAL_0;
do
{
target_resume (pid_to_ptid (-1), 0, stop_signal);
wait_for_inferior (0);
}
while (stop_signal != TARGET_SIGNAL_TRAP);
stop_soon = NO_STOP_QUIETLY;
#endif /* defined(_SCO_DS) */
}
static void
svr4_clear_solib (void)
{
debug_base = 0;
debug_loader_offset_p = 0;
debug_loader_offset = 0;
xfree (debug_loader_name);
debug_loader_name = NULL;
main_lm_addr = 0;
}
static void
svr4_free_so (struct so_list *so)
{
xfree (so->lm_info->lm);
xfree (so->lm_info);
}
/* Clear any bits of ADDR that wouldn't fit in a target-format
data pointer. "Data pointer" here refers to whatever sort of
address the dynamic linker uses to manage its sections. At the
moment, we don't support shared libraries on any processors where
code and data pointers are different sizes.
This isn't really the right solution. What we really need here is
a way to do arithmetic on CORE_ADDR values that respects the
natural pointer/address correspondence. (For example, on the MIPS,
converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
sign-extend the value. There, simply truncating the bits above
gdbarch_ptr_bit, as we do below, is no good.) This should probably
be a new gdbarch method or something. */
static CORE_ADDR
svr4_truncate_ptr (CORE_ADDR addr)
{
if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
/* We don't need to truncate anything, and the bit twiddling below
will fail due to overflow problems. */
return addr;
else
return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
}
static void
svr4_relocate_section_addresses (struct so_list *so,
struct section_table *sec)
{
sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
sec->bfd));
sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
sec->bfd));
}
/* Architecture-specific operations. */
/* Per-architecture data key. */
static struct gdbarch_data *solib_svr4_data;
struct solib_svr4_ops
{
/* Return a description of the layout of `struct link_map'. */
struct link_map_offsets *(*fetch_link_map_offsets)(void);
};
/* Return a default for the architecture-specific operations. */
static void *
solib_svr4_init (struct obstack *obstack)
{
struct solib_svr4_ops *ops;
ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
ops->fetch_link_map_offsets = NULL;
return ops;
}
/* Set the architecture-specific `struct link_map_offsets' fetcher for
GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
void
set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
struct link_map_offsets *(*flmo) (void))
{
struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
ops->fetch_link_map_offsets = flmo;
set_solib_ops (gdbarch, &svr4_so_ops);
}
/* Fetch a link_map_offsets structure using the architecture-specific
`struct link_map_offsets' fetcher. */
static struct link_map_offsets *
svr4_fetch_link_map_offsets (void)
{
struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
gdb_assert (ops->fetch_link_map_offsets);
return ops->fetch_link_map_offsets ();
}
/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
static int
svr4_have_link_map_offsets (void)
{
struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
return (ops->fetch_link_map_offsets != NULL);
}
/* Most OS'es that have SVR4-style ELF dynamic libraries define a
`struct r_debug' and a `struct link_map' that are binary compatible
with the origional SVR4 implementation. */
/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
for an ILP32 SVR4 system. */
struct link_map_offsets *
svr4_ilp32_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_version_offset = 0;
lmo.r_version_size = 4;
lmo.r_map_offset = 4;
lmo.r_brk_offset = 8;
lmo.r_ldsomap_offset = 20;
/* Everything we need is in the first 20 bytes. */
lmo.link_map_size = 20;
lmo.l_addr_offset = 0;
lmo.l_name_offset = 4;
lmo.l_ld_offset = 8;
lmo.l_next_offset = 12;
lmo.l_prev_offset = 16;
}
return lmp;
}
/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
for an LP64 SVR4 system. */
struct link_map_offsets *
svr4_lp64_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_version_offset = 0;
lmo.r_version_size = 4;
lmo.r_map_offset = 8;
lmo.r_brk_offset = 16;
lmo.r_ldsomap_offset = 40;
/* Everything we need is in the first 40 bytes. */
lmo.link_map_size = 40;
lmo.l_addr_offset = 0;
lmo.l_name_offset = 8;
lmo.l_ld_offset = 16;
lmo.l_next_offset = 24;
lmo.l_prev_offset = 32;
}
return lmp;
}
struct target_so_ops svr4_so_ops;
/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
different rule for symbol lookup. The lookup begins here in the DSO, not in
the main executable. */
static struct symbol *
elf_lookup_lib_symbol (const struct objfile *objfile,
const char *name,
const char *linkage_name,
const domain_enum domain)
{
if (objfile->obfd == NULL
|| scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
return NULL;
return lookup_global_symbol_from_objfile
(objfile, name, linkage_name, domain);
}
extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
void
_initialize_svr4_solib (void)
{
solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
svr4_so_ops.free_so = svr4_free_so;
svr4_so_ops.clear_solib = svr4_clear_solib;
svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
svr4_so_ops.current_sos = svr4_current_sos;
svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
svr4_so_ops.same = svr4_same;
}
|