aboutsummaryrefslogtreecommitdiff
path: root/gdb/sh-tdep.c
blob: d8af915be439a64a7ab33babc6c382b26ff4d931 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
/* Target-dependent code for Hitachi Super-H, for GDB.
   Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

/*
 Contributed by Steve Chamberlain
                sac@cygnus.com
 */

#include "defs.h"
#include "frame.h"
#include "obstack.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "value.h"
#include "dis-asm.h"
#include "inferior.h"		/* for BEFORE_TEXT_END etc. */

extern int remote_write_size;	/* in remote.c */

/* Default to the original SH.  */

#define DEFAULT_SH_TYPE "sh"

/* This value is the model of SH in use.  */

char *sh_processor_type;

char *tmp_sh_processor_type;

/* A set of original names, to be used when restoring back to generic
   registers from a specific set.  */

char *sh_generic_reg_names[] = REGISTER_NAMES;

char *sh_reg_names[] = {
  "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
  "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
  "pc",   "pr",   "gbr",  "vbr",  "mach", "macl", "sr",
  "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
};

char *sh3_reg_names[] = {
  "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
  "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
  "pc",   "pr",   "gbr",  "vbr",  "mach", "macl", "sr",
  "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "ssr",  "spc",
  "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
  "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
};

char *sh3e_reg_names[] = {
  "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
  "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
  "pc",   "pr",   "gbr",  "vbr",  "mach", "macl", "sr",
  "fpul", "fpscr",
  "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",
  "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
  "ssr",  "spc",
  "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
  "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
};

struct {
  char *name;
  char **regnames;
} sh_processor_type_table[] = {
  { "sh", sh_reg_names },
  { "sh3", sh3_reg_names },
  { "sh3e", sh3e_reg_names },
  { NULL, NULL }
};

/* Prologue looks like
   [mov.l	<regs>,@-r15]...
   [sts.l	pr,@-r15]
   [mov.l	r14,@-r15]
   [mov		r15,r14]
*/

#define IS_STS(x)  		((x) == 0x4f22)
#define IS_PUSH(x) 		(((x) & 0xff0f) == 0x2f06)
#define GET_PUSHED_REG(x)  	(((x) >> 4) & 0xf)
#define IS_MOV_SP_FP(x)  	((x) == 0x6ef3)
#define IS_ADD_SP(x) 		(((x) & 0xff00) == 0x7f00)
#define IS_MOV_R3(x) 		(((x) & 0xff00) == 0x1a00)
#define IS_SHLL_R3(x)		((x) == 0x4300)
#define IS_ADD_R3SP(x)		((x) == 0x3f3c)

/* Skip any prologue before the guts of a function */

CORE_ADDR
sh_skip_prologue (start_pc)
     CORE_ADDR start_pc;
{
  int w;

  w = read_memory_integer (start_pc, 2);
  while (IS_STS (w)
	 || IS_PUSH (w)
	 || IS_MOV_SP_FP (w)
	 || IS_MOV_R3 (w)
	 || IS_ADD_R3SP (w)
	 || IS_ADD_SP (w)
	 || IS_SHLL_R3 (w))
    {
      start_pc += 2;
      w = read_memory_integer (start_pc, 2);
    }

  return start_pc;
}

/* Disassemble an instruction.  */

int
gdb_print_insn_sh (memaddr, info)
     bfd_vma memaddr;
     disassemble_info *info;
{
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    return print_insn_sh (memaddr, info);
  else
    return print_insn_shl (memaddr, info);
}

/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.

   For us, the frame address is its stack pointer value, so we look up
   the function prologue to determine the caller's sp value, and return it.  */

CORE_ADDR
sh_frame_chain (frame)
     struct frame_info *frame;
{
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    return frame->frame;	/* dummy frame same as caller's frame */
  if (!inside_entry_file (frame->pc))
    return read_memory_integer (FRAME_FP (frame) + frame->f_offset, 4);
  else
    return 0;
}

/* Find REGNUM on the stack.  Otherwise, it's in an active register.  One thing
   we might want to do here is to check REGNUM against the clobber mask, and
   somehow flag it as invalid if it isn't saved on the stack somewhere.  This
   would provide a graceful failure mode when trying to get the value of
   caller-saves registers for an inner frame.  */

CORE_ADDR
sh_find_callers_reg (fi, regnum)
     struct frame_info *fi;
     int regnum;
{
  struct frame_saved_regs fsr;

  for (; fi; fi = fi->next)
    if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
      /* When the caller requests PR from the dummy frame, we return PC because
	 that's where the previous routine appears to have done a call from. */
      return generic_read_register_dummy (fi, regnum);
    else 
      {
	FRAME_FIND_SAVED_REGS(fi, fsr);
	if (fsr.regs[regnum] != 0)
	  return read_memory_integer (fsr.regs[regnum], 
				      REGISTER_RAW_SIZE(regnum));
      }
  return read_register (regnum);
}

/* Put here the code to store, into a struct frame_saved_regs, the
   addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special: the address we
   return for it IS the sp for the next frame. */

/* FIXME!  A lot of this should be abstracted out into a sh_scan_prologue 
   function, and the struct frame_info should have a frame_saved_regs
   embedded in it, so we would only have to do this once. */

void
sh_frame_find_saved_regs (fi, fsr)
     struct frame_info *fi;
     struct frame_saved_regs *fsr;
{
  int where[NUM_REGS];
  int rn;
  int have_fp = 0;
  int depth;
  int pc;
  int opc;
  int insn;
  int r3_val = 0;
  char * dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame, fi->frame);

  if (dummy_regs)
    {
      /* DANGER!  This is ONLY going to work if the char buffer format of
	 the saved registers is byte-for-byte identical to the 
	 CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
      memcpy (&fsr->regs, dummy_regs, sizeof(fsr));
      return;
    }

  opc = pc = get_pc_function_start (fi->pc);

  insn = read_memory_integer (pc, 2);

  fi->leaf_function = 1;
  fi->f_offset = 0;

  for (rn = 0; rn < NUM_REGS; rn++)
    where[rn] = -1;

  depth = 0;

  /* Loop around examining the prologue insns, but give up
     after 15 of them, since we're getting silly then */
  while (pc < opc + 15 * 2)
    {
      /* See where the registers will be saved to */
      if (IS_PUSH (insn))
	{
	  pc += 2;
	  rn = GET_PUSHED_REG (insn);
	  where[rn] = depth;
	  insn = read_memory_integer (pc, 2);
	  depth += 4;
	}
      else if (IS_STS (insn))
	{
	  pc += 2;
	  where[PR_REGNUM] = depth;
	  insn = read_memory_integer (pc, 2);
	  /* If we're storing the pr then this isn't a leaf */
	  fi->leaf_function = 0;
	  depth += 4;
	}
      else if (IS_MOV_R3 (insn))
	{
	  r3_val = (char) (insn & 0xff);
	  pc += 2;
	  insn = read_memory_integer (pc, 2);
	}
      else if (IS_SHLL_R3 (insn))
	{
	  r3_val <<= 1;
	  pc += 2;
	  insn = read_memory_integer (pc, 2);
	}
      else if (IS_ADD_R3SP (insn))
	{
	  depth += -r3_val;
	  pc += 2;
	  insn = read_memory_integer (pc, 2);
	}
      else if (IS_ADD_SP (insn))
	{
	  pc += 2;
	  depth += -((char) (insn & 0xff));
	  insn = read_memory_integer (pc, 2);
	}
      else
	break;
    }

  /* Now we know how deep things are, we can work out their addresses */

  for (rn = 0; rn < NUM_REGS; rn++)
    {
      if (where[rn] >= 0)
	{
	  if (rn == FP_REGNUM)
	    have_fp = 1;

	  fsr->regs[rn] = fi->frame - where[rn] + depth - 4;
	}
      else
	{
	  fsr->regs[rn] = 0;
	}
    }

  if (have_fp)
    {
      fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[FP_REGNUM], 4);
    }
  else
    {
      fsr->regs[SP_REGNUM] = fi->frame - 4;
    }

  fi->f_offset = depth - where[FP_REGNUM] - 4;
  /* Work out the return pc - either from the saved pr or the pr
     value */
}

/* initialize the extra info saved in a FRAME */

void
sh_init_extra_frame_info (fromleaf, fi)
     int fromleaf;
     struct frame_info *fi;
{
  struct frame_saved_regs fsr;

  if (fi->next)
    fi->pc = FRAME_SAVED_PC (fi->next);

  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    {
      /* We need to setup fi->frame here because run_stack_dummy gets it wrong
	 by assuming it's always FP.  */
      fi->frame     = generic_read_register_dummy (fi, SP_REGNUM);
      fi->return_pc = generic_read_register_dummy (fi, PC_REGNUM);
      fi->f_offset = -(CALL_DUMMY_LENGTH + 4);
      fi->leaf_function = 0;
      return;
    }
  else
    {
      FRAME_FIND_SAVED_REGS (fi, fsr);
      fi->return_pc = sh_find_callers_reg (fi, PR_REGNUM);
    }
}

/* Discard from the stack the innermost frame,
   restoring all saved registers.  */

void
sh_pop_frame ()
{
  register struct frame_info *frame = get_current_frame ();
  register CORE_ADDR fp;
  register int regnum;
  struct frame_saved_regs fsr;

  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    generic_pop_dummy_frame ();
  else
  {
    fp = FRAME_FP (frame);
    get_frame_saved_regs (frame, &fsr);

    /* Copy regs from where they were saved in the frame */
    for (regnum = 0; regnum < NUM_REGS; regnum++)
      if (fsr.regs[regnum])
	write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));

    write_register (PC_REGNUM, frame->return_pc);
    write_register (SP_REGNUM, fp + 4);
  }
  flush_cached_frames ();
}

/* Function: push_arguments
   Setup the function arguments for calling a function in the inferior.

   On the Hitachi SH architecture, there are four registers (R4 to R7)
   which are dedicated for passing function arguments.  Up to the first
   four arguments (depending on size) may go into these registers.
   The rest go on the stack.

   Arguments that are smaller than 4 bytes will still take up a whole
   register or a whole 32-bit word on the stack, and will be 
   right-justified in the register or the stack word.  This includes
   chars, shorts, and small aggregate types.

   Arguments that are larger than 4 bytes may be split between two or 
   more registers.  If there are not enough registers free, an argument
   may be passed partly in a register (or registers), and partly on the
   stack.  This includes doubles, long longs, and larger aggregates. 
   As far as I know, there is no upper limit to the size of aggregates 
   that will be passed in this way; in other words, the convention of 
   passing a pointer to a large aggregate instead of a copy is not used.

   An exceptional case exists for struct arguments (and possibly other
   aggregates such as arrays) if the size is larger than 4 bytes but 
   not a multiple of 4 bytes.  In this case the argument is never split 
   between the registers and the stack, but instead is copied in its
   entirety onto the stack, AND also copied into as many registers as 
   there is room for.  In other words, space in registers permitting, 
   two copies of the same argument are passed in.  As far as I can tell,
   only the one on the stack is used, although that may be a function 
   of the level of compiler optimization.  I suspect this is a compiler
   bug.  Arguments of these odd sizes are left-justified within the 
   word (as opposed to arguments smaller than 4 bytes, which are 
   right-justified).
 

   If the function is to return an aggregate type such as a struct, it 
   is either returned in the normal return value register R0 (if its 
   size is no greater than one byte), or else the caller must allocate
   space into which the callee will copy the return value (if the size
   is greater than one byte).  In this case, a pointer to the return 
   value location is passed into the callee in register R2, which does 
   not displace any of the other arguments passed in via registers R4
   to R7.   */

CORE_ADDR
sh_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     value_ptr *args;
     CORE_ADDR sp;
     unsigned char struct_return;
     CORE_ADDR struct_addr;
{
  int argreg;
  int argnum;
  CORE_ADDR regval;
  char *val;
  char valbuf[4];
  int len;
  int push[4];		/* some of the first 4 args may not need to be pushed
			   onto the stack, because they can go in registers */

  /* first force sp to a 4-byte alignment */
  sp = sp & ~3;

  /* The "struct return pointer" pseudo-argument has its own dedicated 
     register */
  if (struct_return)
      write_register (STRUCT_RETURN_REGNUM, struct_addr);

  /* Now load as many as possible of the first arguments into registers.
     There are 16 bytes in four registers available. 
     Loop thru args from first to last.  */
  push[0] = push[1] = push[2] = push[3] = 0;
  for (argnum = 0, argreg = ARG0_REGNUM; 
       argnum < nargs && argreg <= ARGLAST_REGNUM; 
       argnum++)
    {
      struct type *type = VALUE_TYPE (args[argnum]);
      
      len = TYPE_LENGTH (type);

      switch (TYPE_CODE(type)) {
      case TYPE_CODE_STRUCT:
      case TYPE_CODE_UNION:
      /* case TYPE_CODE_ARRAY:  case TYPE_CODE_STRING: */
	if (len <= 4   ||   (len & ~3) == 0)
	  push[argnum] = 0;		/* doesn't get pushed onto stack */
	else
	  push[argnum] = len;		/* does    get pushed onto stack */
	break;
      default:
	push[argnum] = 0;		/* doesn't get pushed onto stack */
      }
      if (len < 4)
	{ /* value gets right-justified in the register */
	  memcpy(valbuf + (4 - len), 
		 (char *) VALUE_CONTENTS (args[argnum]), len);
	  val = valbuf;
	}
      else
	val = (char *) VALUE_CONTENTS (args[argnum]);

      while (len > 0)
	{
	  regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
	  write_register (argreg, regval);

	  len -= REGISTER_RAW_SIZE (argreg);
	  val += REGISTER_RAW_SIZE (argreg);
	  argreg++;
	  if (argreg > ARGLAST_REGNUM)
	    {
	      push[argnum] = len;	/* ran out of arg passing registers! */
	      break;			/* len bytes remain to go onto stack */
	    }
	}
    }

  /* Now push as many as necessary of the remaining arguments onto the stack.
     For args 0 to 3, the arg may have been passed in a register. 
     Loop thru args from last to first.  */
  for (argnum = nargs-1; argnum >= 0; --argnum)
    {
      if (argnum < 4 && push[argnum] == 0)
	continue;	/* no need to push this arg */

      len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
      if (len < 4)
	{
	  memcpy(valbuf + (4 - len), 
		 (char *) VALUE_CONTENTS (args[argnum]), len);
	  val = valbuf;
	}
      else
	val = (char *) VALUE_CONTENTS (args[argnum]);

      if (argnum < 4)
	if (len > push[argnum])		/* some part may already be in a reg */
	  {
	    val += (len - push[argnum]);
	    len = push[argnum];
	  }

      sp -= (len + 3) & ~3;
      write_memory (sp, val, len);
    }
  return sp;
}

/* Function: push_return_address (pc)
   Set up the return address for the inferior function call.
   Necessary for targets where we don't actually execute a JSR/BSR instruction */

void
sh_push_return_address (pc)
     CORE_ADDR pc;
{
  write_register (PR_REGNUM, entry_point_address ());
}

/* Command to set the processor type.  */

void
sh_set_processor_type_command (args, from_tty)
     char *args;
     int from_tty;
{
  int i;
  char *temp;

  /* The `set' commands work by setting the value, then calling the hook,
     so we let the general command modify a scratch location, then decide
     here if we really want to modify the processor type.  */
  if (tmp_sh_processor_type == NULL || *tmp_sh_processor_type == '\0')
    {
      printf_unfiltered ("The known SH processor types are as follows:\n\n");
      for (i = 0; sh_processor_type_table[i].name != NULL; ++i)
	printf_unfiltered ("%s\n", sh_processor_type_table[i].name);

      /* Restore the value.  */
      tmp_sh_processor_type = strsave (sh_processor_type);

      return;
    }
  
  if (!sh_set_processor_type (tmp_sh_processor_type))
    {
      /* Restore to a valid value before erroring out.  */
      temp = tmp_sh_processor_type;
      tmp_sh_processor_type = strsave (sh_processor_type);
      error ("Unknown processor type `%s'.", temp);
    }
}

/* This is a dummy not actually run.  */

static void
sh_show_processor_type_command (args, from_tty)
     char *args;
     int from_tty;
{
}

/* Modify the actual processor type. */

int
sh_set_processor_type (str)
     char *str;
{
  int i, j;

  if (str == NULL)
    return 0;

  for (i = 0; sh_processor_type_table[i].name != NULL; ++i)
    {
      if (strcasecmp (str, sh_processor_type_table[i].name) == 0)
	{
	  sh_processor_type = str;

	  for (j = 0; j < NUM_REGS; ++j)
	    reg_names[j] = sh_processor_type_table[i].regnames[j];

	  return 1;
	}
    }

  return 0;
}

/* Print the registers in a form similar to the E7000 */

static void
sh_show_regs (args, from_tty)
     char *args;
     int from_tty;
{
  printf_filtered ("PC=%08x SR=%08x PR=%08x MACH=%08x MACHL=%08x\n",
		   read_register (PC_REGNUM),
		   read_register (SR_REGNUM),
		   read_register (PR_REGNUM),
		   read_register (MACH_REGNUM),
		   read_register (MACL_REGNUM));

  printf_filtered ("R0-R7  %08x %08x %08x %08x %08x %08x %08x %08x\n",
		   read_register (0),
		   read_register (1),
		   read_register (2),
		   read_register (3),
		   read_register (4),
		   read_register (5),
		   read_register (6),
		   read_register (7));
  printf_filtered ("R8-R15 %08x %08x %08x %08x %08x %08x %08x %08x\n",
		   read_register (8),
		   read_register (9),
		   read_register (10),
		   read_register (11),
		   read_register (12),
		   read_register (13),
		   read_register (14),
		   read_register (15));
}

void
sh_extract_return_value (type, regbuf, valbuf)
     struct type *type;
     void *regbuf;
     void *valbuf;
{
  int len = TYPE_LENGTH(type);

  if (len <= 4)
    memcpy (valbuf, ((char *) regbuf) + 4 - len, len);
  else if (len <= 8)
    memcpy (valbuf, ((char *) regbuf) + 8 - len, len);
  else
    error ("bad size for return value");
}

void
_initialize_sh_tdep ()
{
  struct cmd_list_element *c;

  tm_print_insn = gdb_print_insn_sh;

  c = add_set_cmd ("processor", class_support, var_string_noescape,
		   (char *) &tmp_sh_processor_type,
		   "Set the type of SH processor in use.\n\
Set this to be able to access processor-type-specific registers.\n\
",
		   &setlist);
  c->function.cfunc = sh_set_processor_type_command;
  c = add_show_from_set (c, &showlist);
  c->function.cfunc = sh_show_processor_type_command;

  tmp_sh_processor_type = strsave (DEFAULT_SH_TYPE);
  sh_set_processor_type_command (strsave (DEFAULT_SH_TYPE), 0);

  add_com ("regs", class_vars, sh_show_regs, "Print all registers");

  /* Reduce the remote write size because some CMONs can't take
    more than 400 bytes in a packet.  300 seems like a safe bet.  */
  remote_write_size = 300;
}

/*
 * DUMMY FRAMES
 * 
 * The following code serves to maintain the dummy stack frames for
 * inferior function calls (ie. when gdb calls into the inferior via
 * call_function_by_hand).  This code saves the machine state before 
 * the call in host memory, so it must maintain an independant stack 
 * and keep it consistant etc.  I am attempting to make this code 
 * generic enough to be used by many targets.
 *
 * The cheapest and most generic way to do CALL_DUMMY on a new target
 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to zero,
 * and CALL_DUMMY_LOCATION to AT_ENTRY.  Then you must remember to define
 * PUSH_RETURN_ADDRESS, because there won't be a call instruction to do it.
 */

/* Dummy frame.  This saves the processor state just prior to setting up the
   inferior function call.  On most targets, the registers are saved on the
   target stack, but that really slows down function calls.  */

struct dummy_frame
{
  struct dummy_frame *next;

  CORE_ADDR pc;
  CORE_ADDR fp;
  CORE_ADDR sp;
  char regs[REGISTER_BYTES];
};

static struct dummy_frame *dummy_frame_stack = NULL;

/* Function: find_dummy_frame(pc, fp, sp)
   Search the stack of dummy frames for one matching the given PC, FP and SP.
   This is the work-horse for pc_in_call_dummy and read_register_dummy     */

char * 
generic_find_dummy_frame (pc, fp, sp)
     CORE_ADDR pc;
     CORE_ADDR fp;
     CORE_ADDR sp;
{
  struct dummy_frame * dummyframe;
  CORE_ADDR bkpt_address;
  extern CORE_ADDR text_end;

#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
  bkpt_address = entry_point_address () + CALL_DUMMY_BREAKPOINT_OFFSET;
  if (pc != bkpt_address &&
      pc != bkpt_address + DECR_PC_AFTER_BREAK)
    return 0;
#endif	/* AT_ENTRY_POINT */

#if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
  bkpt_address = text_end - CALL_DUMMY_LENGTH + CALL_DUMMY_BREAKPOINT_OFFSET;
  if (pc != bkpt_address &&
      pc != bkpt_address + DECR_PC_AFTER_BREAK)
    return 0;
#endif	/* BEFORE_TEXT_END */

#if CALL_DUMMY_LOCATION == AFTER_TEXT_END
  bkpt_address = text_end + CALL_DUMMY_BREAKPOINT_OFFSET;
  if (pc != bkpt_address &&
      pc != bkpt_address + DECR_PC_AFTER_BREAK)
    return 0;
#endif	/* AFTER_TEXT_END */

  for (dummyframe = dummy_frame_stack;
       dummyframe;
       dummyframe = dummyframe->next)
    if (fp == dummyframe->fp || 
	sp == dummyframe->sp)
      {
#if CALL_DUMMY_LOCATION == ON_STACK
	CORE_ADDR bkpt_offset;	/* distance from original frame ptr to bkpt */

	if (1 INNER_THAN 2)
	  bkpt_offset = CALL_DUMMY_BREAK_OFFSET;
	else
	  bkpt_offset = CALL_DUMMY_LENGTH - CALL_DUMMY_BREAK_OFFSET;

	if (pc + bkpt_offset == dummyframe->fp ||
	    pc + bkpt_offset == dummyframe->sp ||
	    pc + bkpt_offset + DECR_PC_AFTER_BREAK == dummyframe->fp ||
	    pc + bkpt_offset + DECR_PC_AFTER_BREAK == dummyframe->sp)
#endif /* ON_STACK */
	  return dummyframe->regs;
      }
  return 0;
}

/* Function: pc_in_call_dummy (pc, fp, sp)
   Return true if this is a dummy frame created by gdb for an inferior call */

int
generic_pc_in_call_dummy (pc, fp, sp)
     CORE_ADDR pc;
     CORE_ADDR fp;
     CORE_ADDR sp;
{
  /* if find_dummy_frame succeeds, then PC is in a call dummy */
  return (generic_find_dummy_frame (pc, fp, sp) != 0);
}

/* Function: read_register_dummy (pc, fp, sp, regno)
   Find a saved register from before GDB calls a function in the inferior */

CORE_ADDR
generic_read_register_dummy (fi, regno)
     struct frame_info *fi;
     int regno;
{
  char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame, NULL);

  if (dummy_regs)
    return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
			    REGISTER_RAW_SIZE(regno));
  else
    return 0;
}

/* Save all the registers on the dummy frame stack.  Most ports save the
   registers on the target stack.  This results in lots of unnecessary memory
   references, which are slow when debugging via a serial line.  Instead, we
   save all the registers internally, and never write them to the stack.  The
   registers get restored when the called function returns to the entry point,
   where a breakpoint is laying in wait.  */

void
generic_push_dummy_frame ()
{
  struct dummy_frame *dummy_frame;
  CORE_ADDR fp = read_register(FP_REGNUM);

  /* check to see if there are stale dummy frames, 
     perhaps left over from when a longjump took us out of a 
     function that was called by the debugger */

  dummy_frame = dummy_frame_stack;
  while (dummy_frame)
    if (dummy_frame->fp INNER_THAN fp)	/* stale -- destroy! */
      {
	dummy_frame_stack = dummy_frame->next;
	free (dummy_frame);
	dummy_frame = dummy_frame_stack;
      }
    else
      dummy_frame = dummy_frame->next;

  dummy_frame = xmalloc (sizeof (struct dummy_frame));

  read_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
  dummy_frame->pc   = read_register (PC_REGNUM);
  dummy_frame->fp   = read_register (FP_REGNUM);
  dummy_frame->sp   = read_register (SP_REGNUM);
  dummy_frame->next = dummy_frame_stack;
  dummy_frame_stack = dummy_frame;
}

/* Function: pop_dummy_frame
   Restore the machine state from a saved dummy stack frame. */

void
generic_pop_dummy_frame ()
{
  struct dummy_frame *dummy_frame = dummy_frame_stack;

  if (!dummy_frame)
    error ("Can't pop dummy frame!");
  dummy_frame_stack = dummy_frame->next;
  write_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
  free (dummy_frame);
}

/* Function: frame_chain_valid 
   Returns true for a user frame or a call_function_by_hand dummy frame,
   and false for the CRT0 start-up frame.  Purpose is to terminate backtrace */

int
generic_frame_chain_valid (fp, fi)
     CORE_ADDR fp;
     struct frame_info *fi;
{
  if (PC_IN_CALL_DUMMY(FRAME_SAVED_PC(fi), fp, fp))
    return 1;	/* don't prune CALL_DUMMY frames */
  else		/* fall back to default algorithm (see frame.h) */
    return (fp != 0 && !inside_entry_file (FRAME_SAVED_PC(fi)));
}