aboutsummaryrefslogtreecommitdiff
path: root/gdb/sh-tdep.c
blob: 3b715a841bf058aa44d2a5743eeeb3f06097112e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
/* Target-dependent code for Hitachi Super-H, for GDB.
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

/*
   Contributed by Steve Chamberlain
   sac@cygnus.com
 */

#include "defs.h"
#include "frame.h"
#include "symtab.h"
#include "symfile.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "value.h"
#include "dis-asm.h"
#include "inferior.h"		/* for BEFORE_TEXT_END etc. */
#include "gdb_string.h"
#include "arch-utils.h"
#include "floatformat.h"
#include "regcache.h"
#include "doublest.h"

#include "sh-tdep.h"

#include "elf-bfd.h"
#include "solib-svr4.h"

/* sh64 flags */
#include "elf/sh.h"
/* registers numbers shared with the simulator */
#include "gdb/sim-sh.h"

void (*sh_show_regs) (void);
CORE_ADDR (*skip_prologue_hard_way) (CORE_ADDR);
void (*do_pseudo_register) (int);

#define SH_DEFAULT_NUM_REGS 59

/* Define other aspects of the stack frame.
   we keep a copy of the worked out return pc lying around, since it
   is a useful bit of info */
  
struct frame_extra_info
{
  CORE_ADDR return_pc;
  int leaf_function;
  int f_offset;
};

static const char *
sh_generic_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
    "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
    "pc",   "pr",   "gbr",  "vbr",  "mach", "macl", "sr",
    "fpul", "fpscr",
    "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",
    "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
    "ssr",  "spc",
    "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
    "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

static const char *
sh_sh_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
    "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
    "pc",   "pr",   "gbr",  "vbr",  "mach", "macl", "sr",
    "",     "",
    "",     "",     "",     "",     "",     "",     "",     "",
    "",     "",     "",     "",     "",     "",     "",     "",
    "",     "",
    "",     "",     "",     "",     "",     "",     "",     "",
    "",     "",     "",     "",     "",     "",     "",     "",
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

static const char *
sh_sh3_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
    "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
    "pc",   "pr",   "gbr",  "vbr",  "mach", "macl", "sr",
    "",     "",
    "",     "",     "",     "",     "",     "",     "",     "",
    "",     "",     "",     "",     "",     "",     "",     "",
    "ssr",  "spc",
    "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
    "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

static const char *
sh_sh3e_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
    "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
    "pc",   "pr",   "gbr",  "vbr",  "mach", "macl", "sr",
    "fpul", "fpscr",
    "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",
    "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
    "ssr",  "spc",
    "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
    "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

static const char *
sh_sh_dsp_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
    "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
    "pc",   "pr",   "gbr",  "vbr",  "mach", "macl", "sr",
    "",     "dsr",
    "a0g",  "a0",   "a1g",  "a1",   "m0",   "m1",   "x0",   "x1",
    "y0",   "y1",   "",     "",     "",     "",     "",     "mod",
    "",     "",
    "rs",   "re",   "",     "",     "",     "",     "",     "",
    "",     "",     "",     "",     "",     "",     "",     "",
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

static const char *
sh_sh3_dsp_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
    "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
    "pc",   "pr",   "gbr",  "vbr",  "mach", "macl", "sr",
    "",     "dsr",
    "a0g",  "a0",   "a1g",  "a1",   "m0",   "m1",   "x0",   "x1",
    "y0",   "y1",   "",     "",     "",     "",     "",     "mod",
    "ssr",  "spc",
    "rs",   "re",   "",     "",     "",     "",     "",     "",
    "r0b",  "r1b",  "r2b",  "r3b",  "r4b",  "r5b",  "r6b",  "r7b"
    "",     "",     "",     "",     "",     "",     "",     "",
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

static const char *
sh_sh4_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    /* general registers 0-15 */
    "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
    "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
    /* 16 - 22 */
    "pc",   "pr",   "gbr",  "vbr",  "mach", "macl", "sr",
    /* 23, 24 */
    "fpul", "fpscr",
    /* floating point registers 25 - 40 */
    "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",
    "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
    /* 41, 42 */
    "ssr",  "spc",
    /* bank 0 43 - 50 */
    "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
    /* bank 1 51 - 58 */
    "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
    /* double precision (pseudo) 59 - 66 */
    "dr0",  "dr2",  "dr4",  "dr6",  "dr8",  "dr10", "dr12", "dr14",
    /* vectors (pseudo) 67 - 70 */
    "fv0",  "fv4",  "fv8",  "fv12",
    /* FIXME: missing XF 71 - 86 */
    /* FIXME: missing XD 87 - 94 */
  };
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

static const char *
sh_sh64_register_name (int reg_nr)
{
  static char *register_names[] =
  {
    /* SH MEDIA MODE (ISA 32) */
    /* general registers (64-bit) 0-63 */
    "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
    "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
    "r16",  "r17",  "r18",  "r19",  "r20",  "r21",  "r22",  "r23",
    "r24",  "r25",  "r26",  "r27",  "r28",  "r29",  "r30",  "r31",
    "r32",  "r33",  "r34",  "r35",  "r36",  "r37",  "r38",  "r39",
    "r40",  "r41",  "r42",  "r43",  "r44",  "r45",  "r46",  "r47",
    "r48",  "r49",  "r50",  "r51",  "r52",  "r53",  "r54",  "r55",
    "r56",  "r57",  "r58",  "r59",  "r60",  "r61",  "r62",  "r63",

    /* pc (64-bit) 64 */
    "pc",   

    /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
    "sr",  "ssr",  "spc", 

    /* target registers (64-bit) 68-75*/
    "tr0",  "tr1",  "tr2",  "tr3",  "tr4",  "tr5",  "tr6",  "tr7",

    /* floating point state control register (32-bit) 76 */
    "fpscr",

    /* single precision floating point registers (32-bit) 77-140*/
    "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",
    "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
    "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
    "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
    "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
    "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
    "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
    "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",

    /* double precision registers (pseudo) 141-172 */
    "dr0",  "dr2",  "dr4",  "dr6",  "dr8",  "dr10", "dr12", "dr14",
    "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
    "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
    "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",

    /* floating point pairs (pseudo) 173-204*/
    "fp0",  "fp2",  "fp4",  "fp6",  "fp8",  "fp10", "fp12", "fp14",
    "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
    "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
    "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",

    /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
    "fv0",  "fv4",  "fv8",  "fv12", "fv16", "fv20", "fv24", "fv28",
    "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",

    /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
    "r0_c", "r1_c", "r2_c",  "r3_c",  "r4_c",  "r5_c",  "r6_c",  "r7_c",
    "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
    "pc_c",
    "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
    "fpscr_c", "fpul_c",
    "fr0_c", "fr1_c", "fr2_c",  "fr3_c",  "fr4_c",  "fr5_c",  "fr6_c",  "fr7_c",
    "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
    "dr0_c", "dr2_c", "dr4_c",  "dr6_c",  "dr8_c",  "dr10_c", "dr12_c", "dr14_c",
    "fv0_c", "fv4_c", "fv8_c",  "fv12_c",
    /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
  };

  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

#define NUM_PSEUDO_REGS_SH_MEDIA 80
#define NUM_PSEUDO_REGS_SH_COMPACT 51

static const unsigned char *
sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
  static unsigned char breakpoint[] =  {0xc3, 0xc3};
  
  *lenptr = sizeof (breakpoint);
  return breakpoint;
}

/* Macros and functions for setting and testing a bit in a minimal
   symbol that marks it as 32-bit function.  The MSB of the minimal
   symbol's "info" field is used for this purpose. This field is
   already being used to store the symbol size, so the assumption is
   that the symbol size cannot exceed 2^31.

   ELF_MAKE_MSYMBOL_SPECIAL
   tests whether an ELF symbol is "special", i.e. refers
   to a 32-bit function, and sets a "special" bit in a 
   minimal symbol to mark it as a 32-bit function
   MSYMBOL_IS_SPECIAL   tests the "special" bit in a minimal symbol
   MSYMBOL_SIZE         returns the size of the minimal symbol, i.e.
   the "info" field with the "special" bit masked out */

#define MSYMBOL_IS_SPECIAL(msym) \
  (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)

void
sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
{
  if (msym == NULL)
    return;

  if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
    {
      MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
      SYMBOL_VALUE_ADDRESS (msym) |= 1;
    }
}

/* ISA32 (shmedia) function addresses are odd (bit 0 is set).  Here
   are some macros to test, set, or clear bit 0 of addresses.  */
#define IS_ISA32_ADDR(addr)	 ((addr) & 1)
#define MAKE_ISA32_ADDR(addr)	 ((addr) | 1)
#define UNMAKE_ISA32_ADDR(addr)  ((addr) & ~1)

static int
pc_is_isa32 (bfd_vma memaddr)
{
  struct minimal_symbol *sym;

  /* If bit 0 of the address is set, assume this is a
     ISA32 (shmedia) address. */
  if (IS_ISA32_ADDR (memaddr))
    return 1;

  /* A flag indicating that this is a ISA32 function is stored by elfread.c in
     the high bit of the info field.  Use this to decide if the function is
     ISA16 or ISA32.  */
  sym = lookup_minimal_symbol_by_pc (memaddr);
  if (sym)
    return MSYMBOL_IS_SPECIAL (sym);
  else
    return 0;
}

static const unsigned char *
sh_sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  /* The BRK instruction for shmedia is 
     01101111 11110101 11111111 11110000
     which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
     and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */

  /* The BRK instruction for shcompact is
     00000000 00111011
     which translates in big endian mode to 0x0, 0x3b
     and in little endian mode to 0x3b, 0x0*/

  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      if (pc_is_isa32 (*pcptr))
	{
	  static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
	  *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
	  *lenptr = sizeof (big_breakpoint_media);
	  return big_breakpoint_media;
	}
      else
	{
	  static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
	  *lenptr = sizeof (big_breakpoint_compact);
	  return big_breakpoint_compact;
	}
    }
  else
    {
      if (pc_is_isa32 (*pcptr))
	{
	  static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
	  *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
	  *lenptr = sizeof (little_breakpoint_media);
	  return little_breakpoint_media;
	}
      else
	{
	  static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
	  *lenptr = sizeof (little_breakpoint_compact);
	  return little_breakpoint_compact;
	}
    }
}

/* Prologue looks like
   [mov.l       <regs>,@-r15]...
   [sts.l       pr,@-r15]
   [mov.l       r14,@-r15]
   [mov         r15,r14]

   Actually it can be more complicated than this.  For instance, with
   newer gcc's:

   mov.l   r14,@-r15
   add     #-12,r15
   mov     r15,r14
   mov     r4,r1
   mov     r5,r2
   mov.l   r6,@(4,r14)
   mov.l   r7,@(8,r14)
   mov.b   r1,@r14
   mov     r14,r1
   mov     r14,r1
   add     #2,r1
   mov.w   r2,@r1

 */

/* PTABS/L Rn, TRa       0110101111110001nnnnnnl00aaa0000 
   with l=1 and n = 18   0110101111110001010010100aaa0000 */
#define IS_PTABSL_R18(x)  (((x) & 0xffffff8f) == 0x6bf14a00)

/* STS.L PR,@-r0   0100000000100010
   r0-4-->r0, PR-->(r0) */
#define IS_STS_R0(x)  		((x) == 0x4022)

/* STS PR, Rm      0000mmmm00101010
   PR-->Rm */
#define IS_STS_PR(x)            (((x) & 0xf0ff) == 0x2a)

/* MOV.L Rm,@(disp,r15)  00011111mmmmdddd
   Rm-->(dispx4+r15) */
#define IS_MOV_TO_R15(x)              (((x) & 0xff00) == 0x1f00)

/* MOV.L R14,@(disp,r15)  000111111110dddd
   R14-->(dispx4+r15) */
#define IS_MOV_R14(x)              (((x) & 0xfff0) == 0x1fe0)

/* ST.Q R14, disp, R18    101011001110dddddddddd0100100000
   R18-->(dispx8+R14) */
#define IS_STQ_R18_R14(x)          (((x) & 0xfff003ff) == 0xace00120)

/* ST.Q R15, disp, R18    101011001111dddddddddd0100100000
   R18-->(dispx8+R15) */
#define IS_STQ_R18_R15(x)          (((x) & 0xfff003ff) == 0xacf00120)

/* ST.L R15, disp, R18    101010001111dddddddddd0100100000
   R18-->(dispx4+R15) */
#define IS_STL_R18_R15(x)          (((x) & 0xfff003ff) == 0xa8f00120)

/* ST.Q R15, disp, R14    1010 1100 1111 dddd dddd dd00 1110 0000
   R14-->(dispx8+R15) */
#define IS_STQ_R14_R15(x)          (((x) & 0xfff003ff) == 0xacf000e0)

/* ST.L R15, disp, R14    1010 1000 1111 dddd dddd dd00 1110 0000
   R14-->(dispx4+R15) */
#define IS_STL_R14_R15(x)          (((x) & 0xfff003ff) == 0xa8f000e0)

/* ADDI.L R15,imm,R15     1101 0100 1111 ssss ssss ss00 1111 0000
   R15 + imm --> R15 */
#define IS_ADDIL_SP_MEDIA(x)         (((x) & 0xfff003ff) == 0xd4f000f0)

/* ADDI R15,imm,R15     1101 0000 1111 ssss ssss ss00 1111 0000
   R15 + imm --> R15 */
#define IS_ADDI_SP_MEDIA(x)         (((x) & 0xfff003ff) == 0xd0f000f0)

/* ADD.L R15,R63,R14    0000 0000 1111 1000 1111 1100 1110 0000 
   R15 + R63 --> R14 */
#define IS_ADDL_SP_FP_MEDIA(x)  	((x) == 0x00f8fce0)

/* ADD R15,R63,R14    0000 0000 1111 1001 1111 1100 1110 0000 
   R15 + R63 --> R14 */
#define IS_ADD_SP_FP_MEDIA(x)  	((x) == 0x00f9fce0)

#define IS_MOV_SP_FP_MEDIA(x)  	(IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))

/* MOV #imm, R0    1110 0000 ssss ssss 
   #imm-->R0 */
#define IS_MOV_R0(x) 		(((x) & 0xff00) == 0xe000)

/* MOV.L @(disp,PC), R0    1101 0000 iiii iiii  */
#define IS_MOVL_R0(x) 		(((x) & 0xff00) == 0xd000)

/* ADD r15,r0      0011 0000 1111 1100
   r15+r0-->r0 */
#define IS_ADD_SP_R0(x)	        ((x) == 0x30fc)

/* MOV.L R14 @-R0  0010 0000 1110 0110
   R14-->(R0-4), R0-4-->R0 */
#define IS_MOV_R14_R0(x)        ((x) == 0x20e6)

/* ADD Rm,R63,Rn  Rm+R63-->Rn  0000 00mm mmmm 1001 1111 11nn nnnn 0000
   where Rm is one of r2-r9 which are the argument registers. */
/* FIXME: Recognize the float and double register moves too! */
#define IS_MEDIA_IND_ARG_MOV(x) \
((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))

/* ST.Q Rn,0,Rm  Rm-->Rn+0  1010 11nn nnnn 0000 0000 00mm mmmm 0000
   or ST.L Rn,0,Rm  Rm-->Rn+0  1010 10nn nnnn 0000 0000 00mm mmmm 0000
   where Rm is one of r2-r9 which are the argument registers. */
#define IS_MEDIA_ARG_MOV(x) \
(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
   && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))

/* ST.B R14,0,Rn     Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
/* ST.W R14,0,Rn     Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
/* ST.L R14,0,Rn     Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
/* FST.S R14,0,FRn   Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
/* FST.D R14,0,DRn   Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
#define IS_MEDIA_MOV_TO_R14(x)  \
((((x) & 0xfffffc0f) == 0xa0e00000) \
|| (((x) & 0xfffffc0f) == 0xa4e00000) \
|| (((x) & 0xfffffc0f) == 0xa8e00000) \
|| (((x) & 0xfffffc0f) == 0xb4e00000) \
|| (((x) & 0xfffffc0f) == 0xbce00000))

/* MOV Rm, Rn  Rm-->Rn 0110 nnnn mmmm 0011
   where Rm is r2-r9 */
#define IS_COMPACT_IND_ARG_MOV(x) \
((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))

/* compact direct arg move! 
   MOV.L Rn, @r14     0010 1110 mmmm 0010 */
#define IS_COMPACT_ARG_MOV(x) \
(((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))

/* MOV.B Rm, @R14     0010 1110 mmmm 0000 
   MOV.W Rm, @R14     0010 1110 mmmm 0001 */
#define IS_COMPACT_MOV_TO_R14(x) \
((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))

#define IS_JSR_R0(x)           ((x) == 0x400b)
#define IS_NOP(x)              ((x) == 0x0009)


/* STS.L PR,@-r15  0100111100100010
   r15-4-->r15, PR-->(r15) */
#define IS_STS(x)  		((x) == 0x4f22)

/* MOV.L Rm,@-r15  00101111mmmm0110
   r15-4-->r15, Rm-->(R15) */
#define IS_PUSH(x) 		(((x) & 0xff0f) == 0x2f06)

#define GET_PUSHED_REG(x)  	(((x) >> 4) & 0xf)

/* MOV r15,r14     0110111011110011
   r15-->r14  */
#define IS_MOV_SP_FP(x)  	((x) == 0x6ef3)

/* ADD #imm,r15    01111111iiiiiiii
   r15+imm-->r15 */
#define IS_ADD_SP(x) 		(((x) & 0xff00) == 0x7f00)

#define IS_MOV_R3(x) 		(((x) & 0xff00) == 0x1a00)
#define IS_SHLL_R3(x)		((x) == 0x4300)

/* ADD r3,r15      0011111100111100
   r15+r3-->r15 */
#define IS_ADD_R3SP(x)		((x) == 0x3f3c)

/* FMOV.S FRm,@-Rn  Rn-4-->Rn, FRm-->(Rn)     1111nnnnmmmm1011
   FMOV DRm,@-Rn    Rn-8-->Rn, DRm-->(Rn)     1111nnnnmmm01011
   FMOV XDm,@-Rn    Rn-8-->Rn, XDm-->(Rn)     1111nnnnmmm11011 */
#define IS_FMOV(x)		(((x) & 0xf00f) == 0xf00b)

/* MOV Rm,Rn            Rm-->Rn          0110nnnnmmmm0011 
   MOV.L Rm,@(disp,Rn)  Rm-->(dispx4+Rn) 0001nnnnmmmmdddd
   MOV.L Rm,@Rn         Rm-->(Rn)        0010nnnnmmmm0010
   where Rm is one of r4,r5,r6,r7 which are the argument registers. */
#define IS_ARG_MOV(x) \
(((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
 || ((((x) & 0xf000) == 0x1000) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
 || ((((x) & 0xf00f) == 0x2002) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)))

/* MOV.L Rm,@(disp,r14)  00011110mmmmdddd
   Rm-->(dispx4+r14) where Rm is one of r4,r5,r6,r7 */
#define IS_MOV_TO_R14(x) \
     ((((x) & 0xff00) == 0x1e) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070))
                        
#define FPSCR_SZ		(1 << 20)

/* Skip any prologue before the guts of a function */

/* Skip the prologue using the debug information. If this fails we'll
   fall back on the 'guess' method below. */
static CORE_ADDR
after_prologue (CORE_ADDR pc)
{
  struct symtab_and_line sal;
  CORE_ADDR func_addr, func_end;

  /* If we can not find the symbol in the partial symbol table, then
     there is no hope we can determine the function's start address
     with this code.  */
  if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    return 0;

  /* Get the line associated with FUNC_ADDR.  */
  sal = find_pc_line (func_addr, 0);

  /* There are only two cases to consider.  First, the end of the source line
     is within the function bounds.  In that case we return the end of the
     source line.  Second is the end of the source line extends beyond the
     bounds of the current function.  We need to use the slow code to
     examine instructions in that case.  */
  if (sal.end < func_end)
    return sal.end;
  else
    return 0;
}

/* Here we look at each instruction in the function, and try to guess
   where the prologue ends. Unfortunately this is not always 
   accurate. */
static CORE_ADDR
sh_skip_prologue_hard_way (CORE_ADDR start_pc)
{
  CORE_ADDR here, end;
  int updated_fp = 0;

  if (!start_pc)
    return 0;

  for (here = start_pc, end = start_pc + (2 * 28); here < end;)
    {
      int w = read_memory_integer (here, 2);
      here += 2;
      if (IS_FMOV (w) || IS_PUSH (w) || IS_STS (w) || IS_MOV_R3 (w)
	  || IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w) 
	  || IS_ARG_MOV (w) || IS_MOV_TO_R14 (w))
	{
	  start_pc = here;
	}
      else if (IS_MOV_SP_FP (w))
	{
	  start_pc = here;
	  updated_fp = 1;
	}
      else
	/* Don't bail out yet, if we are before the copy of sp. */
	if (updated_fp)
	  break;
    }

  return start_pc;
}

static CORE_ADDR 
look_for_args_moves (CORE_ADDR start_pc, int media_mode)
{
  CORE_ADDR here, end;
  int w;
  int insn_size = (media_mode ? 4 : 2);

  for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
    {
      if (media_mode)
	{
	  w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
	  here += insn_size;
	  if (IS_MEDIA_IND_ARG_MOV (w))
	    {
	      /* This must be followed by a store to r14, so the argument
		 is where the debug info says it is. This can happen after
		 the SP has been saved, unfortunately. */
	 
	      int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
						   insn_size);
	      here += insn_size;
	      if (IS_MEDIA_MOV_TO_R14 (next_insn))
		start_pc = here;	  
	    }
	  else if (IS_MEDIA_ARG_MOV (w))
	    {
	      /* These instructions store directly the argument in r14. */
	      start_pc = here;
	    }
	  else
	    break;
	}
      else
	{
	  w = read_memory_integer (here, insn_size);
	  w = w & 0xffff;
	  here += insn_size;
	  if (IS_COMPACT_IND_ARG_MOV (w))
	    {
	      /* This must be followed by a store to r14, so the argument
		 is where the debug info says it is. This can happen after
		 the SP has been saved, unfortunately. */
	 
	      int next_insn = 0xffff & read_memory_integer (here, insn_size);
	      here += insn_size;
	      if (IS_COMPACT_MOV_TO_R14 (next_insn))
		start_pc = here;
	    }
	  else if (IS_COMPACT_ARG_MOV (w))
	    {
	      /* These instructions store directly the argument in r14. */
	      start_pc = here;
	    }
	  else if (IS_MOVL_R0 (w))
	    {
	      /* There is a function that gcc calls to get the arguments
		 passed correctly to the function. Only after this
		 function call the arguments will be found at the place
		 where they are supposed to be. This happens in case the
		 argument has to be stored into a 64-bit register (for
		 instance doubles, long longs).  SHcompact doesn't have
		 access to the full 64-bits, so we store the register in
		 stack slot and store the address of the stack slot in
		 the register, then do a call through a wrapper that
		 loads the memory value into the register.  A SHcompact
		 callee calls an argument decoder
		 (GCC_shcompact_incoming_args) that stores the 64-bit
		 value in a stack slot and stores the address of the
		 stack slot in the register.  GCC thinks the argument is
		 just passed by transparent reference, but this is only
		 true after the argument decoder is called. Such a call
		 needs to be considered part of the prologue. */

	      /* This must be followed by a JSR @r0 instruction and by
                 a NOP instruction. After these, the prologue is over!  */
	 
	      int next_insn = 0xffff & read_memory_integer (here, insn_size);
	      here += insn_size;
	      if (IS_JSR_R0 (next_insn))
		{
		  next_insn = 0xffff & read_memory_integer (here, insn_size);
		  here += insn_size;

		  if (IS_NOP (next_insn))
		    start_pc = here;
		}
	    }
	  else
	    break;
	}
    }

  return start_pc;
}

static CORE_ADDR
sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
{
  CORE_ADDR here, end;
  int updated_fp = 0;
  int insn_size = 4;
  int media_mode = 1;

  if (!start_pc)
    return 0;

  if (pc_is_isa32 (start_pc) == 0)
    {
      insn_size = 2;
      media_mode = 0;
    }

  for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
    {

      if (media_mode)
	{
	  int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
	  here += insn_size;
	  if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
	      || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
	      || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
	    {
	      start_pc = here;
	    }
	  else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
	    {
	      start_pc = here;
	      updated_fp = 1;
	    }
	  else
	    if (updated_fp)
	      {
		/* Don't bail out yet, we may have arguments stored in
		   registers here, according to the debug info, so that
		   gdb can print the frames correctly. */
		start_pc = look_for_args_moves (here - insn_size, media_mode);
		break;
	      }
	}
      else
	{
	  int w = 0xffff & read_memory_integer (here, insn_size);
	  here += insn_size;

	  if (IS_STS_R0 (w) || IS_STS_PR (w)
	      || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w) 
	      || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
	    {
	      start_pc = here;
	    }
	  else if (IS_MOV_SP_FP (w))
	    {
	      start_pc = here;
	      updated_fp = 1;
	    }
	  else
	    if (updated_fp)
	      {
		/* Don't bail out yet, we may have arguments stored in
		   registers here, according to the debug info, so that
		   gdb can print the frames correctly. */
		start_pc = look_for_args_moves (here - insn_size, media_mode);
		break;
	      }
	}
    }

  return start_pc;
}

static CORE_ADDR
sh_skip_prologue (CORE_ADDR pc)
{
  CORE_ADDR post_prologue_pc;

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */
  post_prologue_pc = after_prologue (pc);

  /* If after_prologue returned a useful address, then use it.  Else
     fall back on the instruction skipping code. */
  if (post_prologue_pc != 0)
    return max (pc, post_prologue_pc);
  else
    return (skip_prologue_hard_way (pc));
}

/* Immediately after a function call, return the saved pc.
   Can't always go through the frames for this because on some machines
   the new frame is not set up until the new function executes
   some instructions.

   The return address is the value saved in the PR register + 4  */
static CORE_ADDR
sh_saved_pc_after_call (struct frame_info *frame)
{
  return (ADDR_BITS_REMOVE (read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM)));
}

/* Should call_function allocate stack space for a struct return?  */
static int
sh_use_struct_convention (int gcc_p, struct type *type)
{
#if 0
  return (TYPE_LENGTH (type) > 1);
#else
  int len = TYPE_LENGTH (type);
  int nelem = TYPE_NFIELDS (type);
  return ((len != 1 && len != 2 && len != 4 && len != 8) || nelem != 1) &&
	  (len != 8 || TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) != 4);
#endif
}

static int
sh64_use_struct_convention (int gcc_p, struct type *type)
{
  return (TYPE_LENGTH (type) > 8);
}

/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function.

   We store structs through a pointer passed in R2 */
static void
sh_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  write_register (STRUCT_RETURN_REGNUM, (addr));
}

/* Disassemble an instruction.  */
static int
gdb_print_insn_sh (bfd_vma memaddr, disassemble_info *info)
{
  info->endian = TARGET_BYTE_ORDER;
  return print_insn_sh (memaddr, info);
}

/* Given a GDB frame, determine the address of the calling function's
   frame.  This will be used to create a new GDB frame struct, and
   then INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be
   called for the new frame.

   For us, the frame address is its stack pointer value, so we look up
   the function prologue to determine the caller's sp value, and return it.  */
static CORE_ADDR
sh_frame_chain (struct frame_info *frame)
{
  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), frame->frame, frame->frame))
    return frame->frame;	/* dummy frame same as caller's frame */
  if (get_frame_pc (frame) && !inside_entry_file (get_frame_pc (frame)))
    return read_memory_integer (get_frame_base (frame) + frame->extra_info->f_offset, 4);
  else
    return 0;
}

/* Given a register number RN as it appears in an assembly
   instruction, find the corresponding register number in the GDB
   scheme. */
static int 
translate_insn_rn (int rn, int media_mode)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  /* FIXME: this assumes that the number rn is for a not pseudo
     register only. */
  if (media_mode)
    return rn;
  else
    {
      /* These registers don't have a corresponding compact one. */
      /* FIXME: This is probably not enough. */
#if 0
      if ((rn >= 16 && rn <= 63) || (rn >= 93 && rn <= 140))
	return rn;
#endif
      if (rn >= 0 && rn <= tdep->R0_C_REGNUM)
	return tdep->R0_C_REGNUM + rn;
      else
	return rn;
    }
}

static CORE_ADDR
sh64_frame_chain (struct frame_info *frame)
{
  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), frame->frame, frame->frame))
    return frame->frame;	/* dummy frame same as caller's frame */
  if (get_frame_pc (frame) && !inside_entry_file (get_frame_pc (frame)))
    {
      int media_mode = pc_is_isa32 (get_frame_pc (frame));
      int size;
      if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32)
	size = 4;
      else
	size = REGISTER_RAW_SIZE (translate_insn_rn (FP_REGNUM, media_mode));
      return read_memory_integer (get_frame_base (frame) + frame->extra_info->f_offset, size);
    }
  else
    return 0;
}

/* Find REGNUM on the stack.  Otherwise, it's in an active register.  One thing
   we might want to do here is to check REGNUM against the clobber mask, and
   somehow flag it as invalid if it isn't saved on the stack somewhere.  This
   would provide a graceful failure mode when trying to get the value of
   caller-saves registers for an inner frame.  */
static CORE_ADDR
sh_find_callers_reg (struct frame_info *fi, int regnum)
{
  for (; fi; fi = fi->next)
    if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
      /* When the caller requests PR from the dummy frame, we return PC because
         that's where the previous routine appears to have done a call from. */
      return deprecated_read_register_dummy (get_frame_pc (fi), fi->frame, regnum);
    else
      {
	FRAME_INIT_SAVED_REGS (fi);
	if (!get_frame_pc (fi))
	  return 0;
	if (fi->saved_regs[regnum] != 0)
	  return read_memory_integer (fi->saved_regs[regnum],
				      REGISTER_RAW_SIZE (regnum));
      }
  return read_register (regnum);
}

static CORE_ADDR
sh64_get_saved_pr (struct frame_info *fi, int pr_regnum)
{
  int media_mode = 0;

  for (; fi; fi = fi->next)
    if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
      /* When the caller requests PR from the dummy frame, we return PC because
         that's where the previous routine appears to have done a call from. */
      return deprecated_read_register_dummy (get_frame_pc (fi), fi->frame, pr_regnum);
    else
      {
	FRAME_INIT_SAVED_REGS (fi);
	if (!get_frame_pc (fi))
	  return 0;

	media_mode = pc_is_isa32 (get_frame_pc (fi));

	if (fi->saved_regs[pr_regnum] != 0)
	  {
	    int gdb_reg_num = translate_insn_rn (pr_regnum, media_mode);
	    int size = ((gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32)
			? 4
			: REGISTER_RAW_SIZE (gdb_reg_num));
	    return read_memory_integer (fi->saved_regs[pr_regnum], size);
	  }
      }
  return read_register (pr_regnum);
}

/* Put here the code to store, into a struct frame_saved_regs, the
   addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special: the address we
   return for it IS the sp for the next frame. */
static void
sh_nofp_frame_init_saved_regs (struct frame_info *fi)
{
  int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof(int));
  int rn;
  int have_fp = 0;
  int depth;
  int pc;
  int opc;
  int insn;
  int r3_val = 0;
  char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi), fi->frame);
  
  if (fi->saved_regs == NULL)
    frame_saved_regs_zalloc (fi);
  else
    memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
  
  if (dummy_regs)
    {
      /* DANGER!  This is ONLY going to work if the char buffer format of
         the saved registers is byte-for-byte identical to the 
         CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
      memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
      return;
    }

  fi->extra_info->leaf_function = 1;
  fi->extra_info->f_offset = 0;

  for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
    where[rn] = -1;

  depth = 0;

  /* Loop around examining the prologue insns until we find something
     that does not appear to be part of the prologue.  But give up
     after 20 of them, since we're getting silly then. */

  pc = get_pc_function_start (get_frame_pc (fi));
  if (!pc)
    {
      deprecated_update_frame_pc_hack (fi, 0);
      return;
    }

  for (opc = pc + (2 * 28); pc < opc; pc += 2)
    {
      insn = read_memory_integer (pc, 2);
      /* See where the registers will be saved to */
      if (IS_PUSH (insn))
	{
	  rn = GET_PUSHED_REG (insn);
	  where[rn] = depth;
	  depth += 4;
	}
      else if (IS_STS (insn))
	{
	  where[gdbarch_tdep (current_gdbarch)->PR_REGNUM] = depth;
	  /* If we're storing the pr then this isn't a leaf */
	  fi->extra_info->leaf_function = 0;
	  depth += 4;
	}
      else if (IS_MOV_R3 (insn))
	{
	  r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
	}
      else if (IS_SHLL_R3 (insn))
	{
	  r3_val <<= 1;
	}
      else if (IS_ADD_R3SP (insn))
	{
	  depth += -r3_val;
	}
      else if (IS_ADD_SP (insn))
	{
	  depth -= ((insn & 0xff) ^ 0x80) - 0x80;
	}
      else if (IS_MOV_SP_FP (insn))
	break;
#if 0 /* This used to just stop when it found an instruction that
	 was not considered part of the prologue.  Now, we just
	 keep going looking for likely instructions. */
      else
	break;
#endif
    }

  /* Now we know how deep things are, we can work out their addresses */

  for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
    {
      if (where[rn] >= 0)
	{
	  if (rn == FP_REGNUM)
	    have_fp = 1;

	  fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
	}
      else
	{
	  fi->saved_regs[rn] = 0;
	}
    }

  if (have_fp)
    {
      fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
    }
  else
    {
      fi->saved_regs[SP_REGNUM] = fi->frame - 4;
    }

  fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
  /* Work out the return pc - either from the saved pr or the pr
     value */
}

/* For vectors of 4 floating point registers. */
static int
fv_reg_base_num (int fv_regnum)
{
  int fp_regnum;

  fp_regnum = FP0_REGNUM + 
    (fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM) * 4;
  return fp_regnum;
}

/* For double precision floating point registers, i.e 2 fp regs.*/
static int
dr_reg_base_num (int dr_regnum)
{
  int fp_regnum;

  fp_regnum = FP0_REGNUM + 
    (dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM) * 2;
  return fp_regnum;
}

/* For pairs of floating point registers */
static int
fpp_reg_base_num (int fpp_regnum)
{
  int fp_regnum;

  fp_regnum = FP0_REGNUM + 
    (fpp_regnum - gdbarch_tdep (current_gdbarch)->FPP0_REGNUM) * 2;
  return fp_regnum;
}

static int
is_media_pseudo (int rn)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  return (rn >= tdep->DR0_REGNUM 
	  && rn <= tdep->FV_LAST_REGNUM);
}

int
sh64_get_gdb_regnum (int gcc_regnum, CORE_ADDR pc)
{
  return translate_insn_rn (gcc_regnum, pc_is_isa32 (pc));
}

static int
sh64_media_reg_base_num (int reg_nr)
{
  int base_regnum = -1;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if (reg_nr >= tdep->DR0_REGNUM
      && reg_nr <= tdep->DR_LAST_REGNUM)
    base_regnum = dr_reg_base_num (reg_nr);

  else if (reg_nr >= tdep->FPP0_REGNUM 
	   && reg_nr <= tdep->FPP_LAST_REGNUM)
    base_regnum = fpp_reg_base_num (reg_nr);

  else if (reg_nr >= tdep->FV0_REGNUM
	   && reg_nr <= tdep->FV_LAST_REGNUM)
    base_regnum = fv_reg_base_num (reg_nr);

  return base_regnum;
}

/* *INDENT-OFF* */
/*
    SH COMPACT MODE (ISA 16) (all pseudo) 221-272
       GDB_REGNUM  BASE_REGNUM
 r0_c       221      0
 r1_c       222      1
 r2_c       223      2
 r3_c       224      3
 r4_c       225      4
 r5_c       226      5
 r6_c       227      6
 r7_c       228      7
 r8_c       229      8
 r9_c       230      9
 r10_c      231      10
 r11_c      232      11
 r12_c      233      12
 r13_c      234      13
 r14_c      235      14
 r15_c      236      15

 pc_c       237      64
 gbr_c      238      16
 mach_c     239      17
 macl_c     240      17
 pr_c       241      18
 t_c        242      19
 fpscr_c    243      76
 fpul_c     244      109

 fr0_c      245      77
 fr1_c      246      78
 fr2_c      247      79
 fr3_c      248      80
 fr4_c      249      81
 fr5_c      250      82
 fr6_c      251      83
 fr7_c      252      84
 fr8_c      253      85
 fr9_c      254      86
 fr10_c     255      87
 fr11_c     256      88
 fr12_c     257      89
 fr13_c     258      90
 fr14_c     259      91
 fr15_c     260      92

 dr0_c      261      77
 dr2_c      262      79
 dr4_c      263      81
 dr6_c      264      83
 dr8_c      265      85
 dr10_c     266      87
 dr12_c     267      89
 dr14_c     268      91

 fv0_c      269      77
 fv4_c      270      81
 fv8_c      271      85
 fv12_c     272      91
*/
/* *INDENT-ON* */
static int
sh64_compact_reg_base_num (int reg_nr)
{
  int base_regnum = -1;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  /* general register N maps to general register N */
  if (reg_nr >= tdep->R0_C_REGNUM 
      && reg_nr <= tdep->R_LAST_C_REGNUM)
    base_regnum = reg_nr - tdep->R0_C_REGNUM;

  /* floating point register N maps to floating point register N */
  else if (reg_nr >= tdep->FP0_C_REGNUM 
	    && reg_nr <= tdep->FP_LAST_C_REGNUM)
    base_regnum = reg_nr - tdep->FP0_C_REGNUM + FP0_REGNUM;

  /* double prec register N maps to base regnum for double prec register N */
  else if (reg_nr >= tdep->DR0_C_REGNUM 
	    && reg_nr <= tdep->DR_LAST_C_REGNUM)
    base_regnum = dr_reg_base_num (tdep->DR0_REGNUM
				   + reg_nr - tdep->DR0_C_REGNUM);

  /* vector N maps to base regnum for vector register N */
  else if (reg_nr >= tdep->FV0_C_REGNUM 
	    && reg_nr <= tdep->FV_LAST_C_REGNUM)
    base_regnum = fv_reg_base_num (tdep->FV0_REGNUM
				   + reg_nr - tdep->FV0_C_REGNUM);

  else if (reg_nr == tdep->PC_C_REGNUM)
    base_regnum = PC_REGNUM;

  else if (reg_nr == tdep->GBR_C_REGNUM) 
    base_regnum = 16;

  else if (reg_nr == tdep->MACH_C_REGNUM
	   || reg_nr == tdep->MACL_C_REGNUM)
    base_regnum = 17;

  else if (reg_nr == tdep->PR_C_REGNUM) 
    base_regnum = 18;

  else if (reg_nr == tdep->T_C_REGNUM) 
    base_regnum = 19;

  else if (reg_nr == tdep->FPSCR_C_REGNUM) 
    base_regnum = tdep->FPSCR_REGNUM; /*???? this register is a mess. */

  else if (reg_nr == tdep->FPUL_C_REGNUM) 
    base_regnum = FP0_REGNUM + 32;
  
  return base_regnum;
}

/* Given a register number RN (according to the gdb scheme) , return
   its corresponding architectural register.  In media mode, only a
   subset of the registers is pseudo registers. For compact mode, all
   the registers are pseudo. */
static int 
translate_rn_to_arch_reg_num (int rn, int media_mode)
{

  if (media_mode)
    {
      if (!is_media_pseudo (rn))
	return rn;
      else
	return sh64_media_reg_base_num (rn);
    }
  else
    /* All compact registers are pseudo. */
    return sh64_compact_reg_base_num (rn);
}

static int
sign_extend (int value, int bits)
{
  value = value & ((1 << bits) - 1);
  return (value & (1 << (bits - 1))
	  ? value | (~((1 << bits) - 1))
	  : value);
}

static void
sh64_nofp_frame_init_saved_regs (struct frame_info *fi)
{
  int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof (int));
  int rn;
  int have_fp = 0;
  int fp_regnum;
  int sp_regnum;
  int depth;
  int pc;
  int opc;
  int insn;
  int r0_val = 0;
  int media_mode = 0;
  int insn_size;
  int gdb_register_number;
  int register_number;
  char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi), fi->frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 
  
  if (fi->saved_regs == NULL)
    frame_saved_regs_zalloc (fi);
  else
    memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
  
  if (dummy_regs)
    {
      /* DANGER!  This is ONLY going to work if the char buffer format of
         the saved registers is byte-for-byte identical to the 
         CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
      memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
      return;
    }

  fi->extra_info->leaf_function = 1;
  fi->extra_info->f_offset = 0;

  for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
    where[rn] = -1;

  depth = 0;

  /* Loop around examining the prologue insns until we find something
     that does not appear to be part of the prologue.  But give up
     after 20 of them, since we're getting silly then. */

  pc = get_pc_function_start (get_frame_pc (fi));
  if (!pc)
    {
      deprecated_update_frame_pc_hack (fi, 0);
      return;
    }

  if (pc_is_isa32 (pc))
    {
      media_mode = 1;
      insn_size = 4;
    }
  else
    {
      media_mode = 0;
      insn_size = 2;
    }

 /* The frame pointer register is general register 14 in shmedia and
    shcompact modes. In sh compact it is a pseudo register.  Same goes
    for the stack pointer register, which is register 15. */
  fp_regnum = translate_insn_rn (FP_REGNUM, media_mode);
  sp_regnum = translate_insn_rn (SP_REGNUM, media_mode);

  for (opc = pc + (insn_size * 28); pc < opc; pc += insn_size)
    {
      insn = read_memory_integer (media_mode ? UNMAKE_ISA32_ADDR (pc) : pc,
				  insn_size);

      if (media_mode == 0)
	{
	  if (IS_STS_PR (insn))
	    {
	      int next_insn = read_memory_integer (pc + insn_size, insn_size);
	      if (IS_MOV_TO_R15 (next_insn))
		{
		  int reg_nr = tdep->PR_C_REGNUM;

		  where[reg_nr] = depth - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
		  fi->extra_info->leaf_function = 0;
		  pc += insn_size;
		}
	    }
	  else if (IS_MOV_R14 (insn))
	    {
	      where[fp_regnum] = depth - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
	    }

	  else if (IS_MOV_R0 (insn))
	    {
	      /* Put in R0 the offset from SP at which to store some
		 registers. We are interested in this value, because it
		 will tell us where the given registers are stored within
		 the frame.  */
	      r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
	    }
	  else if (IS_ADD_SP_R0 (insn))
	    {
	      /* This instruction still prepares r0, but we don't care.
		 We already have the offset in r0_val. */
	    }
	  else if (IS_STS_R0 (insn))
	    {
	      /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
	      int reg_nr = tdep->PR_C_REGNUM;
	      where[reg_nr] = depth - (r0_val - 4);
	      r0_val -= 4;
	      fi->extra_info->leaf_function = 0;
	    }
	  else if (IS_MOV_R14_R0 (insn))
	    {
	      /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
	      where[fp_regnum] = depth - (r0_val - 4);
	      r0_val -= 4;
	    }

	  else if (IS_ADD_SP (insn))
	    {
	      depth -= ((insn & 0xff) ^ 0x80) - 0x80;
	    }
	  else if (IS_MOV_SP_FP (insn))
	    break;
	}
      else
	{
	  if (IS_ADDIL_SP_MEDIA (insn) 
	      || IS_ADDI_SP_MEDIA (insn))
	    {
	      depth -= sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
	    }

	  else if (IS_STQ_R18_R15 (insn))
	    {
	      where[tdep->PR_REGNUM] = 
		depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
	      fi->extra_info->leaf_function = 0;
	    }

	  else if (IS_STL_R18_R15 (insn))
	    {
	      where[tdep->PR_REGNUM] = 
		depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
	      fi->extra_info->leaf_function = 0;
	    }

	  else if (IS_STQ_R14_R15 (insn))
	    {
	      where[fp_regnum] = depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
	    }

	  else if (IS_STL_R14_R15 (insn))
	    {
	      where[fp_regnum] = depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
	    }

	  else if (IS_MOV_SP_FP_MEDIA (insn))
	    break;
	}
    }

  /* Now we know how deep things are, we can work out their addresses. */
  for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
    {
      register_number = translate_rn_to_arch_reg_num (rn, media_mode);

      if (where[rn] >= 0)
	{
	  if (rn == fp_regnum)
	    have_fp = 1;

	  /* Watch out! saved_regs is only for the real registers, and
	     doesn't include space for the pseudo registers. */
	  fi->saved_regs[register_number]= fi->frame - where[rn] + depth; 
	    
	} 
      else 
	fi->saved_regs[register_number] = 0; 
    }

  if (have_fp)
    {
      /* SP_REGNUM is 15. For shmedia 15 is the real register. For
	 shcompact 15 is the arch register corresponding to the pseudo
	 register r15 which still is the SP register. */
      /* The place on the stack where fp is stored contains the sp of
         the caller. */
      /* Again, saved_registers contains only space for the real registers,
	 so we store in FP_REGNUM position. */
      int size;
      if (tdep->sh_abi == SH_ABI_32)
	size = 4;
      else
	size = REGISTER_RAW_SIZE (fp_regnum);
      fi->saved_regs[sp_regnum] = read_memory_integer (fi->saved_regs[fp_regnum], size);
    }
  else
    fi->saved_regs[sp_regnum] = fi->frame;

  fi->extra_info->f_offset = depth - where[fp_regnum]; 
}

static void
sh_fp_frame_init_saved_regs (struct frame_info *fi)
{
  int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof (int));
  int rn;
  int have_fp = 0;
  int depth;
  int pc;
  int opc;
  int insn;
  int r3_val = 0;
  char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi), fi->frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 
  
  if (fi->saved_regs == NULL)
    frame_saved_regs_zalloc (fi);
  else
    memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
  
  if (dummy_regs)
    {
      /* DANGER!  This is ONLY going to work if the char buffer format of
         the saved registers is byte-for-byte identical to the 
         CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
      memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
      return;
    }

  fi->extra_info->leaf_function = 1;
  fi->extra_info->f_offset = 0;

  for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
    where[rn] = -1;

  depth = 0;

  /* Loop around examining the prologue insns until we find something
     that does not appear to be part of the prologue.  But give up
     after 20 of them, since we're getting silly then. */

  pc = get_pc_function_start (get_frame_pc (fi));
  if (!pc)
    {
      deprecated_update_frame_pc_hack (fi, 0);
      return;
    }

  for (opc = pc + (2 * 28); pc < opc; pc += 2)
    {
      insn = read_memory_integer (pc, 2);
      /* See where the registers will be saved to */
      if (IS_PUSH (insn))
	{
	  rn = GET_PUSHED_REG (insn);
	  where[rn] = depth;
	  depth += 4;
	}
      else if (IS_STS (insn))
	{
	  where[tdep->PR_REGNUM] = depth;
	  /* If we're storing the pr then this isn't a leaf */
	  fi->extra_info->leaf_function = 0;
	  depth += 4;
	}
      else if (IS_MOV_R3 (insn))
	{
	  r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
	}
      else if (IS_SHLL_R3 (insn))
	{
	  r3_val <<= 1;
	}
      else if (IS_ADD_R3SP (insn))
	{
	  depth += -r3_val;
	}
      else if (IS_ADD_SP (insn))
	{
	  depth -= ((insn & 0xff) ^ 0x80) - 0x80;
	}
      else if (IS_FMOV (insn))
	{
	  if (read_register (tdep->FPSCR_REGNUM) & FPSCR_SZ)
	    {
	      depth += 8;
	    }
	  else
	    {
	      depth += 4;
	    }
	}
      else if (IS_MOV_SP_FP (insn))
	break;
#if 0 /* This used to just stop when it found an instruction that
	 was not considered part of the prologue.  Now, we just
	 keep going looking for likely instructions. */
      else
	break;
#endif
    }

  /* Now we know how deep things are, we can work out their addresses */

  for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
    {
      if (where[rn] >= 0)
	{
	  if (rn == FP_REGNUM)
	    have_fp = 1;

	  fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
	}
      else
	{
	  fi->saved_regs[rn] = 0;
	}
    }

  if (have_fp)
    {
      fi->saved_regs[SP_REGNUM] =
	read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
    }
  else
    {
      fi->saved_regs[SP_REGNUM] = fi->frame - 4;
    }

  fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
  /* Work out the return pc - either from the saved pr or the pr
     value */
}

/* Initialize the extra info saved in a FRAME */
static void
sh_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{

  fi->extra_info = (struct frame_extra_info *)
    frame_obstack_alloc (sizeof (struct frame_extra_info));

  if (fi->next)
    deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (fi->next));

  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
    {
      /* We need to setup fi->frame here because run_stack_dummy gets it wrong
         by assuming it's always FP.  */
      deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), fi->frame,
									     SP_REGNUM));
      fi->extra_info->return_pc = deprecated_read_register_dummy (get_frame_pc (fi),
								  fi->frame,
								  PC_REGNUM);
      fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4);
      fi->extra_info->leaf_function = 0;
      return;
    }
  else
    {
      FRAME_INIT_SAVED_REGS (fi);
      fi->extra_info->return_pc = 
	sh_find_callers_reg (fi, gdbarch_tdep (current_gdbarch)->PR_REGNUM);
    }
}

static void
sh64_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
  int media_mode = pc_is_isa32 (get_frame_pc (fi));

  fi->extra_info = (struct frame_extra_info *)
    frame_obstack_alloc (sizeof (struct frame_extra_info));

  if (fi->next) 
    deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (fi->next));

  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
    {
      /* We need to setup fi->frame here because run_stack_dummy gets it wrong
         by assuming it's always FP.  */
      deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), fi->frame,
									     SP_REGNUM));
      fi->extra_info->return_pc = 
	deprecated_read_register_dummy (get_frame_pc (fi), fi->frame, PC_REGNUM);
      fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4);
      fi->extra_info->leaf_function = 0;
      return;
    }
  else
    {
      FRAME_INIT_SAVED_REGS (fi);
      fi->extra_info->return_pc =
	sh64_get_saved_pr (fi, gdbarch_tdep (current_gdbarch)->PR_REGNUM);
    }
}

void
sh64_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
			 struct frame_info *frame, int regnum,
			 enum lval_type *lval)
{
  int media_mode;
  int live_regnum = regnum;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if (!target_has_registers)
    error ("No registers.");

  /* Normal systems don't optimize out things with register numbers.  */
  if (optimized != NULL)
    *optimized = 0;

  if (addrp)			/* default assumption: not found in memory */
    *addrp = 0;

  if (raw_buffer)
    memset (raw_buffer, 0, sizeof (raw_buffer));

  /* We must do this here, before the following while loop changes
     frame, and makes it NULL. If this is a media register number,
     but we are in compact mode, it will become the corresponding 
     compact pseudo register. If there is no corresponding compact 
     pseudo-register what do we do?*/
  media_mode = pc_is_isa32 (get_frame_pc (frame));
  live_regnum = translate_insn_rn (regnum, media_mode);

  /* Note: since the current frame's registers could only have been
     saved by frames INTERIOR TO the current frame, we skip examining
     the current frame itself: otherwise, we would be getting the
     previous frame's registers which were saved by the current frame.  */

  while (frame && ((frame = frame->next) != NULL))
    {
      if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), frame->frame, frame->frame))
	{
	  if (lval)		/* found it in a CALL_DUMMY frame */
	    *lval = not_lval;
	  if (raw_buffer)
	    memcpy (raw_buffer,
		    (deprecated_generic_find_dummy_frame (get_frame_pc (frame), frame->frame)
		     + REGISTER_BYTE (regnum)),
		    REGISTER_RAW_SIZE (regnum));
	  return;
	}

      FRAME_INIT_SAVED_REGS (frame);
      if (frame->saved_regs != NULL
	  && frame->saved_regs[regnum] != 0)
	{
	  if (lval)		/* found it saved on the stack */
	    *lval = lval_memory;
	  if (regnum == SP_REGNUM)
	    {
	      if (raw_buffer)	/* SP register treated specially */
		store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
			       frame->saved_regs[regnum]);
	    }
	  else
	    { /* any other register */
	      
	      if (addrp)
		*addrp = frame->saved_regs[regnum];
	      if (raw_buffer)
		{
		  int size;
		  if (tdep->sh_abi == SH_ABI_32
		      && (live_regnum == FP_REGNUM
			  || live_regnum == tdep->PR_REGNUM))
		    size = 4;
		  else
		    size = REGISTER_RAW_SIZE (live_regnum);
		  if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
		    read_memory (frame->saved_regs[regnum], raw_buffer, size);
		  else
		    read_memory (frame->saved_regs[regnum],
				 raw_buffer
				 + REGISTER_RAW_SIZE (live_regnum)
				 - size,
				 size);
		}
	    }
	  return;
	}
    }

  /* If we get thru the loop to this point, it means the register was
     not saved in any frame.  Return the actual live-register value.  */

  if (lval)			/* found it in a live register */
    *lval = lval_register;
  if (addrp)
    *addrp = REGISTER_BYTE (live_regnum);
  if (raw_buffer)
    deprecated_read_register_gen (live_regnum, raw_buffer);
}

/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   as a CORE_ADDR (or an expression that can be used as one).  */
static CORE_ADDR
sh_extract_struct_value_address (char *regbuf)
{
  return (extract_address ((regbuf), REGISTER_RAW_SIZE (0)));
}

static CORE_ADDR
sh64_extract_struct_value_address (char *regbuf)
{
  return (extract_address ((regbuf + REGISTER_BYTE (STRUCT_RETURN_REGNUM)), 
			   REGISTER_RAW_SIZE (STRUCT_RETURN_REGNUM)));
}

static CORE_ADDR
sh_frame_saved_pc (struct frame_info *frame)
{
  return ((frame)->extra_info->return_pc);
}

/* Discard from the stack the innermost frame,
   restoring all saved registers.  */
static void
sh_pop_frame (void)
{
  register struct frame_info *frame = get_current_frame ();
  register CORE_ADDR fp;
  register int regnum;

  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), frame->frame, frame->frame))
    generic_pop_dummy_frame ();
  else
    {
      fp = get_frame_base (frame);
      FRAME_INIT_SAVED_REGS (frame);

      /* Copy regs from where they were saved in the frame */
      for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
	if (frame->saved_regs[regnum])
	  write_register (regnum,
			  read_memory_integer (frame->saved_regs[regnum], 4));

      write_register (PC_REGNUM, frame->extra_info->return_pc);
      write_register (SP_REGNUM, fp + 4);
    }
  flush_cached_frames ();
}

/* Used in the 'return' command. */
static void
sh64_pop_frame (void)
{
  register struct frame_info *frame = get_current_frame ();
  register CORE_ADDR fp;
  register int regnum;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  int media_mode = pc_is_isa32 (get_frame_pc (frame));

  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), frame->frame, frame->frame))
    generic_pop_dummy_frame ();
  else
    {
      fp = get_frame_base (frame);
      FRAME_INIT_SAVED_REGS (frame);

      /* Copy regs from where they were saved in the frame */
      for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
	if (frame->saved_regs[regnum])
	  {
	    int size;
	    if (tdep->sh_abi == SH_ABI_32
		&& (regnum == FP_REGNUM
		    || regnum ==  tdep->PR_REGNUM))
	      size = 4;
	    else
	      size = REGISTER_RAW_SIZE (translate_insn_rn (regnum,
							   media_mode));
	    write_register (regnum,
			    read_memory_integer (frame->saved_regs[regnum],
						 size));
	  }

      write_register (PC_REGNUM, frame->extra_info->return_pc);
      write_register (SP_REGNUM, fp + 8);
    }
  flush_cached_frames ();
}

/* Function: push_arguments
   Setup the function arguments for calling a function in the inferior.

   On the Hitachi SH architecture, there are four registers (R4 to R7)
   which are dedicated for passing function arguments.  Up to the first
   four arguments (depending on size) may go into these registers.
   The rest go on the stack.

   Arguments that are smaller than 4 bytes will still take up a whole
   register or a whole 32-bit word on the stack, and will be 
   right-justified in the register or the stack word.  This includes
   chars, shorts, and small aggregate types.

   Arguments that are larger than 4 bytes may be split between two or 
   more registers.  If there are not enough registers free, an argument
   may be passed partly in a register (or registers), and partly on the
   stack.  This includes doubles, long longs, and larger aggregates. 
   As far as I know, there is no upper limit to the size of aggregates 
   that will be passed in this way; in other words, the convention of 
   passing a pointer to a large aggregate instead of a copy is not used.

   An exceptional case exists for struct arguments (and possibly other
   aggregates such as arrays) if the size is larger than 4 bytes but 
   not a multiple of 4 bytes.  In this case the argument is never split 
   between the registers and the stack, but instead is copied in its
   entirety onto the stack, AND also copied into as many registers as 
   there is room for.  In other words, space in registers permitting, 
   two copies of the same argument are passed in.  As far as I can tell,
   only the one on the stack is used, although that may be a function 
   of the level of compiler optimization.  I suspect this is a compiler
   bug.  Arguments of these odd sizes are left-justified within the 
   word (as opposed to arguments smaller than 4 bytes, which are 
   right-justified).

   If the function is to return an aggregate type such as a struct, it 
   is either returned in the normal return value register R0 (if its 
   size is no greater than one byte), or else the caller must allocate
   space into which the callee will copy the return value (if the size
   is greater than one byte).  In this case, a pointer to the return 
   value location is passed into the callee in register R2, which does 
   not displace any of the other arguments passed in via registers R4
   to R7.   */

static CORE_ADDR
sh_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
	  	   int struct_return, CORE_ADDR struct_addr)
{
  int stack_offset, stack_alloc;
  int argreg;
  int argnum;
  struct type *type;
  CORE_ADDR regval;
  char *val;
  char valbuf[4];
  int len;
  int odd_sized_struct;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  /* first force sp to a 4-byte alignment */
  sp = sp & ~3;

  /* The "struct return pointer" pseudo-argument has its own dedicated 
     register */
  if (struct_return)
    write_register (STRUCT_RETURN_REGNUM, struct_addr);

  /* Now make sure there's space on the stack */
  for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
  sp -= stack_alloc;		/* make room on stack for args */

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  There are 16 bytes
     in four registers available.  Loop thru args from first to last.  */

  argreg = tdep->ARG0_REGNUM;
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
    {
      type = VALUE_TYPE (args[argnum]);
      len = TYPE_LENGTH (type);
      memset (valbuf, 0, sizeof (valbuf));
      if (len < 4)
	{
	  /* value gets right-justified in the register or stack word */
	  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
	    memcpy (valbuf + (4 - len),
		    (char *) VALUE_CONTENTS (args[argnum]), len);
	  else
	    memcpy (valbuf, (char *) VALUE_CONTENTS (args[argnum]), len);
	  val = valbuf;
	}
      else
	val = (char *) VALUE_CONTENTS (args[argnum]);

      if (len > 4 && (len & 3) != 0)
	odd_sized_struct = 1;	/* such structs go entirely on stack */
      else
	odd_sized_struct = 0;
      while (len > 0)
	{
	  if (argreg > tdep->ARGLAST_REGNUM
	      || odd_sized_struct)
	    {			
	      /* must go on the stack */
	      write_memory (sp + stack_offset, val, 4);
	      stack_offset += 4;
	    }
	  /* NOTE WELL!!!!!  This is not an "else if" clause!!!
	     That's because some *&^%$ things get passed on the stack
	     AND in the registers!   */
	  if (argreg <= tdep->ARGLAST_REGNUM)
	    {			
	      /* there's room in a register */
	      regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
	      write_register (argreg++, regval);
	    }
	  /* Store the value 4 bytes at a time.  This means that things
	     larger than 4 bytes may go partly in registers and partly
	     on the stack.  */
	  len -= REGISTER_RAW_SIZE (argreg);
	  val += REGISTER_RAW_SIZE (argreg);
	}
    }
  return sp;
}

/* R2-R9 for integer types and integer equivalent (char, pointers) and
   non-scalar (struct, union) elements (even if the elements are
   floats).  
   FR0-FR11 for single precision floating point (float)
   DR0-DR10 for double precision floating point (double) 
   
   If a float is argument number 3 (for instance) and arguments number
   1,2, and 4 are integer, the mapping will be:
   arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
   
   If a float is argument number 10 (for instance) and arguments number
   1 through 10 are integer, the mapping will be:
   arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
   arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
   I.e. there is hole in the stack.

   Different rules apply for variable arguments functions, and for functions
   for which the prototype is not known. */

static CORE_ADDR
sh64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
		     int struct_return, CORE_ADDR struct_addr)
{
  int stack_offset, stack_alloc;
  int int_argreg;
  int float_argreg;
  int double_argreg;
  int float_arg_index = 0;
  int double_arg_index = 0;
  int argnum;
  struct type *type;
  CORE_ADDR regval;
  char *val;
  char valbuf[8];
  char valbuf_tmp[8];
  int len;
  int argreg_size;
  int fp_args[12];
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  memset (fp_args, 0, sizeof (fp_args));

  /* first force sp to a 8-byte alignment */
  sp = sp & ~7;

  /* The "struct return pointer" pseudo-argument has its own dedicated 
     register */

  if (struct_return)
    write_register (STRUCT_RETURN_REGNUM, struct_addr);

  /* Now make sure there's space on the stack */
  for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 7) & ~7);
  sp -= stack_alloc;		/* make room on stack for args */

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  There are 64 bytes
     in eight registers available.  Loop thru args from first to last.  */

  int_argreg = tdep->ARG0_REGNUM;
  float_argreg = FP0_REGNUM;
  double_argreg = tdep->DR0_REGNUM;

  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
    {
      type = VALUE_TYPE (args[argnum]);
      len = TYPE_LENGTH (type);
      memset (valbuf, 0, sizeof (valbuf));
      
      if (TYPE_CODE (type) != TYPE_CODE_FLT)
	{
	  argreg_size = REGISTER_RAW_SIZE (int_argreg);

	  if (len < argreg_size)
	    {
	      /* value gets right-justified in the register or stack word */
	      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
		memcpy (valbuf + argreg_size - len,
			(char *) VALUE_CONTENTS (args[argnum]), len);
	      else
		memcpy (valbuf, (char *) VALUE_CONTENTS (args[argnum]), len);

	      val = valbuf;
	    }
	  else
	    val = (char *) VALUE_CONTENTS (args[argnum]);

	  while (len > 0)
	    {
	      if (int_argreg > tdep->ARGLAST_REGNUM)
		{			
		  /* must go on the stack */
		  write_memory (sp + stack_offset, val, argreg_size);
		  stack_offset += 8;/*argreg_size;*/
		}
	      /* NOTE WELL!!!!!  This is not an "else if" clause!!!
		 That's because some *&^%$ things get passed on the stack
		 AND in the registers!   */
	      if (int_argreg <= tdep->ARGLAST_REGNUM)
		{			
		  /* there's room in a register */
		  regval = extract_address (val, argreg_size);
		  write_register (int_argreg, regval);
		}
	      /* Store the value 8 bytes at a time.  This means that
		 things larger than 8 bytes may go partly in registers
		 and partly on the stack. FIXME: argreg is incremented
		 before we use its size. */
	      len -= argreg_size;
	      val += argreg_size;
	      int_argreg++;
	    }
	}
      else
	{
	  val = (char *) VALUE_CONTENTS (args[argnum]);
	  if (len == 4)
	    {
	      /* Where is it going to be stored? */
	      while (fp_args[float_arg_index])
		float_arg_index ++;

	      /* Now float_argreg points to the register where it
		 should be stored.  Are we still within the allowed
		 register set? */
	      if (float_arg_index <= tdep->FLOAT_ARGLAST_REGNUM)
		{
		  /* Goes in FR0...FR11 */
		  deprecated_write_register_gen (FP0_REGNUM + float_arg_index,
						 val);
		  fp_args[float_arg_index] = 1;
		  /* Skip the corresponding general argument register. */
		  int_argreg ++;
		}
	      else 
		;
		/* Store it as the integers, 8 bytes at the time, if
		   necessary spilling on the stack. */
	      
	    }
	    else if (len == 8)
	      {
		/* Where is it going to be stored? */
		while (fp_args[double_arg_index])
		  double_arg_index += 2;
		/* Now double_argreg points to the register
		   where it should be stored.
		   Are we still within the allowed register set? */
		if (double_arg_index < tdep->FLOAT_ARGLAST_REGNUM)
		  {
		    /* Goes in DR0...DR10 */
		    /* The numbering of the DRi registers is consecutive,
		       i.e. includes odd numbers. */
		    int double_register_offset = double_arg_index / 2;
		    int regnum = tdep->DR0_REGNUM +
		                 double_register_offset;
#if 0
		    if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
		      {
			memset (valbuf_tmp, 0, sizeof (valbuf_tmp));
			REGISTER_CONVERT_TO_VIRTUAL (regnum,
						     type, val, valbuf_tmp);
			val = valbuf_tmp;
		      }
#endif
		    /* Note: must use write_register_gen here instead
		       of regcache_raw_write, because
		       regcache_raw_write works only for real
		       registers, not pseudo.  write_register_gen will
		       call the gdbarch function to do register
		       writes, and that will properly know how to deal
		       with pseudoregs. */
		    deprecated_write_register_gen (regnum, val);
		    fp_args[double_arg_index] = 1;
		    fp_args[double_arg_index + 1] = 1;
		    /* Skip the corresponding general argument register. */
		    int_argreg ++;
		  }
		else
		  ;
		  /* Store it as the integers, 8 bytes at the time, if
                     necessary spilling on the stack. */
	      }
	}
    }
  return sp;
}

/* Function: push_return_address (pc)
   Set up the return address for the inferior function call.
   Needed for targets where we don't actually execute a JSR/BSR instruction */

static CORE_ADDR
sh_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
  write_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM,
		  CALL_DUMMY_ADDRESS ());
  return sp;
}

/* Function: fix_call_dummy
   Poke the callee function's address into the destination part of 
   the CALL_DUMMY.  The address is actually stored in a data word 
   following the actualy CALL_DUMMY instructions, which will load
   it into a register using PC-relative addressing.  This function
   expects the CALL_DUMMY to look like this:

   mov.w @(2,PC), R8
   jsr   @R8
   nop
   trap
   <destination>
 */

#if 0
void
sh_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
		   struct value **args, struct type *type, int gcc_p)
{
  *(unsigned long *) (dummy + 8) = fun;
}
#endif

static int
sh_coerce_float_to_double (struct type *formal, struct type *actual)
{
  return 1;
}

/* Find a function's return value in the appropriate registers (in
   regbuf), and copy it into valbuf.  Extract from an array REGBUF
   containing the (raw) register state a function return value of type
   TYPE, and copy that, in virtual format, into VALBUF.  */
static void
sh_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
  int len = TYPE_LENGTH (type);
  int return_register = R0_REGNUM;
  int offset;
  
  if (len <= 4)
    {
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
	offset = REGISTER_BYTE (return_register) + 4 - len;
      else
	offset = REGISTER_BYTE (return_register);
      memcpy (valbuf, regbuf + offset, len);
    }
  else if (len <= 8)
    {
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
	offset = REGISTER_BYTE (return_register) + 8 - len;
      else
	offset = REGISTER_BYTE (return_register);
      memcpy (valbuf, regbuf + offset, len);
    }
  else
    error ("bad size for return value");
}

static void
sh3e_sh4_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
  int return_register;
  int offset;
  int len = TYPE_LENGTH (type);

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    return_register = FP0_REGNUM;
  else
    return_register = R0_REGNUM;
  
  if (len == 8 && TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      DOUBLEST val;
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
	floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
				 (char *) regbuf + REGISTER_BYTE (return_register),
				 &val);
      else
	floatformat_to_doublest (&floatformat_ieee_double_big,
				 (char *) regbuf + REGISTER_BYTE (return_register),
				 &val);
      store_floating (valbuf, len, val);
    }
  else if (len <= 4)
    {
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
	offset = REGISTER_BYTE (return_register) + 4 - len;
      else
	offset = REGISTER_BYTE (return_register);
      memcpy (valbuf, regbuf + offset, len);
    }
  else if (len <= 8)
    {
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
	offset = REGISTER_BYTE (return_register) + 8 - len;
      else
	offset = REGISTER_BYTE (return_register);
      memcpy (valbuf, regbuf + offset, len);
    }
  else
    error ("bad size for return value");
}

static void
sh64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
  int offset;
  int return_register;
  int len = TYPE_LENGTH (type);
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 
  
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      if (len == 4)
	{
	  /* Return value stored in FP0_REGNUM */
	  return_register = FP0_REGNUM;
	  offset = REGISTER_BYTE (return_register);
	  memcpy (valbuf, (char *) regbuf + offset, len); 
	}
      else if (len == 8)
	{
	  /* return value stored in DR0_REGNUM */
	  DOUBLEST val;

	  return_register = tdep->DR0_REGNUM;
	  offset = REGISTER_BYTE (return_register);
	  
	  if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
	    floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
				     (char *) regbuf + offset, &val);
	  else
	    floatformat_to_doublest (&floatformat_ieee_double_big,
				     (char *) regbuf + offset, &val);
	  store_floating (valbuf, len, val);
	}
    }
  else
    { 
      if (len <= 8)
	{
	  /* Result is in register 2. If smaller than 8 bytes, it is padded 
	     at the most significant end. */
	  return_register = tdep->RETURN_REGNUM;
	  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
	    offset = REGISTER_BYTE (return_register) +
	      REGISTER_RAW_SIZE (return_register) - len;
	  else
	    offset = REGISTER_BYTE (return_register);
	  memcpy (valbuf, (char *) regbuf + offset, len);
	}
      else
	error ("bad size for return value");
    }
}

/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.
   If the architecture is sh4 or sh3e, store a function's return value
   in the R0 general register or in the FP0 floating point register,
   depending on the type of the return value. In all the other cases
   the result is stored in r0, left-justified. */
static void
sh_default_store_return_value (struct type *type, char *valbuf)
{
  char buf[32];	/* more than enough... */

  if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (R0_REGNUM))
    {
      /* Add leading zeros to the value. */
      memset (buf, 0, REGISTER_RAW_SIZE (R0_REGNUM));
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
	memcpy (buf + REGISTER_RAW_SIZE (R0_REGNUM) - TYPE_LENGTH (type),
		valbuf, TYPE_LENGTH (type));
      else
	memcpy (buf, valbuf, TYPE_LENGTH (type));
      deprecated_write_register_bytes (REGISTER_BYTE (R0_REGNUM), buf, 
				       REGISTER_RAW_SIZE (R0_REGNUM));
    }
  else
    deprecated_write_register_bytes (REGISTER_BYTE (R0_REGNUM), valbuf, 
				     TYPE_LENGTH (type));
}

static void
sh3e_sh4_store_return_value (struct type *type, char *valbuf)
{
  if (TYPE_CODE (type) == TYPE_CODE_FLT) 
    deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM), 
				     valbuf, TYPE_LENGTH (type));
  else
    sh_default_store_return_value (type, valbuf);
}

static void
sh64_store_return_value (struct type *type, char *valbuf)
{
  char buf[64];	/* more than enough... */
  int len = TYPE_LENGTH (type);

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      if (len == 4)
	{
	  /* Return value stored in FP0_REGNUM */
	  deprecated_write_register_gen (FP0_REGNUM, valbuf);
	}
      if (len == 8)
	{
	  /* return value stored in DR0_REGNUM */
	  /* FIXME: Implement */
	}
    }
  else
    {
      int return_register = gdbarch_tdep (current_gdbarch)->RETURN_REGNUM;
      int offset = 0;

      if (len <= REGISTER_RAW_SIZE (return_register))
	{
	  /* Pad with zeros. */
	  memset (buf, 0, REGISTER_RAW_SIZE (return_register));
	  if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
	    offset = 0; /*REGISTER_RAW_SIZE (return_register) - len;*/
	  else
	    offset = REGISTER_RAW_SIZE (return_register) - len;

	  memcpy (buf + offset, valbuf, len);
	  deprecated_write_register_gen (return_register, buf);
	}
      else
	deprecated_write_register_gen (return_register, valbuf);
    }
}

/* Print the registers in a form similar to the E7000 */

static void
sh_generic_show_regs (void)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
		   paddr (read_register (PC_REGNUM)),
		   (long) read_register (tdep->SR_REGNUM),
		   (long) read_register (tdep->PR_REGNUM),
		   (long) read_register (MACH_REGNUM),
		   (long) read_register (MACL_REGNUM));

  printf_filtered ("GBR=%08lx VBR=%08lx",
		   (long) read_register (GBR_REGNUM),
		   (long) read_register (VBR_REGNUM));

  printf_filtered ("\nR0-R7  %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (0),
		   (long) read_register (1),
		   (long) read_register (2),
		   (long) read_register (3),
		   (long) read_register (4),
		   (long) read_register (5),
		   (long) read_register (6),
		   (long) read_register (7));
  printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (8),
		   (long) read_register (9),
		   (long) read_register (10),
		   (long) read_register (11),
		   (long) read_register (12),
		   (long) read_register (13),
		   (long) read_register (14),
		   (long) read_register (15));
}

static void
sh3_show_regs (void)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
		   paddr (read_register (PC_REGNUM)),
		   (long) read_register (tdep->SR_REGNUM),
		   (long) read_register (tdep->PR_REGNUM),
		   (long) read_register (MACH_REGNUM),
		   (long) read_register (MACL_REGNUM));

  printf_filtered ("GBR=%08lx VBR=%08lx",
		   (long) read_register (GBR_REGNUM),
		   (long) read_register (VBR_REGNUM));
  printf_filtered (" SSR=%08lx SPC=%08lx",
	           (long) read_register (tdep->SSR_REGNUM),
		   (long) read_register (tdep->SPC_REGNUM));

  printf_filtered ("\nR0-R7  %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (0),
		   (long) read_register (1),
		   (long) read_register (2),
		   (long) read_register (3),
		   (long) read_register (4),
		   (long) read_register (5),
		   (long) read_register (6),
		   (long) read_register (7));
  printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (8),
		   (long) read_register (9),
		   (long) read_register (10),
		   (long) read_register (11),
		   (long) read_register (12),
		   (long) read_register (13),
		   (long) read_register (14),
		   (long) read_register (15));
}


static void
sh3e_show_regs (void)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
		   paddr (read_register (PC_REGNUM)),
		   (long) read_register (tdep->SR_REGNUM),
		   (long) read_register (tdep->PR_REGNUM),
		   (long) read_register (MACH_REGNUM),
		   (long) read_register (MACL_REGNUM));

  printf_filtered ("GBR=%08lx VBR=%08lx",
		   (long) read_register (GBR_REGNUM),
		   (long) read_register (VBR_REGNUM));
  printf_filtered (" SSR=%08lx SPC=%08lx",
		   (long) read_register (tdep->SSR_REGNUM),
		   (long) read_register (tdep->SPC_REGNUM));
  printf_filtered (" FPUL=%08lx FPSCR=%08lx",
		   (long) read_register (tdep->FPUL_REGNUM),
		   (long) read_register (tdep->FPSCR_REGNUM));

  printf_filtered ("\nR0-R7  %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (0),
		   (long) read_register (1),
		   (long) read_register (2),
		   (long) read_register (3),
		   (long) read_register (4),
		   (long) read_register (5),
		   (long) read_register (6),
		   (long) read_register (7));
  printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (8),
		   (long) read_register (9),
		   (long) read_register (10),
		   (long) read_register (11),
		   (long) read_register (12),
		   (long) read_register (13),
		   (long) read_register (14),
		   (long) read_register (15));

  printf_filtered (("FP0-FP7  %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
		   (long) read_register (FP0_REGNUM + 0),
		   (long) read_register (FP0_REGNUM + 1),
		   (long) read_register (FP0_REGNUM + 2),
		   (long) read_register (FP0_REGNUM + 3),
		   (long) read_register (FP0_REGNUM + 4),
		   (long) read_register (FP0_REGNUM + 5),
		   (long) read_register (FP0_REGNUM + 6),
		   (long) read_register (FP0_REGNUM + 7));
  printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
		   (long) read_register (FP0_REGNUM + 8),
		   (long) read_register (FP0_REGNUM + 9),
		   (long) read_register (FP0_REGNUM + 10),
		   (long) read_register (FP0_REGNUM + 11),
		   (long) read_register (FP0_REGNUM + 12),
		   (long) read_register (FP0_REGNUM + 13),
		   (long) read_register (FP0_REGNUM + 14),
		   (long) read_register (FP0_REGNUM + 15));
}

static void
sh3_dsp_show_regs (void)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
		   paddr (read_register (PC_REGNUM)),
		   (long) read_register (tdep->SR_REGNUM),
		   (long) read_register (tdep->PR_REGNUM),
		   (long) read_register (MACH_REGNUM),
		   (long) read_register (MACL_REGNUM));

  printf_filtered ("GBR=%08lx VBR=%08lx",
		   (long) read_register (GBR_REGNUM),
		   (long) read_register (VBR_REGNUM));

  printf_filtered (" SSR=%08lx SPC=%08lx",
		   (long) read_register (tdep->SSR_REGNUM),
		   (long) read_register (tdep->SPC_REGNUM));

  printf_filtered (" DSR=%08lx", 
		   (long) read_register (tdep->DSR_REGNUM));

  printf_filtered ("\nR0-R7  %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (0),
		   (long) read_register (1),
		   (long) read_register (2),
		   (long) read_register (3),
		   (long) read_register (4),
		   (long) read_register (5),
		   (long) read_register (6),
		   (long) read_register (7));
  printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (8),
		   (long) read_register (9),
		   (long) read_register (10),
		   (long) read_register (11),
		   (long) read_register (12),
		   (long) read_register (13),
		   (long) read_register (14),
		   (long) read_register (15));

  printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
		   (long) read_register (tdep->A0G_REGNUM) & 0xff,
		   (long) read_register (tdep->A0_REGNUM),
		   (long) read_register (tdep->M0_REGNUM),
		   (long) read_register (tdep->X0_REGNUM),
		   (long) read_register (tdep->Y0_REGNUM),
		   (long) read_register (tdep->RS_REGNUM),
		   (long) read_register (tdep->MOD_REGNUM));
  printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
		   (long) read_register (tdep->A1G_REGNUM) & 0xff,
		   (long) read_register (tdep->A1_REGNUM),
		   (long) read_register (tdep->M1_REGNUM),
		   (long) read_register (tdep->X1_REGNUM),
		   (long) read_register (tdep->Y1_REGNUM),
		   (long) read_register (tdep->RE_REGNUM));
}

static void
sh4_show_regs (void)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  int pr = read_register (tdep->FPSCR_REGNUM) & 0x80000;
  printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
		   paddr (read_register (PC_REGNUM)),
		   (long) read_register (tdep->SR_REGNUM),
		   (long) read_register (tdep->PR_REGNUM),
		   (long) read_register (MACH_REGNUM),
		   (long) read_register (MACL_REGNUM));

  printf_filtered ("GBR=%08lx VBR=%08lx",
		   (long) read_register (GBR_REGNUM),
		   (long) read_register (VBR_REGNUM));
  printf_filtered (" SSR=%08lx SPC=%08lx",
		   (long) read_register (tdep->SSR_REGNUM),
		   (long) read_register (tdep->SPC_REGNUM));
  printf_filtered (" FPUL=%08lx FPSCR=%08lx",
		   (long) read_register (tdep->FPUL_REGNUM),
		   (long) read_register (tdep->FPSCR_REGNUM));

  printf_filtered ("\nR0-R7  %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (0),
		   (long) read_register (1),
		   (long) read_register (2),
		   (long) read_register (3),
		   (long) read_register (4),
		   (long) read_register (5),
		   (long) read_register (6),
		   (long) read_register (7));
  printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (8),
		   (long) read_register (9),
		   (long) read_register (10),
		   (long) read_register (11),
		   (long) read_register (12),
		   (long) read_register (13),
		   (long) read_register (14),
		   (long) read_register (15));

  printf_filtered ((pr
		    ? "DR0-DR6  %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
		    : "FP0-FP7  %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
		   (long) read_register (FP0_REGNUM + 0),
		   (long) read_register (FP0_REGNUM + 1),
		   (long) read_register (FP0_REGNUM + 2),
		   (long) read_register (FP0_REGNUM + 3),
		   (long) read_register (FP0_REGNUM + 4),
		   (long) read_register (FP0_REGNUM + 5),
		   (long) read_register (FP0_REGNUM + 6),
		   (long) read_register (FP0_REGNUM + 7));
  printf_filtered ((pr
		    ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
		    : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
		   (long) read_register (FP0_REGNUM + 8),
		   (long) read_register (FP0_REGNUM + 9),
		   (long) read_register (FP0_REGNUM + 10),
		   (long) read_register (FP0_REGNUM + 11),
		   (long) read_register (FP0_REGNUM + 12),
		   (long) read_register (FP0_REGNUM + 13),
		   (long) read_register (FP0_REGNUM + 14),
		   (long) read_register (FP0_REGNUM + 15));
}

static void
sh_dsp_show_regs (void)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
		   paddr (read_register (PC_REGNUM)),
		   (long) read_register (tdep->SR_REGNUM),
		   (long) read_register (tdep->PR_REGNUM),
		   (long) read_register (MACH_REGNUM),
		   (long) read_register (MACL_REGNUM));

  printf_filtered ("GBR=%08lx VBR=%08lx",
		   (long) read_register (GBR_REGNUM),
		   (long) read_register (VBR_REGNUM));

  printf_filtered (" DSR=%08lx", 
		   (long) read_register (tdep->DSR_REGNUM));

  printf_filtered ("\nR0-R7  %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (0),
		   (long) read_register (1),
		   (long) read_register (2),
		   (long) read_register (3),
		   (long) read_register (4),
		   (long) read_register (5),
		   (long) read_register (6),
		   (long) read_register (7));
  printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		   (long) read_register (8),
		   (long) read_register (9),
		   (long) read_register (10),
		   (long) read_register (11),
		   (long) read_register (12),
		   (long) read_register (13),
		   (long) read_register (14),
		   (long) read_register (15));

  printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
		   (long) read_register (tdep->A0G_REGNUM) & 0xff,
		   (long) read_register (tdep->A0_REGNUM),
		   (long) read_register (tdep->M0_REGNUM),
		   (long) read_register (tdep->X0_REGNUM),
		   (long) read_register (tdep->Y0_REGNUM),
		   (long) read_register (tdep->RS_REGNUM),
		   (long) read_register (tdep->MOD_REGNUM));
  printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
		   (long) read_register (tdep->A1G_REGNUM) & 0xff,
		   (long) read_register (tdep->A1_REGNUM),
		   (long) read_register (tdep->M1_REGNUM),
		   (long) read_register (tdep->X1_REGNUM),
		   (long) read_register (tdep->Y1_REGNUM),
		   (long) read_register (tdep->RE_REGNUM));
}

static void
sh64_show_media_regs (void)
{
  int i;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  printf_filtered ("PC=%s SR=%016llx \n",
		   paddr (read_register (PC_REGNUM)),
		   (long long) read_register (tdep->SR_REGNUM));

  printf_filtered ("SSR=%016llx SPC=%016llx \n",
		   (long long) read_register (tdep->SSR_REGNUM),
		   (long long) read_register (tdep->SPC_REGNUM));
  printf_filtered ("FPSCR=%016lx\n ",
		   (long) read_register (tdep->FPSCR_REGNUM));

  for (i = 0; i < 64; i = i + 4)
    printf_filtered ("\nR%d-R%d  %016llx %016llx %016llx %016llx\n",
		     i, i + 3,
		     (long long) read_register (i + 0),
		     (long long) read_register (i + 1),
		     (long long) read_register (i + 2),
		     (long long) read_register (i + 3));

  printf_filtered ("\n");
  
  for (i = 0; i < 64; i = i + 8)
    printf_filtered ("FR%d-FR%d  %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		     i, i + 7,
		     (long) read_register (FP0_REGNUM + i + 0),
		     (long) read_register (FP0_REGNUM + i + 1),
		     (long) read_register (FP0_REGNUM + i + 2),
		     (long) read_register (FP0_REGNUM + i + 3),
		     (long) read_register (FP0_REGNUM + i + 4),
		     (long) read_register (FP0_REGNUM + i + 5),
		     (long) read_register (FP0_REGNUM + i + 6),
		     (long) read_register (FP0_REGNUM + i + 7));
}

static void
sh64_show_compact_regs (void)
{
  int i;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  printf_filtered ("PC=%s \n",
		   paddr (read_register (tdep->PC_C_REGNUM)));

  printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
		   (long) read_register (tdep->GBR_C_REGNUM),
		   (long) read_register (tdep->MACH_C_REGNUM),
		   (long) read_register (tdep->MACL_C_REGNUM),
		   (long) read_register (tdep->PR_C_REGNUM),
		   (long) read_register (tdep->T_C_REGNUM));
  printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
		   (long) read_register (tdep->FPSCR_REGNUM),
		   (long) read_register (tdep->FPUL_REGNUM));

  for (i = 0; i < 16; i = i + 4)
    printf_filtered ("\nR%d-R%d  %08lx %08lx %08lx %08lx\n",
		     i, i + 3,
		     (long) read_register (i + 0),
		     (long) read_register (i + 1),
		     (long) read_register (i + 2),
		     (long) read_register (i + 3));

  printf_filtered ("\n");
  
  for (i = 0; i < 16; i = i + 8)
    printf_filtered ("FR%d-FR%d  %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
		     i, i + 7,
		     (long) read_register (FP0_REGNUM + i + 0),
		     (long) read_register (FP0_REGNUM + i + 1),
		     (long) read_register (FP0_REGNUM + i + 2),
		     (long) read_register (FP0_REGNUM + i + 3),
		     (long) read_register (FP0_REGNUM + i + 4),
		     (long) read_register (FP0_REGNUM + i + 5),
		     (long) read_register (FP0_REGNUM + i + 6),
		     (long) read_register (FP0_REGNUM + i + 7));
}

/*FIXME!!! This only shows the registers for shmedia, excluding the
  pseudo registers. */
static void
sh64_show_regs (void)
{
  if (pc_is_isa32 (get_frame_pc (deprecated_selected_frame)))
    sh64_show_media_regs ();
  else
    sh64_show_compact_regs ();
}

void sh_show_regs_command (char *args, int from_tty)
{
  if (sh_show_regs)
    (*sh_show_regs)();
}

/* Index within `registers' of the first byte of the space for
   register N.  */
static int
sh_default_register_byte (int reg_nr)
{
  return (reg_nr * 4);
}

static int
sh_sh4_register_byte (int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if (reg_nr >= tdep->DR0_REGNUM 
      && reg_nr <= tdep->DR_LAST_REGNUM)
    return (dr_reg_base_num (reg_nr) * 4);
  else if  (reg_nr >= tdep->FV0_REGNUM 
	    && reg_nr <= tdep->FV_LAST_REGNUM)
    return (fv_reg_base_num (reg_nr) * 4);
  else
    return (reg_nr * 4);
}

/* *INDENT-OFF* */
/*
    SH MEDIA MODE (ISA 32)
    general registers (64-bit) 0-63
0    r0,   r1,   r2,   r3,   r4,   r5,   r6,   r7,
64   r8,   r9,   r10,  r11,  r12,  r13,  r14,  r15,
128  r16,  r17,  r18,  r19,  r20,  r21,  r22,  r23,
192  r24,  r25,  r26,  r27,  r28,  r29,  r30,  r31,
256  r32,  r33,  r34,  r35,  r36,  r37,  r38,  r39,
320  r40,  r41,  r42,  r43,  r44,  r45,  r46,  r47,
384  r48,  r49,  r50,  r51,  r52,  r53,  r54,  r55,
448  r56,  r57,  r58,  r59,  r60,  r61,  r62,  r63,

    pc (64-bit) 64
512  pc,

    status reg., saved status reg., saved pc reg. (64-bit) 65-67
520  sr,  ssr,  spc,

    target registers (64-bit) 68-75
544  tr0,  tr1,  tr2,  tr3,  tr4,  tr5,  tr6,  tr7,

    floating point state control register (32-bit) 76
608  fpscr,

    single precision floating point registers (32-bit) 77-140
612  fr0,  fr1,  fr2,  fr3,  fr4,  fr5,  fr6,  fr7,
644  fr8,  fr9,  fr10, fr11, fr12, fr13, fr14, fr15,
676  fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
708  fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
740  fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
772  fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
804  fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
836  fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,

TOTAL SPACE FOR REGISTERS: 868 bytes

From here on they are all pseudo registers: no memory allocated.
REGISTER_BYTE returns the register byte for the base register.

    double precision registers (pseudo) 141-172
     dr0,  dr2,  dr4,  dr6,  dr8,  dr10, dr12, dr14,
     dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
     dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
     dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
 
    floating point pairs (pseudo) 173-204
     fp0,  fp2,  fp4,  fp6,  fp8,  fp10, fp12, fp14,
     fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
     fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
     fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
 
    floating point vectors (4 floating point regs) (pseudo) 205-220
     fv0,  fv4,  fv8,  fv12, fv16, fv20, fv24, fv28,
     fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
 
    SH COMPACT MODE (ISA 16) (all pseudo) 221-272
     r0_c, r1_c, r2_c,  r3_c,  r4_c,  r5_c,  r6_c,  r7_c,
     r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
     pc_c,
     gbr_c, mach_c, macl_c, pr_c, t_c,
     fpscr_c, fpul_c,
     fr0_c, fr1_c, fr2_c,  fr3_c,  fr4_c,  fr5_c,  fr6_c,  fr7_c,
     fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
     dr0_c, dr2_c, dr4_c,  dr6_c,  dr8_c,  dr10_c, dr12_c, dr14_c
     fv0_c, fv4_c, fv8_c,  fv12_c
*/
/* *INDENT-ON* */
static int
sh_sh64_register_byte (int reg_nr)
{
  int base_regnum = -1;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  /* If it is a pseudo register, get the number of the first floating
     point register that is part of it. */
  if (reg_nr >= tdep->DR0_REGNUM 
      && reg_nr <= tdep->DR_LAST_REGNUM)
    base_regnum = dr_reg_base_num (reg_nr);

  else if (reg_nr >= tdep->FPP0_REGNUM 
	    && reg_nr <= tdep->FPP_LAST_REGNUM)
    base_regnum = fpp_reg_base_num (reg_nr);

  else if (reg_nr >= tdep->FV0_REGNUM 
	    && reg_nr <= tdep->FV_LAST_REGNUM)
    base_regnum = fv_reg_base_num (reg_nr);

  /* sh compact pseudo register. FPSCR is a pathological case, need to
     treat it as special. */
  else if ((reg_nr >= tdep->R0_C_REGNUM 
	    && reg_nr <= tdep->FV_LAST_C_REGNUM) 
	   && reg_nr != tdep->FPSCR_C_REGNUM)
    base_regnum = sh64_compact_reg_base_num (reg_nr);

  /* Now return the offset in bytes within the register cache. */
  /* sh media pseudo register, i.e. any of DR, FFP, FV registers. */
  if (reg_nr >= tdep->DR0_REGNUM 
      && reg_nr <= tdep->FV_LAST_REGNUM)
    return (base_regnum - FP0_REGNUM + 1) * 4 
      + (tdep->TR7_REGNUM + 1) * 8;

  /* sh compact pseudo register: general register */
  if ((reg_nr >= tdep->R0_C_REGNUM 
       && reg_nr <= tdep->R_LAST_C_REGNUM))
    return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
	    ? base_regnum * 8 + 4
	    : base_regnum * 8);

  /* sh compact pseudo register: */
  if (reg_nr == tdep->PC_C_REGNUM 
       || reg_nr == tdep->GBR_C_REGNUM
       || reg_nr == tdep->MACL_C_REGNUM
       || reg_nr == tdep->PR_C_REGNUM)
    return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
	    ? base_regnum * 8 + 4
	    : base_regnum * 8);

  if (reg_nr == tdep->MACH_C_REGNUM) 
    return base_regnum * 8;

  if (reg_nr == tdep->T_C_REGNUM) 
    return base_regnum * 8; /* FIXME??? how do we get bit 0? Do we have to? */

  /* sh compact pseudo register: floating point register */
  else if (reg_nr >=tdep->FP0_C_REGNUM
	   && reg_nr <= tdep->FV_LAST_C_REGNUM)
    return (base_regnum  - FP0_REGNUM) * 4
      + (tdep->TR7_REGNUM + 1) * 8 + 4;

  else if (reg_nr == tdep->FPSCR_C_REGNUM)
    /* This is complicated, for now return the beginning of the
       architectural FPSCR register. */
    return (tdep->TR7_REGNUM + 1) * 8;

  else if (reg_nr == tdep->FPUL_C_REGNUM)
    return ((base_regnum - FP0_REGNUM) * 4 + 
	    (tdep->TR7_REGNUM + 1) * 8 + 4);

  /* It is not a pseudo register. */
  /* It is a 64 bit register. */
  else if (reg_nr <= tdep->TR7_REGNUM)
    return reg_nr * 8;

  /* It is a 32 bit register. */
  else
    if (reg_nr == tdep->FPSCR_REGNUM)
      return (tdep->FPSCR_REGNUM * 8);

  /* It is floating point 32-bit register */
  else
    return ((tdep->TR7_REGNUM + 1) * 8 
      + (reg_nr - FP0_REGNUM + 1) * 4);
}

/* Number of bytes of storage in the actual machine representation for
   register REG_NR.  */
static int
sh_default_register_raw_size (int reg_nr)
{
  return 4;
}

static int
sh_sh4_register_raw_size (int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if (reg_nr >= tdep->DR0_REGNUM 
      && reg_nr <= tdep->DR_LAST_REGNUM)
    return 8;
  else if  (reg_nr >= tdep->FV0_REGNUM 
	    && reg_nr <= tdep->FV_LAST_REGNUM)
    return 16;
  else
    return 4;
}

static int
sh_sh64_register_raw_size (int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if ((reg_nr >= tdep->DR0_REGNUM 
       && reg_nr <= tdep->DR_LAST_REGNUM)
      || (reg_nr >= tdep->FPP0_REGNUM 
	  && reg_nr <= tdep->FPP_LAST_REGNUM)
      || (reg_nr >= tdep->DR0_C_REGNUM 
	  && reg_nr <= tdep->DR_LAST_C_REGNUM)
      || (reg_nr <= tdep->TR7_REGNUM))
    return 8;

  else if ((reg_nr >= tdep->FV0_REGNUM 
	    && reg_nr <= tdep->FV_LAST_REGNUM)
	   || (reg_nr >= tdep->FV0_C_REGNUM 
	       && reg_nr <= tdep->FV_LAST_C_REGNUM))
    return 16;

  else /* this covers also the 32-bit SH compact registers. */
    return 4;
}

/* Number of bytes of storage in the program's representation
   for register N.  */
static int
sh_register_virtual_size (int reg_nr)
{
  return 4;
}

/* ??????? FIXME */
static int
sh_sh64_register_virtual_size (int reg_nr)
{
  if (reg_nr >= FP0_REGNUM
      && reg_nr <= gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM)
    return 4;
  else
    return 8;
}

/* Return the GDB type object for the "standard" data type
   of data in register N.  */
static struct type *
sh_sh3e_register_virtual_type (int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if ((reg_nr >= FP0_REGNUM
       && (reg_nr <= tdep->FP_LAST_REGNUM)) 
      || (reg_nr == tdep->FPUL_REGNUM))
    return builtin_type_float;
  else
    return builtin_type_int;
}

static struct type *
sh_sh4_build_float_register_type (int high)
{
  struct type *temp;

  temp = create_range_type (NULL, builtin_type_int, 0, high);
  return create_array_type (NULL, builtin_type_float, temp);
}

static struct type *
sh_sh4_register_virtual_type (int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if ((reg_nr >= FP0_REGNUM
       && (reg_nr <= tdep->FP_LAST_REGNUM)) 
      || (reg_nr == tdep->FPUL_REGNUM))
    return builtin_type_float;
  else if (reg_nr >= tdep->DR0_REGNUM 
	   && reg_nr <= tdep->DR_LAST_REGNUM)
    return builtin_type_double;
  else if  (reg_nr >= tdep->FV0_REGNUM 
	   && reg_nr <= tdep->FV_LAST_REGNUM)
    return sh_sh4_build_float_register_type (3);
  else
    return builtin_type_int;
}

static struct type *
sh_sh64_register_virtual_type (int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if ((reg_nr >= FP0_REGNUM
       && reg_nr <= tdep->FP_LAST_REGNUM)
      || (reg_nr >= tdep->FP0_C_REGNUM
	  && reg_nr <= tdep->FP_LAST_C_REGNUM))
    return builtin_type_float;
  else if ((reg_nr >= tdep->DR0_REGNUM 
	    && reg_nr <= tdep->DR_LAST_REGNUM)
	   || (reg_nr >= tdep->DR0_C_REGNUM 
	       && reg_nr <= tdep->DR_LAST_C_REGNUM))
    return builtin_type_double;
  else if  (reg_nr >= tdep->FPP0_REGNUM 
	    && reg_nr <= tdep->FPP_LAST_REGNUM)
    return sh_sh4_build_float_register_type (1);
  else if ((reg_nr >= tdep->FV0_REGNUM
	    && reg_nr <= tdep->FV_LAST_REGNUM)
	   ||(reg_nr >= tdep->FV0_C_REGNUM 
	      && reg_nr <= tdep->FV_LAST_C_REGNUM))
    return sh_sh4_build_float_register_type (3);
  else if (reg_nr == tdep->FPSCR_REGNUM)
    return builtin_type_int;
  else if (reg_nr >= tdep->R0_C_REGNUM
	   && reg_nr < tdep->FP0_C_REGNUM)
    return builtin_type_int;
  else
    return builtin_type_long_long;
}

static struct type *
sh_default_register_virtual_type (int reg_nr)
{
  return builtin_type_int;
}

/* On the sh4, the DRi pseudo registers are problematic if the target
   is little endian. When the user writes one of those registers, for
   instance with 'ser var $dr0=1', we want the double to be stored
   like this: 
   fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f 
   fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

   This corresponds to little endian byte order & big endian word
   order.  However if we let gdb write the register w/o conversion, it
   will write fr0 and fr1 this way:
   fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
   fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
   because it will consider fr0 and fr1 as a single LE stretch of memory.
   
   To achieve what we want we must force gdb to store things in
   floatformat_ieee_double_littlebyte_bigword (which is defined in
   include/floatformat.h and libiberty/floatformat.c.

   In case the target is big endian, there is no problem, the
   raw bytes will look like:
   fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
   fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

   The other pseudo registers (the FVs) also don't pose a problem
   because they are stored as 4 individual FP elements. */

static void
sh_sh4_register_convert_to_virtual (int regnum, struct type *type,
                                  char *from, char *to)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if (regnum >= tdep->DR0_REGNUM 
      && regnum <= tdep->DR_LAST_REGNUM)
    {
      DOUBLEST val;
      floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val);
      store_floating (to, TYPE_LENGTH (type), val);
    }
  else
    error ("sh_register_convert_to_virtual called with non DR register number");
}

void
sh_sh64_register_convert_to_virtual (int regnum, struct type *type,
				     char *from, char *to)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
    {
      /* It is a no-op. */
      memcpy (to, from, REGISTER_RAW_SIZE (regnum));
      return;
    }

  if ((regnum >= tdep->DR0_REGNUM 
       && regnum <= tdep->DR_LAST_REGNUM)
      || (regnum >= tdep->DR0_C_REGNUM 
	  && regnum <= tdep->DR_LAST_C_REGNUM))
    {
      DOUBLEST val;
      floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val);
      store_floating(to, TYPE_LENGTH(type), val);
    }
  else
    error("sh_register_convert_to_virtual called with non DR register number");
}

static void
sh_sh4_register_convert_to_raw (struct type *type, int regnum,
				const void *from, void *to)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if (regnum >= tdep->DR0_REGNUM 
      && regnum <= tdep->DR_LAST_REGNUM)
    {
      DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
      floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
    }
  else
    error("sh_register_convert_to_raw called with non DR register number");
}

void
sh_sh64_register_convert_to_raw (struct type *type, int regnum,
				 const void *from, void *to)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
    {
      /* It is a no-op. */
      memcpy (to, from, REGISTER_RAW_SIZE (regnum));
      return;
    }

  if ((regnum >= tdep->DR0_REGNUM 
       && regnum <= tdep->DR_LAST_REGNUM)
      || (regnum >= tdep->DR0_C_REGNUM 
	  && regnum <= tdep->DR_LAST_C_REGNUM))
    {
      DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
      floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
    }
  else
    error("sh_register_convert_to_raw called with non DR register number");
}

void
sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			 int reg_nr, void *buffer)
{
  int base_regnum, portion;
  char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 

  if (reg_nr >= tdep->DR0_REGNUM 
      && reg_nr <= tdep->DR_LAST_REGNUM)
    {
      base_regnum = dr_reg_base_num (reg_nr);

      /* Build the value in the provided buffer. */ 
      /* Read the real regs for which this one is an alias.  */
      for (portion = 0; portion < 2; portion++)
	regcache_raw_read (regcache, base_regnum + portion, 
			   (temp_buffer
			    + REGISTER_RAW_SIZE (base_regnum) * portion));
      /* We must pay attention to the endiannes. */
      sh_sh4_register_convert_to_virtual (reg_nr,
					  REGISTER_VIRTUAL_TYPE (reg_nr),
					  temp_buffer, buffer);
    }
  else if (reg_nr >= tdep->FV0_REGNUM 
	   && reg_nr <= tdep->FV_LAST_REGNUM)
    {
      base_regnum = fv_reg_base_num (reg_nr);

      /* Read the real regs for which this one is an alias.  */
      for (portion = 0; portion < 4; portion++)
	regcache_raw_read (regcache, base_regnum + portion, 
			   ((char *) buffer
			    + REGISTER_RAW_SIZE (base_regnum) * portion));
    }
}

static void
sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int reg_nr, void *buffer)
{
  int base_regnum;
  int portion;
  int offset = 0;
  char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 

  if (reg_nr >= tdep->DR0_REGNUM 
      && reg_nr <= tdep->DR_LAST_REGNUM)
    {
      base_regnum = dr_reg_base_num (reg_nr);

      /* Build the value in the provided buffer. */ 
      /* DR regs are double precision registers obtained by
	 concatenating 2 single precision floating point registers. */
      for (portion = 0; portion < 2; portion++)
	regcache_raw_read (regcache, base_regnum + portion, 
			   (temp_buffer
			    + REGISTER_RAW_SIZE (base_regnum) * portion));

      /* We must pay attention to the endiannes. */
      sh_sh64_register_convert_to_virtual (reg_nr, REGISTER_VIRTUAL_TYPE (reg_nr),
					   temp_buffer, buffer);

    }

  else if (reg_nr >= tdep->FPP0_REGNUM 
	   && reg_nr <= tdep->FPP_LAST_REGNUM)
    {
      base_regnum = fpp_reg_base_num (reg_nr);

      /* Build the value in the provided buffer. */ 
      /* FPP regs are pairs of single precision registers obtained by
	 concatenating 2 single precision floating point registers. */
      for (portion = 0; portion < 2; portion++)
	regcache_raw_read (regcache, base_regnum + portion, 
			   ((char *) buffer
			    + REGISTER_RAW_SIZE (base_regnum) * portion));
    }

  else if (reg_nr >= tdep->FV0_REGNUM 
	   && reg_nr <= tdep->FV_LAST_REGNUM)
    {
      base_regnum = fv_reg_base_num (reg_nr);

      /* Build the value in the provided buffer. */ 
      /* FV regs are vectors of single precision registers obtained by
	 concatenating 4 single precision floating point registers. */
      for (portion = 0; portion < 4; portion++)
	regcache_raw_read (regcache, base_regnum + portion, 
			   ((char *) buffer
			    + REGISTER_RAW_SIZE (base_regnum) * portion));
    }

  /* sh compact pseudo registers. 1-to-1 with a shmedia register */
  else if (reg_nr >= tdep->R0_C_REGNUM 
	   && reg_nr <= tdep->T_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (reg_nr);

      /* Build the value in the provided buffer. */ 
      regcache_raw_read (regcache, base_regnum, temp_buffer);
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
	offset = 4;
      memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
    }

  else if (reg_nr >= tdep->FP0_C_REGNUM
	   && reg_nr <= tdep->FP_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (reg_nr);

      /* Build the value in the provided buffer. */ 
      /* Floating point registers map 1-1 to the media fp regs,
	 they have the same size and endienness. */
      regcache_raw_read (regcache, base_regnum, buffer);
    }

  else if (reg_nr >= tdep->DR0_C_REGNUM 
	   && reg_nr <= tdep->DR_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (reg_nr);

      /* DR_C regs are double precision registers obtained by
	 concatenating 2 single precision floating point registers. */
      for (portion = 0; portion < 2; portion++)
	regcache_raw_read (regcache, base_regnum + portion, 
			   (temp_buffer
			    + REGISTER_RAW_SIZE (base_regnum) * portion));

      /* We must pay attention to the endiannes. */
      sh_sh64_register_convert_to_virtual (reg_nr, REGISTER_VIRTUAL_TYPE (reg_nr),
					   temp_buffer, buffer);
    }

  else if (reg_nr >= tdep->FV0_C_REGNUM 
	   && reg_nr <= tdep->FV_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (reg_nr);

      /* Build the value in the provided buffer. */ 
      /* FV_C regs are vectors of single precision registers obtained by
	 concatenating 4 single precision floating point registers. */
      for (portion = 0; portion < 4; portion++)
	regcache_raw_read (regcache, base_regnum + portion, 
			   ((char *) buffer
			    + REGISTER_RAW_SIZE (base_regnum) * portion));
    }

  else if (reg_nr == tdep->FPSCR_C_REGNUM)
    {
      int fpscr_base_regnum;
      int sr_base_regnum;
      unsigned int fpscr_value;
      unsigned int sr_value;
      unsigned int fpscr_c_value;
      unsigned int fpscr_c_part1_value;
      unsigned int fpscr_c_part2_value;

      fpscr_base_regnum = tdep->FPSCR_REGNUM;
      sr_base_regnum = tdep->SR_REGNUM;

      /* Build the value in the provided buffer. */ 
      /* FPSCR_C is a very weird register that contains sparse bits
	 from the FPSCR and the SR architectural registers.
	 Specifically: */
      /* *INDENT-OFF* */
      /*
	 FPSRC_C bit
            0         Bit 0 of FPSCR
            1         reserved
            2-17      Bit 2-18 of FPSCR
            18-20     Bits 12,13,14 of SR
            21-31     reserved
       */
      /* *INDENT-ON* */
      /* Get FPSCR into a local buffer */
      regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
      /* Get value as an int. */
      fpscr_value = extract_unsigned_integer (temp_buffer, 4);
      /* Get SR into a local buffer */
      regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
      /* Get value as an int. */
      sr_value = extract_unsigned_integer (temp_buffer, 4);
      /* Build the new value. */
      fpscr_c_part1_value = fpscr_value & 0x3fffd;
      fpscr_c_part2_value = (sr_value & 0x7000) << 6;
      fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
      /* Store that in out buffer!!! */
      store_unsigned_integer (buffer, 4, fpscr_c_value);
      /* FIXME There is surely an endianness gotcha here. */
    }

  else if (reg_nr == tdep->FPUL_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (reg_nr);

      /* FPUL_C register is floating point register 32,
	 same size, same endianness. */
      regcache_raw_read (regcache, base_regnum, buffer);
    }
}

void
sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			  int reg_nr, const void *buffer)
{
  int base_regnum, portion;
  char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 

  if (reg_nr >= tdep->DR0_REGNUM
      && reg_nr <= tdep->DR_LAST_REGNUM)
    {
      base_regnum = dr_reg_base_num (reg_nr);

      /* We must pay attention to the endiannes. */
      sh_sh4_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
				      buffer, temp_buffer);

      /* Write the real regs for which this one is an alias.  */
      for (portion = 0; portion < 2; portion++)
	regcache_raw_write (regcache, base_regnum + portion, 
			    (temp_buffer
			     + REGISTER_RAW_SIZE (base_regnum) * portion));
    }
  else if (reg_nr >= tdep->FV0_REGNUM
	   && reg_nr <= tdep->FV_LAST_REGNUM)
    {
      base_regnum = fv_reg_base_num (reg_nr);

      /* Write the real regs for which this one is an alias.  */
      for (portion = 0; portion < 4; portion++)
	regcache_raw_write (regcache, base_regnum + portion,
			    ((char *) buffer
			     + REGISTER_RAW_SIZE (base_regnum) * portion));
    }
}

void
sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const void *buffer)
{
  int base_regnum, portion;
  int offset;
  char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (reg_nr >= tdep->DR0_REGNUM
      && reg_nr <= tdep->DR_LAST_REGNUM)
    {
      base_regnum = dr_reg_base_num (reg_nr);
      /* We must pay attention to the endiannes. */
      sh_sh64_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
				       buffer, temp_buffer);
	  

      /* Write the real regs for which this one is an alias.  */
      for (portion = 0; portion < 2; portion++)
	regcache_raw_write (regcache, base_regnum + portion, 
			    (temp_buffer
			     + REGISTER_RAW_SIZE (base_regnum) * portion));
    }

  else if (reg_nr >= tdep->FPP0_REGNUM 
	   && reg_nr <= tdep->FPP_LAST_REGNUM)
    {
      base_regnum = fpp_reg_base_num (reg_nr);

      /* Write the real regs for which this one is an alias.  */
      for (portion = 0; portion < 2; portion++)
	regcache_raw_write (regcache, base_regnum + portion,
			    ((char *) buffer
			     + REGISTER_RAW_SIZE (base_regnum) * portion));
    }

  else if (reg_nr >= tdep->FV0_REGNUM
	   && reg_nr <= tdep->FV_LAST_REGNUM)
    {
      base_regnum = fv_reg_base_num (reg_nr);

      /* Write the real regs for which this one is an alias.  */
      for (portion = 0; portion < 4; portion++)
	regcache_raw_write (regcache, base_regnum + portion,
			    ((char *) buffer
			     + REGISTER_RAW_SIZE (base_regnum) * portion));
    }

  /* sh compact general pseudo registers. 1-to-1 with a shmedia
     register but only 4 bytes of it.  */
  else if (reg_nr >= tdep->R0_C_REGNUM 
	   && reg_nr <= tdep->T_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (reg_nr);
      /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
	offset = 4;
      else 
	offset = 0;
      /* Let's read the value of the base register into a temporary
	 buffer, so that overwriting the last four bytes with the new
	 value of the pseudo will leave the upper 4 bytes unchanged. */
      regcache_raw_read (regcache, base_regnum, temp_buffer);
      /* Write as an 8 byte quantity */
      memcpy (temp_buffer + offset, buffer, 4);
      regcache_raw_write (regcache, base_regnum, temp_buffer);
    }

  /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
     registers. Both are 4 bytes. */
  else if (reg_nr >= tdep->FP0_C_REGNUM
	       && reg_nr <= tdep->FP_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (reg_nr);
      regcache_raw_write (regcache, base_regnum, buffer);
    }

  else if (reg_nr >= tdep->DR0_C_REGNUM 
	   && reg_nr <= tdep->DR_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (reg_nr);
      for (portion = 0; portion < 2; portion++)
	{
	  /* We must pay attention to the endiannes. */
	  sh_sh64_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
					   buffer, temp_buffer);

	  regcache_raw_write (regcache, base_regnum + portion,
			      (temp_buffer
			       + REGISTER_RAW_SIZE (base_regnum) * portion));
	}
    }

  else if (reg_nr >= tdep->FV0_C_REGNUM 
	   && reg_nr <= tdep->FV_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (reg_nr);
     
      for (portion = 0; portion < 4; portion++)
	{
	  regcache_raw_write (regcache, base_regnum + portion,
			      ((char *) buffer
			       + REGISTER_RAW_SIZE (base_regnum) * portion));
	}
    }

  else if (reg_nr == tdep->FPSCR_C_REGNUM)
    {      
      int fpscr_base_regnum;
      int sr_base_regnum;
      unsigned int fpscr_value;
      unsigned int sr_value;
      unsigned int old_fpscr_value;
      unsigned int old_sr_value;
      unsigned int fpscr_c_value;
      unsigned int fpscr_mask;
      unsigned int sr_mask;

      fpscr_base_regnum = tdep->FPSCR_REGNUM;
      sr_base_regnum = tdep->SR_REGNUM;

      /* FPSCR_C is a very weird register that contains sparse bits
	 from the FPSCR and the SR architectural registers.
	 Specifically: */
      /* *INDENT-OFF* */
      /*
	 FPSRC_C bit
            0         Bit 0 of FPSCR
            1         reserved
            2-17      Bit 2-18 of FPSCR
            18-20     Bits 12,13,14 of SR
            21-31     reserved
       */
      /* *INDENT-ON* */
      /* Get value as an int. */
      fpscr_c_value = extract_unsigned_integer (buffer, 4);

      /* Build the new values. */
      fpscr_mask = 0x0003fffd;
      sr_mask = 0x001c0000;
       
      fpscr_value = fpscr_c_value & fpscr_mask;
      sr_value = (fpscr_value & sr_mask) >> 6;
      
      regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
      old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
      old_fpscr_value &= 0xfffc0002;
      fpscr_value |= old_fpscr_value;
      store_unsigned_integer (temp_buffer, 4, fpscr_value);
      regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
      
      regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
      old_sr_value = extract_unsigned_integer (temp_buffer, 4);
      old_sr_value &= 0xffff8fff;
      sr_value |= old_sr_value;
      store_unsigned_integer (temp_buffer, 4, sr_value);
      regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
    }

  else if (reg_nr == tdep->FPUL_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (reg_nr);
      regcache_raw_write (regcache, base_regnum, buffer);
    }
}

/* Floating point vector of 4 float registers. */
static void
do_fv_register_info (int fv_regnum)
{
  int first_fp_reg_num = fv_reg_base_num (fv_regnum);
  printf_filtered ("fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n", 
		     fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM, 
		     (int) read_register (first_fp_reg_num),
		     (int) read_register (first_fp_reg_num + 1),
		     (int) read_register (first_fp_reg_num + 2),
		     (int) read_register (first_fp_reg_num + 3));
}

/* Floating point vector of 4 float registers, compact mode. */
static void
do_fv_c_register_info (int fv_regnum)
{
  int first_fp_reg_num = sh64_compact_reg_base_num (fv_regnum);
  printf_filtered ("fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n", 
		     fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_C_REGNUM, 
		     (int) read_register (first_fp_reg_num),
		     (int) read_register (first_fp_reg_num + 1),
		     (int) read_register (first_fp_reg_num + 2),
		     (int) read_register (first_fp_reg_num + 3));
}

/* Pairs of single regs. The DR are instead double precision
   registers. */
static void
do_fpp_register_info (int fpp_regnum)
{
  int first_fp_reg_num = fpp_reg_base_num (fpp_regnum);

  printf_filtered ("fpp%d\t0x%08x\t0x%08x\n", 
		    fpp_regnum - gdbarch_tdep (current_gdbarch)->FPP0_REGNUM, 
		    (int) read_register (first_fp_reg_num),
		    (int) read_register (first_fp_reg_num + 1));
}

/* Double precision registers. */
static void
do_dr_register_info (int dr_regnum)
{
  int first_fp_reg_num = dr_reg_base_num (dr_regnum);

  printf_filtered ("dr%d\t0x%08x%08x\n", 
		    dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM, 
		    (int) read_register (first_fp_reg_num),
		    (int) read_register (first_fp_reg_num + 1));
}

/* Double precision registers, compact mode. */
static void
do_dr_c_register_info (int dr_regnum)
{
 int first_fp_reg_num = sh64_compact_reg_base_num (dr_regnum);

 printf_filtered ("dr%d_c\t0x%08x%08x\n",
		  dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_C_REGNUM,
		  (int) read_register (first_fp_reg_num),
		  (int) read_register (first_fp_reg_num +1));
}

/* General register in compact mode. */
static void
do_r_c_register_info (int r_c_regnum)
{
  int regnum =  sh64_compact_reg_base_num (r_c_regnum);

  printf_filtered ("r%d_c\t0x%08x\n", 
		    r_c_regnum - gdbarch_tdep (current_gdbarch)->R0_C_REGNUM, 
		   /*FIXME!!!*/  (int) read_register (regnum));
}

/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
   shmedia REGISTERS. */
/* Control registers, compact mode. */
static void
do_cr_c_register_info (int cr_c_regnum)
{
  switch (cr_c_regnum)
    {
    case 237: printf_filtered ("pc_c\t0x%08x\n", (int) read_register (cr_c_regnum));
      break;
    case 238: printf_filtered ("gbr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
      break;
    case 239: printf_filtered ("mach_c\t0x%08x\n", (int) read_register (cr_c_regnum));
      break;
    case 240: printf_filtered ("macl_c\t0x%08x\n", (int) read_register (cr_c_regnum));
      break;
    case 241: printf_filtered ("pr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
      break;
    case 242: printf_filtered ("t_c\t0x%08x\n", (int) read_register (cr_c_regnum));
      break;
    case 243: printf_filtered ("fpscr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
      break;
    case 244: printf_filtered ("fpul_c\t0x%08x\n", (int)read_register (cr_c_regnum));
      break;
    }
}

static void
sh_do_pseudo_register (int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
    internal_error (__FILE__, __LINE__,
		    "Invalid pseudo register number %d\n", regnum);
  else if (regnum >= tdep->DR0_REGNUM
	   && regnum < tdep->DR_LAST_REGNUM)
    do_dr_register_info (regnum);
  else if (regnum >= tdep->FV0_REGNUM
	   && regnum <= tdep->FV_LAST_REGNUM)
    do_fv_register_info (regnum);
}

static void
sh_do_fp_register (int regnum)
{				/* do values for FP (float) regs */
  char *raw_buffer;
  double flt;	/* double extracted from raw hex data */
  int inv;
  int j;

  /* Allocate space for the float. */
  raw_buffer = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));

  /* Get the data in raw format.  */
  if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
    error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));

  /* Get the register as a number */ 
  flt = unpack_double (builtin_type_float, raw_buffer, &inv);

  /* Print the name and some spaces. */
  fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
  print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);

  /* Print the value. */
  if (inv)
    printf_filtered ("<invalid float>");
  else
    printf_filtered ("%-10.9g", flt);

  /* Print the fp register as hex. */
  printf_filtered ("\t(raw 0x");
  for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
    {
      register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
	: REGISTER_RAW_SIZE (regnum) - 1 - j;
      printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
    }
  printf_filtered (")");
  printf_filtered ("\n");
}

static void
sh64_do_pseudo_register (int regnum)
{
  /* All the sh64-compact mode registers are pseudo registers. */
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 

  if (regnum < NUM_REGS 
      || regnum >= NUM_REGS + NUM_PSEUDO_REGS_SH_MEDIA + NUM_PSEUDO_REGS_SH_COMPACT)
    internal_error (__FILE__, __LINE__,
		    "Invalid pseudo register number %d\n", regnum);

  else if ((regnum >= tdep->DR0_REGNUM
	    && regnum <= tdep->DR_LAST_REGNUM))
    do_dr_register_info (regnum);

  else if ((regnum >= tdep->DR0_C_REGNUM
	    && regnum <= tdep->DR_LAST_C_REGNUM))
    do_dr_c_register_info (regnum);

  else if ((regnum >= tdep->FV0_REGNUM
	    && regnum <= tdep->FV_LAST_REGNUM))
    do_fv_register_info (regnum);
	   
  else if ((regnum >= tdep->FV0_C_REGNUM
	    && regnum <= tdep->FV_LAST_C_REGNUM))
    do_fv_c_register_info (regnum);

  else if (regnum >= tdep->FPP0_REGNUM
	   && regnum <= tdep->FPP_LAST_REGNUM)
    do_fpp_register_info (regnum);

  else if (regnum >= tdep->R0_C_REGNUM
	   && regnum <= tdep->R_LAST_C_REGNUM)
    do_r_c_register_info (regnum); /* FIXME, this function will not print the right format */

  else if (regnum >= tdep->FP0_C_REGNUM
	   && regnum <= tdep->FP_LAST_C_REGNUM)
    sh_do_fp_register (regnum); /* this should work also for pseudoregs */

  else if (regnum >= tdep->PC_C_REGNUM
	   && regnum <= tdep->FPUL_C_REGNUM)
    do_cr_c_register_info (regnum);

}

static void
sh_do_register (int regnum)
{
  char raw_buffer[MAX_REGISTER_RAW_SIZE];

  fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
  print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);

  /* Get the data in raw format.  */
  if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
    printf_filtered ("*value not available*\n");
      
  val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
	     gdb_stdout, 'x', 1, 0, Val_pretty_default);
  printf_filtered ("\t");
  val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
	     gdb_stdout, 0, 1, 0, Val_pretty_default);
  printf_filtered ("\n");
}

static void
sh_print_register (int regnum)
{
  if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
    internal_error (__FILE__, __LINE__,
		    "Invalid register number %d\n", regnum);

  else if (regnum >= 0 && regnum < NUM_REGS)
    {
      if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
	sh_do_fp_register (regnum);	/* FP regs */
      else
	sh_do_register (regnum);	/* All other regs */
    }

  else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
    do_pseudo_register (regnum);
}

void
sh_do_registers_info (int regnum, int fpregs)
{
  if (regnum != -1)		/* do one specified register */
    {
      if (*(REGISTER_NAME (regnum)) == '\0')
	error ("Not a valid register for the current processor type");

      sh_print_register (regnum);
    }
  else
    /* do all (or most) registers */
    {
      regnum = 0;
      while (regnum < NUM_REGS)
	{
	  /* If the register name is empty, it is undefined for this
	     processor, so don't display anything.  */
	  if (REGISTER_NAME (regnum) == NULL
	      || *(REGISTER_NAME (regnum)) == '\0')
	    { 
	      regnum++;
	      continue;
	    }

	  if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
	    {
	      if (fpregs)
		{
		  /* true for "INFO ALL-REGISTERS" command */
		  sh_do_fp_register (regnum);	/* FP regs */
		  regnum ++;
		}
	      else
		regnum += (gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM - FP0_REGNUM);	/* skip FP regs */
	    }
	  else
	    {
	      sh_do_register (regnum);	/* All other regs */
	      regnum++;
	    }
	}

      if (fpregs)
	while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
	  {
	    do_pseudo_register (regnum);
	    regnum++;
	  }
    }
}

void
sh_compact_do_registers_info (int regnum, int fpregs)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 
  if (regnum != -1)		/* do one specified register */
    {
      if (*(REGISTER_NAME (regnum)) == '\0')
	error ("Not a valid register for the current processor type");

      if (regnum >= 0 && regnum < tdep->R0_C_REGNUM)
        error ("Not a valid register for the current processor mode.");

      sh_print_register (regnum);
    }
  else
    /* do all compact registers */
    {
      regnum = tdep->R0_C_REGNUM;
      while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
        {
          do_pseudo_register (regnum);
          regnum++;
        }
    }
}

void
sh64_do_registers_info (int regnum, int fpregs)
{
  if (pc_is_isa32 (get_frame_pc (deprecated_selected_frame)))
   sh_do_registers_info (regnum, fpregs);
  else
   sh_compact_do_registers_info (regnum, fpregs); 
}

#ifdef SVR4_SHARED_LIBS

/* Fetch (and possibly build) an appropriate link_map_offsets structure
   for native i386 linux targets using the struct offsets defined in
   link.h (but without actual reference to that file).

   This makes it possible to access i386-linux shared libraries from
   a gdb that was not built on an i386-linux host (for cross debugging).
   */

struct link_map_offsets *
sh_linux_svr4_fetch_link_map_offsets (void)
{
  static struct link_map_offsets lmo;
  static struct link_map_offsets *lmp = 0;

  if (lmp == 0)
    {
      lmp = &lmo;

      lmo.r_debug_size = 8;	/* 20 not actual size but all we need */

      lmo.r_map_offset = 4;
      lmo.r_map_size   = 4;

      lmo.link_map_size = 20;	/* 552 not actual size but all we need */

      lmo.l_addr_offset = 0;
      lmo.l_addr_size   = 4;

      lmo.l_name_offset = 4;
      lmo.l_name_size   = 4;

      lmo.l_next_offset = 12;
      lmo.l_next_size   = 4;

      lmo.l_prev_offset = 16;
      lmo.l_prev_size   = 4;
    }

    return lmp;
}
#endif /* SVR4_SHARED_LIBS */


enum
{
   DSP_DSR_REGNUM = 24,
   DSP_A0G_REGNUM,
   DSP_A0_REGNUM,
   DSP_A1G_REGNUM,
   DSP_A1_REGNUM,
   DSP_M0_REGNUM,
   DSP_M1_REGNUM,
   DSP_X0_REGNUM,
   DSP_X1_REGNUM,
   DSP_Y0_REGNUM,
   DSP_Y1_REGNUM,
 
   DSP_MOD_REGNUM = 40,
 
   DSP_RS_REGNUM = 43,
   DSP_RE_REGNUM,
 
   DSP_R0_BANK_REGNUM = 51,
   DSP_R7_BANK_REGNUM = DSP_R0_BANK_REGNUM + 7
};

static int
sh_dsp_register_sim_regno (int nr)
{
  if (legacy_register_sim_regno (nr) < 0)
    return legacy_register_sim_regno (nr);
  if (nr >= DSP_DSR_REGNUM && nr < DSP_Y1_REGNUM)
    return nr - DSP_DSR_REGNUM + SIM_SH_DSR_REGNUM;
  if (nr == DSP_MOD_REGNUM)
    return SIM_SH_MOD_REGNUM;
  if (nr == DSP_RS_REGNUM)
    return SIM_SH_RS_REGNUM;
  if (nr == DSP_RE_REGNUM)
    return SIM_SH_RE_REGNUM;
  if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
    return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
  return nr;
}

static gdbarch_init_ftype sh_gdbarch_init;

static struct gdbarch *
sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  static LONGEST sh_call_dummy_words[] = {0};
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  gdbarch_register_name_ftype *sh_register_name;
  gdbarch_deprecated_store_return_value_ftype *sh_store_return_value;
  gdbarch_register_virtual_type_ftype *sh_register_virtual_type;
  enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;

  /* Try to determine the ABI of the object we are loading.  */

  if (info.abfd != NULL)
    {
      osabi = gdbarch_lookup_osabi (info.abfd);
      /* If we get "unknown" back, just leave it that way.  */
    }

  /* Find a candidate among the list of pre-declared architectures. */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* Make sure the ABI selection matches.  */
      tdep = gdbarch_tdep (arches->gdbarch);
      if (tdep && tdep->osabi == osabi)
	return arches->gdbarch;
    }

  /* None found, create a new architecture from the information
     provided. */
  tdep = XMALLOC (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
     ready to unwind the PC first (see frame.c:get_prev_frame()).  */
  set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);

  tdep->osabi = osabi;

  /* Initialize the register numbers that are not common to all the
     variants to -1, if necessary thse will be overwritten in the case
     statement below. */
  tdep->FPUL_REGNUM = -1;
  tdep->FPSCR_REGNUM = -1;
  tdep->PR_REGNUM = 17;
  tdep->SR_REGNUM = 22;
  tdep->DSR_REGNUM = -1;
  tdep->FP_LAST_REGNUM = -1;
  tdep->A0G_REGNUM = -1;
  tdep->A0_REGNUM = -1;
  tdep->A1G_REGNUM = -1;
  tdep->A1_REGNUM = -1;
  tdep->M0_REGNUM = -1;
  tdep->M1_REGNUM = -1;
  tdep->X0_REGNUM = -1;
  tdep->X1_REGNUM = -1;
  tdep->Y0_REGNUM = -1;
  tdep->Y1_REGNUM = -1;
  tdep->MOD_REGNUM = -1;
  tdep->RS_REGNUM = -1;
  tdep->RE_REGNUM = -1;
  tdep->SSR_REGNUM = -1;
  tdep->SPC_REGNUM = -1;
  tdep->DR0_REGNUM = -1;
  tdep->DR_LAST_REGNUM = -1;
  tdep->FV0_REGNUM = -1;
  tdep->FV_LAST_REGNUM = -1;
  tdep->ARG0_REGNUM = 4;
  tdep->ARGLAST_REGNUM = 7;
  tdep->RETURN_REGNUM = 0;
  tdep->FLOAT_ARGLAST_REGNUM = -1;

  tdep->sh_abi = SH_ABI_UNKNOWN;

  set_gdbarch_fp0_regnum (gdbarch, -1);
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_max_register_raw_size (gdbarch, 4);
  set_gdbarch_max_register_virtual_size (gdbarch, 4);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_num_regs (gdbarch, SH_DEFAULT_NUM_REGS);
  set_gdbarch_sp_regnum (gdbarch, 15);
  set_gdbarch_fp_regnum (gdbarch, 14);
  set_gdbarch_pc_regnum (gdbarch, 16);
  set_gdbarch_register_size (gdbarch, 4);
  set_gdbarch_register_bytes (gdbarch, SH_DEFAULT_NUM_REGS * 4);
  set_gdbarch_deprecated_do_registers_info (gdbarch, sh_do_registers_info);
  set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
  set_gdbarch_frame_chain (gdbarch, sh_frame_chain);
  set_gdbarch_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
  set_gdbarch_init_extra_frame_info (gdbarch, sh_init_extra_frame_info);
  set_gdbarch_deprecated_extract_return_value (gdbarch, sh_extract_return_value);
  set_gdbarch_push_arguments (gdbarch, sh_push_arguments);
  set_gdbarch_store_struct_return (gdbarch, sh_store_struct_return);
  set_gdbarch_use_struct_convention (gdbarch, sh_use_struct_convention);
  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sh_extract_struct_value_address);
  set_gdbarch_pop_frame (gdbarch, sh_pop_frame);
  set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
  set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
  skip_prologue_hard_way = sh_skip_prologue_hard_way;
  do_pseudo_register = sh_do_pseudo_register;

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_sh:
      sh_register_name = sh_sh_register_name;
      sh_show_regs = sh_generic_show_regs;
      sh_store_return_value = sh_default_store_return_value;
      sh_register_virtual_type = sh_default_register_virtual_type;
      set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
      set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
      break;
    case bfd_mach_sh2:
      sh_register_name = sh_sh_register_name;
      sh_show_regs = sh_generic_show_regs;
      sh_store_return_value = sh_default_store_return_value;
      sh_register_virtual_type = sh_default_register_virtual_type;
      set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
      set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
      break;      
    case bfd_mach_sh_dsp:
      sh_register_name = sh_sh_dsp_register_name;
      sh_show_regs = sh_dsp_show_regs;
      sh_store_return_value = sh_default_store_return_value;
      sh_register_virtual_type = sh_default_register_virtual_type;
      set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
      set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
      set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
      tdep->DSR_REGNUM = 24;
      tdep->A0G_REGNUM = 25;
      tdep->A0_REGNUM = 26;
      tdep->A1G_REGNUM = 27;
      tdep->A1_REGNUM = 28;
      tdep->M0_REGNUM = 29;
      tdep->M1_REGNUM = 30;
      tdep->X0_REGNUM = 31;
      tdep->X1_REGNUM = 32;
      tdep->Y0_REGNUM = 33;
      tdep->Y1_REGNUM = 34;
      tdep->MOD_REGNUM = 40;
      tdep->RS_REGNUM = 43;
      tdep->RE_REGNUM = 44;
      break;
    case bfd_mach_sh3:
      sh_register_name = sh_sh3_register_name;
      sh_show_regs = sh3_show_regs;
      sh_store_return_value = sh_default_store_return_value;
      sh_register_virtual_type = sh_default_register_virtual_type;
      set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
      set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
      tdep->SSR_REGNUM = 41;
      tdep->SPC_REGNUM = 42;
      break;
    case bfd_mach_sh3e:
      sh_register_name = sh_sh3e_register_name;
      sh_show_regs = sh3e_show_regs;
      sh_store_return_value = sh3e_sh4_store_return_value;
      sh_register_virtual_type = sh_sh3e_register_virtual_type;
      set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
      set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
      set_gdbarch_deprecated_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
      set_gdbarch_fp0_regnum (gdbarch, 25);
      tdep->FPUL_REGNUM = 23;
      tdep->FPSCR_REGNUM = 24;
      tdep->FP_LAST_REGNUM = 40;
      tdep->SSR_REGNUM = 41;
      tdep->SPC_REGNUM = 42;
      break;
    case bfd_mach_sh3_dsp:
      sh_register_name = sh_sh3_dsp_register_name;
      sh_show_regs = sh3_dsp_show_regs;
      sh_store_return_value = sh_default_store_return_value;
      sh_register_virtual_type = sh_default_register_virtual_type;
      set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
      set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
      tdep->DSR_REGNUM = 24;
      tdep->A0G_REGNUM = 25;
      tdep->A0_REGNUM = 26;
      tdep->A1G_REGNUM = 27;
      tdep->A1_REGNUM = 28;
      tdep->M0_REGNUM = 29;
      tdep->M1_REGNUM = 30;
      tdep->X0_REGNUM = 31;
      tdep->X1_REGNUM = 32;
      tdep->Y0_REGNUM = 33;
      tdep->Y1_REGNUM = 34;
      tdep->MOD_REGNUM = 40;
      tdep->RS_REGNUM = 43;
      tdep->RE_REGNUM = 44;
      tdep->SSR_REGNUM = 41;
      tdep->SPC_REGNUM = 42;
      break;
    case bfd_mach_sh4:
      sh_register_name = sh_sh4_register_name;
      sh_show_regs = sh4_show_regs;
      sh_store_return_value = sh3e_sh4_store_return_value;
      sh_register_virtual_type = sh_sh4_register_virtual_type;
      set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
      set_gdbarch_deprecated_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
      set_gdbarch_fp0_regnum (gdbarch, 25);
      set_gdbarch_register_raw_size (gdbarch, sh_sh4_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, sh_sh4_register_raw_size);
      set_gdbarch_register_byte (gdbarch, sh_sh4_register_byte);
      set_gdbarch_num_pseudo_regs (gdbarch, 12);
      set_gdbarch_max_register_raw_size (gdbarch, 4 * 4);
      set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4);
      set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
      set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
      tdep->FPUL_REGNUM = 23;
      tdep->FPSCR_REGNUM = 24;
      tdep->FP_LAST_REGNUM = 40;
      tdep->SSR_REGNUM = 41;
      tdep->SPC_REGNUM = 42;
      tdep->DR0_REGNUM = 59;
      tdep->DR_LAST_REGNUM = 66;
      tdep->FV0_REGNUM = 67;
      tdep->FV_LAST_REGNUM = 70;
      break;
    case bfd_mach_sh5:
      tdep->PR_REGNUM = 18;
      tdep->SR_REGNUM = 65;
      tdep->FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM;
      tdep->FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1;
      tdep->SSR_REGNUM = SIM_SH64_SSR_REGNUM;
      tdep->SPC_REGNUM = SIM_SH64_SPC_REGNUM;
      tdep->TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7;
      tdep->FPP0_REGNUM = 173;
      tdep->FPP_LAST_REGNUM = 204;
      tdep->DR0_REGNUM = 141;
      tdep->DR_LAST_REGNUM = 172;
      tdep->FV0_REGNUM = 205;
      tdep->FV_LAST_REGNUM = 220;
      tdep->R0_C_REGNUM = 221;
      tdep->R_LAST_C_REGNUM = 236;
      tdep->PC_C_REGNUM = 237; 
      tdep->GBR_C_REGNUM = 238;
      tdep->MACH_C_REGNUM = 239;
      tdep->MACL_C_REGNUM = 240;
      tdep->PR_C_REGNUM = 241;
      tdep->T_C_REGNUM = 242;
      tdep->FPSCR_C_REGNUM = 243;
      tdep->FPUL_C_REGNUM = 244;
      tdep->FP0_C_REGNUM = 245;
      tdep->FP_LAST_C_REGNUM = 260;
      tdep->DR0_C_REGNUM = 261;
      tdep->DR_LAST_C_REGNUM = 268;
      tdep->FV0_C_REGNUM = 269;
      tdep->FV_LAST_C_REGNUM = 272;
      tdep->ARG0_REGNUM = 2;
      tdep->ARGLAST_REGNUM = 9;
      tdep->RETURN_REGNUM = 2;
      tdep->FLOAT_ARGLAST_REGNUM = 11;

      set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA + NUM_PSEUDO_REGS_SH_COMPACT);
      set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
      set_gdbarch_pc_regnum (gdbarch, 64);

      /* Determine the ABI */
      if (bfd_get_arch_size (info.abfd) == 64)
	{
	  /* If the ABI is the 64-bit one, it can only be sh-media. */
	  tdep->sh_abi = SH_ABI_64;
	  set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
	  set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
	}
      else
	{
	  /* If the ABI is the 32-bit one it could be either media or
             compact. */
	  tdep->sh_abi = SH_ABI_32;
	  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
	  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
	}

      /* the number of real registers is the same whether we are in 
	 ISA16(compact) or ISA32(media). */
      set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
      set_gdbarch_register_size (gdbarch, 8); /*????*/
      set_gdbarch_register_bytes (gdbarch, 
				  ((SIM_SH64_NR_FP_REGS + 1) * 4)
				  + (SIM_SH64_NR_REGS - SIM_SH64_NR_FP_REGS -1) * 8);

      sh_register_name = sh_sh64_register_name;
      sh_show_regs = sh64_show_regs;
      sh_register_virtual_type = sh_sh64_register_virtual_type;
      sh_store_return_value = sh64_store_return_value;
      skip_prologue_hard_way = sh64_skip_prologue_hard_way;
      do_pseudo_register = sh64_do_pseudo_register;
      set_gdbarch_register_raw_size (gdbarch, sh_sh64_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, sh_sh64_register_raw_size);
      set_gdbarch_register_byte (gdbarch, sh_sh64_register_byte);
      /* This seems awfully wrong!*/
      /*set_gdbarch_max_register_raw_size (gdbarch, 8);*/
      /* should include the size of the pseudo regs. */
      set_gdbarch_max_register_raw_size (gdbarch, 4 * 4);
      /* Or should that go in the virtual_size? */
      /*set_gdbarch_max_register_virtual_size (gdbarch, 8);*/
      set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4);
      set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
      set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);

      set_gdbarch_deprecated_do_registers_info (gdbarch, sh64_do_registers_info);
      set_gdbarch_frame_init_saved_regs (gdbarch, sh64_nofp_frame_init_saved_regs);
      set_gdbarch_breakpoint_from_pc (gdbarch, sh_sh64_breakpoint_from_pc);
      set_gdbarch_init_extra_frame_info (gdbarch, sh64_init_extra_frame_info);
      set_gdbarch_frame_chain (gdbarch, sh64_frame_chain);
      set_gdbarch_get_saved_register (gdbarch, sh64_get_saved_register);
      set_gdbarch_deprecated_extract_return_value (gdbarch, sh64_extract_return_value);
      set_gdbarch_push_arguments (gdbarch, sh64_push_arguments);
      /*set_gdbarch_store_struct_return (gdbarch, sh64_store_struct_return);*/
      set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sh64_extract_struct_value_address);
      set_gdbarch_use_struct_convention (gdbarch, sh64_use_struct_convention);
      set_gdbarch_pop_frame (gdbarch, sh64_pop_frame);
      set_gdbarch_elf_make_msymbol_special (gdbarch,
                                            sh64_elf_make_msymbol_special);
      break;
    default:
      sh_register_name = sh_generic_register_name;
      sh_show_regs = sh_generic_show_regs;
      sh_store_return_value = sh_default_store_return_value;
      sh_register_virtual_type = sh_default_register_virtual_type;
      set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
      set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
      set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
      break;
    }

  set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
  set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
  set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
  set_gdbarch_write_sp (gdbarch, generic_target_write_sp);

  set_gdbarch_register_name (gdbarch, sh_register_name);
  set_gdbarch_register_virtual_type (gdbarch, sh_register_virtual_type);

  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);

  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_call_dummy_words (gdbarch, sh_call_dummy_words);
  set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (sh_call_dummy_words));
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
  set_gdbarch_coerce_float_to_double (gdbarch, 
				      sh_coerce_float_to_double);

  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_push_return_address (gdbarch, sh_push_return_address);

  set_gdbarch_deprecated_store_return_value (gdbarch, sh_store_return_value);
  set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_function_start_offset (gdbarch, 0);

  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
  set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
  set_gdbarch_frame_saved_pc (gdbarch, sh_frame_saved_pc);
  set_gdbarch_saved_pc_after_call (gdbarch, sh_saved_pc_after_call);
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);

  /* Hook in ABI-specific overrides, if they have been registered.

     FIXME: if the ABI is unknown, this is probably an embedded target,
     so we should not warn about this situation.  */
  gdbarch_init_osabi (info, gdbarch, osabi);

  return gdbarch;
}

static void
sh_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  if (tdep == NULL)
    return;

  fprintf_unfiltered (file, "sh_dump_tdep: OS ABI = %s\n",
                      gdbarch_osabi_name (tdep->osabi));
}

void
_initialize_sh_tdep (void)
{
  struct cmd_list_element *c;
  
  gdbarch_register (bfd_arch_sh, sh_gdbarch_init, sh_dump_tdep);

  add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
}