aboutsummaryrefslogtreecommitdiff
path: root/gdb/s390-tdep.c
blob: 3bad26b0df72e1959aa39686bc323144447a21da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
/* Target-dependent code for GDB, the GNU debugger.

   Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

   Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
   for IBM Deutschland Entwicklung GmbH, IBM Corporation.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

#include "defs.h"
#include "arch-utils.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "objfiles.h"
#include "tm.h"
#include "../bfd/bfd.h"
#include "floatformat.h"
#include "regcache.h"
#include "trad-frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "dwarf2-frame.h"
#include "reggroups.h"
#include "regset.h"
#include "value.h"
#include "gdb_assert.h"
#include "dis-asm.h"
#include "solib-svr4.h"         /* For struct link_map_offsets.  */

#include "s390-tdep.h"


/* The tdep structure.  */

struct gdbarch_tdep
{
  /* ABI version.  */
  enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;

  /* Core file register sets.  */
  const struct regset *gregset;
  int sizeof_gregset;

  const struct regset *fpregset;
  int sizeof_fpregset;
};


/* Register information.  */

struct s390_register_info
{
  char *name;
  struct type **type;
};

static struct s390_register_info s390_register_info[S390_NUM_TOTAL_REGS] = 
{
  /* Program Status Word.  */
  { "pswm", &builtin_type_long },
  { "pswa", &builtin_type_long },

  /* General Purpose Registers.  */
  { "r0", &builtin_type_long },
  { "r1", &builtin_type_long },
  { "r2", &builtin_type_long },
  { "r3", &builtin_type_long },
  { "r4", &builtin_type_long },
  { "r5", &builtin_type_long },
  { "r6", &builtin_type_long },
  { "r7", &builtin_type_long },
  { "r8", &builtin_type_long },
  { "r9", &builtin_type_long },
  { "r10", &builtin_type_long },
  { "r11", &builtin_type_long },
  { "r12", &builtin_type_long },
  { "r13", &builtin_type_long },
  { "r14", &builtin_type_long },
  { "r15", &builtin_type_long },

  /* Access Registers.  */
  { "acr0", &builtin_type_int },
  { "acr1", &builtin_type_int },
  { "acr2", &builtin_type_int },
  { "acr3", &builtin_type_int },
  { "acr4", &builtin_type_int },
  { "acr5", &builtin_type_int },
  { "acr6", &builtin_type_int },
  { "acr7", &builtin_type_int },
  { "acr8", &builtin_type_int },
  { "acr9", &builtin_type_int },
  { "acr10", &builtin_type_int },
  { "acr11", &builtin_type_int },
  { "acr12", &builtin_type_int },
  { "acr13", &builtin_type_int },
  { "acr14", &builtin_type_int },
  { "acr15", &builtin_type_int },

  /* Floating Point Control Word.  */
  { "fpc", &builtin_type_int },

  /* Floating Point Registers.  */
  { "f0", &builtin_type_double },
  { "f1", &builtin_type_double },
  { "f2", &builtin_type_double },
  { "f3", &builtin_type_double },
  { "f4", &builtin_type_double },
  { "f5", &builtin_type_double },
  { "f6", &builtin_type_double },
  { "f7", &builtin_type_double },
  { "f8", &builtin_type_double },
  { "f9", &builtin_type_double },
  { "f10", &builtin_type_double },
  { "f11", &builtin_type_double },
  { "f12", &builtin_type_double },
  { "f13", &builtin_type_double },
  { "f14", &builtin_type_double },
  { "f15", &builtin_type_double },

  /* Pseudo registers.  */
  { "pc", &builtin_type_void_func_ptr },
  { "cc", &builtin_type_int },
};

/* Return the name of register REGNUM.  */
static const char *
s390_register_name (int regnum)
{
  gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS);
  return s390_register_info[regnum].name;
}

/* Return the GDB type object for the "standard" data type of data in
   register REGNUM. */
static struct type *
s390_register_type (struct gdbarch *gdbarch, int regnum)
{
  gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS);
  return *s390_register_info[regnum].type;
}

/* DWARF Register Mapping.  */

static int s390_dwarf_regmap[] =
{
  /* General Purpose Registers.  */
  S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
  S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
  S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
  S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,

  /* Floating Point Registers.  */
  S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
  S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
  S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
  S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,

  /* Control Registers (not mapped).  */
  -1, -1, -1, -1, -1, -1, -1, -1, 
  -1, -1, -1, -1, -1, -1, -1, -1, 

  /* Access Registers.  */
  S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
  S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
  S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
  S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,

  /* Program Status Word.  */
  S390_PSWM_REGNUM,
  S390_PSWA_REGNUM
};

/* Convert DWARF register number REG to the appropriate register
   number used by GDB.  */
static int
s390_dwarf_reg_to_regnum (int reg)
{
  int regnum = -1;

  if (reg >= 0 || reg < ARRAY_SIZE (s390_dwarf_regmap))
    regnum = s390_dwarf_regmap[reg];

  if (regnum == -1)
    warning ("Unmapped DWARF Register #%d encountered\n", reg);

  return regnum;
}

/* Pseudo registers - PC and condition code.  */

static void
s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int regnum, void *buf)
{
  ULONGEST val;

  switch (regnum)
    {
    case S390_PC_REGNUM:
      regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
      store_unsigned_integer (buf, 4, val & 0x7fffffff);
      break;

    case S390_CC_REGNUM:
      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
      store_unsigned_integer (buf, 4, (val >> 12) & 3);
      break;

    default:
      internal_error (__FILE__, __LINE__, "invalid regnum");
    }
}

static void
s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int regnum, const void *buf)
{
  ULONGEST val, psw;

  switch (regnum)
    {
    case S390_PC_REGNUM:
      val = extract_unsigned_integer (buf, 4);
      regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
      psw = (psw & 0x80000000) | (val & 0x7fffffff);
      regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, psw);
      break;

    case S390_CC_REGNUM:
      val = extract_unsigned_integer (buf, 4);
      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
      psw = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
      regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
      break;

    default:
      internal_error (__FILE__, __LINE__, "invalid regnum");
    }
}

static void
s390x_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			    int regnum, void *buf)
{
  ULONGEST val;

  switch (regnum)
    {
    case S390_PC_REGNUM:
      regcache_raw_read (regcache, S390_PSWA_REGNUM, buf);
      break;

    case S390_CC_REGNUM:
      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
      store_unsigned_integer (buf, 4, (val >> 44) & 3);
      break;

    default:
      internal_error (__FILE__, __LINE__, "invalid regnum");
    }
}

static void
s390x_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			     int regnum, const void *buf)
{
  ULONGEST val, psw;

  switch (regnum)
    {
    case S390_PC_REGNUM:
      regcache_raw_write (regcache, S390_PSWA_REGNUM, buf);
      break;

    case S390_CC_REGNUM:
      val = extract_unsigned_integer (buf, 4);
      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
      psw = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
      regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw);
      break;

    default:
      internal_error (__FILE__, __LINE__, "invalid regnum");
    }
}

/* 'float' values are stored in the upper half of floating-point
   registers, even though we are otherwise a big-endian platform.  */

static int
s390_convert_register_p (int regno, struct type *type)
{
  return (regno >= S390_F0_REGNUM && regno <= S390_F15_REGNUM)
	 && TYPE_LENGTH (type) < 8;
}

static void
s390_register_to_value (struct frame_info *frame, int regnum,
                        struct type *valtype, void *out)
{
  char in[8];
  int len = TYPE_LENGTH (valtype);
  gdb_assert (len < 8);

  get_frame_register (frame, regnum, in);
  memcpy (out, in, len);
}

static void
s390_value_to_register (struct frame_info *frame, int regnum,
                        struct type *valtype, const void *in)
{
  char out[8];
  int len = TYPE_LENGTH (valtype);
  gdb_assert (len < 8);

  memset (out, 0, 8);
  memcpy (out, in, len);
  put_frame_register (frame, regnum, out);
}

/* Register groups.  */

static int
s390_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *group)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* Registers displayed via 'info regs'.  */
  if (group == general_reggroup)
    return (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM)
	   || regnum == S390_PC_REGNUM
	   || regnum == S390_CC_REGNUM;

  /* Registers displayed via 'info float'.  */
  if (group == float_reggroup)
    return (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM)
	   || regnum == S390_FPC_REGNUM;

  /* Registers that need to be saved/restored in order to
     push or pop frames.  */
  if (group == save_reggroup || group == restore_reggroup)
    return regnum != S390_PSWM_REGNUM && regnum != S390_PSWA_REGNUM;

  return default_register_reggroup_p (gdbarch, regnum, group);
}


/* Core file register sets.  */

int s390_regmap_gregset[S390_NUM_REGS] =
{
  /* Program Status Word.  */
  0x00, 0x04,
  /* General Purpose Registers.  */
  0x08, 0x0c, 0x10, 0x14,
  0x18, 0x1c, 0x20, 0x24,
  0x28, 0x2c, 0x30, 0x34,
  0x38, 0x3c, 0x40, 0x44,
  /* Access Registers.  */
  0x48, 0x4c, 0x50, 0x54,
  0x58, 0x5c, 0x60, 0x64,
  0x68, 0x6c, 0x70, 0x74,
  0x78, 0x7c, 0x80, 0x84,
  /* Floating Point Control Word.  */
  -1,
  /* Floating Point Registers.  */
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
};

int s390x_regmap_gregset[S390_NUM_REGS] =
{
  0x00, 0x08,
  /* General Purpose Registers.  */
  0x10, 0x18, 0x20, 0x28,
  0x30, 0x38, 0x40, 0x48,
  0x50, 0x58, 0x60, 0x68,
  0x70, 0x78, 0x80, 0x88,
  /* Access Registers.  */
  0x90, 0x94, 0x98, 0x9c,
  0xa0, 0xa4, 0xa8, 0xac,
  0xb0, 0xb4, 0xb8, 0xbc,
  0xc0, 0xc4, 0xc8, 0xcc,
  /* Floating Point Control Word.  */
  -1,
  /* Floating Point Registers.  */
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
};

int s390_regmap_fpregset[S390_NUM_REGS] =
{
  /* Program Status Word.  */
  -1, -1,
  /* General Purpose Registers.  */
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
  /* Access Registers.  */
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,
  /* Floating Point Control Word.  */
  0x00,
  /* Floating Point Registers.  */
  0x08, 0x10, 0x18, 0x20,
  0x28, 0x30, 0x38, 0x40,
  0x48, 0x50, 0x58, 0x60,
  0x68, 0x70, 0x78, 0x80,
};

/* Supply register REGNUM from the register set REGSET to register cache 
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
static void
s390_supply_regset (const struct regset *regset, struct regcache *regcache,
		    int regnum, const void *regs, size_t len)
{
  const int *offset = regset->descr;
  int i;

  for (i = 0; i < S390_NUM_REGS; i++)
    {
      if ((regnum == i || regnum == -1) && offset[i] != -1)
	regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
    }
}

static const struct regset s390_gregset = {
  s390_regmap_gregset, 
  s390_supply_regset
};

static const struct regset s390x_gregset = {
  s390x_regmap_gregset, 
  s390_supply_regset
};

static const struct regset s390_fpregset = {
  s390_regmap_fpregset, 
  s390_supply_regset
};

/* Return the appropriate register set for the core section identified
   by SECT_NAME and SECT_SIZE.  */
const struct regset *
s390_regset_from_core_section (struct gdbarch *gdbarch,
			       const char *sect_name, size_t sect_size)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
    return tdep->gregset;

  if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
    return tdep->fpregset;

  return NULL;
}


/* Prologue analysis.  */

/* When we analyze a prologue, we're really doing 'abstract
   interpretation' or 'pseudo-evaluation': running the function's code
   in simulation, but using conservative approximations of the values
   it would have when it actually runs.  For example, if our function
   starts with the instruction:

      ahi r1, 42     # add halfword immediate 42 to r1

   we don't know exactly what value will be in r1 after executing this
   instruction, but we do know it'll be 42 greater than its original
   value.

   If we then see an instruction like:

      ahi r1, 22     # add halfword immediate 22 to r1

   we still don't know what r1's value is, but again, we can say it is
   now 64 greater than its original value.

   If the next instruction were:

      lr r2, r1      # set r2 to r1's value

   then we can say that r2's value is now the original value of r1
   plus 64.  And so on.

   Of course, this can only go so far before it gets unreasonable.  If
   we wanted to be able to say anything about the value of r1 after
   the instruction:

      xr r1, r3      # exclusive-or r1 and r3, place result in r1

   then things would get pretty complex.  But remember, we're just
   doing a conservative approximation; if exclusive-or instructions
   aren't relevant to prologues, we can just say r1's value is now
   'unknown'.  We can ignore things that are too complex, if that loss
   of information is acceptable for our application.

   Once you've reached an instruction that you don't know how to
   simulate, you stop.  Now you examine the state of the registers and
   stack slots you've kept track of.  For example:

   - To see how large your stack frame is, just check the value of sp;
     if it's the original value of sp minus a constant, then that
     constant is the stack frame's size.  If the sp's value has been
     marked as 'unknown', then that means the prologue has done
     something too complex for us to track, and we don't know the
     frame size.

   - To see whether we've saved the SP in the current frame's back
     chain slot, we just check whether the current value of the back
     chain stack slot is the original value of the sp.

   Sure, this takes some work.  But prologue analyzers aren't
   quick-and-simple pattern patching to recognize a few fixed prologue
   forms any more; they're big, hairy functions.  Along with inferior
   function calls, prologue analysis accounts for a substantial
   portion of the time needed to stabilize a GDB port.  So I think
   it's worthwhile to look for an approach that will be easier to
   understand and maintain.  In the approach used here:

   - It's easier to see that the analyzer is correct: you just see
     whether the analyzer properly (albiet conservatively) simulates
     the effect of each instruction.

   - It's easier to extend the analyzer: you can add support for new
     instructions, and know that you haven't broken anything that
     wasn't already broken before.

   - It's orthogonal: to gather new information, you don't need to
     complicate the code for each instruction.  As long as your domain
     of conservative values is already detailed enough to tell you
     what you need, then all the existing instruction simulations are
     already gathering the right data for you.

   A 'struct prologue_value' is a conservative approximation of the
   real value the register or stack slot will have.  */

struct prologue_value {

  /* What sort of value is this?  This determines the interpretation
     of subsequent fields.  */
  enum {

    /* We don't know anything about the value.  This is also used for
       values we could have kept track of, when doing so would have
       been too complex and we don't want to bother.  The bottom of
       our lattice.  */
    pv_unknown,

    /* A known constant.  K is its value.  */
    pv_constant,

    /* The value that register REG originally had *UPON ENTRY TO THE
       FUNCTION*, plus K.  If K is zero, this means, obviously, just
       the value REG had upon entry to the function.  REG is a GDB
       register number.  Before we start interpreting, we initialize
       every register R to { pv_register, R, 0 }.  */
    pv_register,

  } kind;

  /* The meanings of the following fields depend on 'kind'; see the
     comments for the specific 'kind' values.  */
  int reg;
  CORE_ADDR k;
};


/* Set V to be unknown.  */
static void
pv_set_to_unknown (struct prologue_value *v)
{
  v->kind = pv_unknown;
}


/* Set V to the constant K.  */
static void
pv_set_to_constant (struct prologue_value *v, CORE_ADDR k)
{
  v->kind = pv_constant;
  v->k = k;
}


/* Set V to the original value of register REG, plus K.  */
static void
pv_set_to_register (struct prologue_value *v, int reg, CORE_ADDR k)
{
  v->kind = pv_register;
  v->reg = reg;
  v->k = k;
}


/* If one of *A and *B is a constant, and the other isn't, swap the
   pointers as necessary to ensure that *B points to the constant.
   This can reduce the number of cases we need to analyze in the
   functions below.  */
static void
pv_constant_last (struct prologue_value **a,
                  struct prologue_value **b)
{
  if ((*a)->kind == pv_constant
      && (*b)->kind != pv_constant)
    {
      struct prologue_value *temp = *a;
      *a = *b;
      *b = temp;
    }
}


/* Set SUM to the sum of A and B.  SUM, A, and B may point to the same
   'struct prologue_value' object.  */
static void
pv_add (struct prologue_value *sum,
        struct prologue_value *a,
        struct prologue_value *b)
{
  pv_constant_last (&a, &b);

  /* We can handle adding constants to registers, and other constants.  */
  if (b->kind == pv_constant
      && (a->kind == pv_register
          || a->kind == pv_constant))
    {
      sum->kind = a->kind;
      sum->reg = a->reg;    /* not meaningful if a is pv_constant, but
                               harmless */
      sum->k = a->k + b->k;
    }

  /* Anything else we don't know how to add.  We don't have a
     representation for, say, the sum of two registers, or a multiple
     of a register's value (adding a register to itself).  */
  else
    sum->kind = pv_unknown;
}


/* Add the constant K to V.  */
static void
pv_add_constant (struct prologue_value *v, CORE_ADDR k)
{
  struct prologue_value pv_k;

  /* Rather than thinking of all the cases we can and can't handle,
     we'll just let pv_add take care of that for us.  */
  pv_set_to_constant (&pv_k, k);
  pv_add (v, v, &pv_k);
}


/* Subtract B from A, and put the result in DIFF.

   This isn't quite the same as negating B and adding it to A, since
   we don't have a representation for the negation of anything but a
   constant.  For example, we can't negate { pv_register, R1, 10 },
   but we do know that { pv_register, R1, 10 } minus { pv_register,
   R1, 5 } is { pv_constant, <ignored>, 5 }.

   This means, for example, that we can subtract two stack addresses;
   they're both relative to the original SP.  Since the frame pointer
   is set based on the SP, its value will be the original SP plus some
   constant (probably zero), so we can use its value just fine.  */
static void
pv_subtract (struct prologue_value *diff,
             struct prologue_value *a,
             struct prologue_value *b)
{
  pv_constant_last (&a, &b);

  /* We can subtract a constant from another constant, or from a
     register.  */
  if (b->kind == pv_constant
      && (a->kind == pv_register
          || a->kind == pv_constant))
    {
      diff->kind = a->kind;
      diff->reg = a->reg;    /* not always meaningful, but harmless */
      diff->k = a->k - b->k;
    }

  /* We can subtract a register from itself, yielding a constant.  */
  else if (a->kind == pv_register
           && b->kind == pv_register
           && a->reg == b->reg)
    {
      diff->kind = pv_constant;
      diff->k = a->k - b->k;
    }

  /* We don't know how to subtract anything else.  */
  else
    diff->kind = pv_unknown;
}


/* Set AND to the logical and of A and B.  */
static void
pv_logical_and (struct prologue_value *and,
                struct prologue_value *a,
                struct prologue_value *b)
{
  pv_constant_last (&a, &b);

  /* We can 'and' two constants.  */
  if (a->kind == pv_constant
      && b->kind == pv_constant)
    {
      and->kind = pv_constant;
      and->k = a->k & b->k;
    }

  /* We can 'and' anything with the constant zero.  */
  else if (b->kind == pv_constant
           && b->k == 0)
    {
      and->kind = pv_constant;
      and->k = 0;
    }
  
  /* We can 'and' anything with ~0.  */
  else if (b->kind == pv_constant
           && b->k == ~ (CORE_ADDR) 0)
    *and = *a;

  /* We can 'and' a register with itself.  */
  else if (a->kind == pv_register
           && b->kind == pv_register
           && a->reg == b->reg
           && a->k == b->k)
    *and = *a;

  /* Otherwise, we don't know.  */
  else
    pv_set_to_unknown (and);
}


/* Return non-zero iff A and B are identical expressions.

   This is not the same as asking if the two values are equal; the
   result of such a comparison would have to be a pv_boolean, and
   asking whether two 'unknown' values were equal would give you
   pv_maybe.  Same for comparing, say, { pv_register, R1, 0 } and {
   pv_register, R2, 0}.  Instead, this is asking whether the two
   representations are the same.  */
static int
pv_is_identical (struct prologue_value *a,
                 struct prologue_value *b)
{
  if (a->kind != b->kind)
    return 0;

  switch (a->kind)
    {
    case pv_unknown:
      return 1;
    case pv_constant:
      return (a->k == b->k);
    case pv_register:
      return (a->reg == b->reg && a->k == b->k);
    default:
      gdb_assert (0);
    }
}


/* Return non-zero if A is the original value of register number R
   plus K, zero otherwise.  */
static int
pv_is_register (struct prologue_value *a, int r, CORE_ADDR k)
{
  return (a->kind == pv_register
          && a->reg == r
          && a->k == k);
}


/* A prologue-value-esque boolean type, including "maybe", when we
   can't figure out whether something is true or not.  */
enum pv_boolean {
  pv_maybe,
  pv_definite_yes,
  pv_definite_no,
};


/* Decide whether a reference to SIZE bytes at ADDR refers exactly to
   an element of an array.  The array starts at ARRAY_ADDR, and has
   ARRAY_LEN values of ELT_SIZE bytes each.  If ADDR definitely does
   refer to an array element, set *I to the index of the referenced
   element in the array, and return pv_definite_yes.  If it definitely
   doesn't, return pv_definite_no.  If we can't tell, return pv_maybe.

   If the reference does touch the array, but doesn't fall exactly on
   an element boundary, or doesn't refer to the whole element, return
   pv_maybe.  */
static enum pv_boolean
pv_is_array_ref (struct prologue_value *addr,
                 CORE_ADDR size,
                 struct prologue_value *array_addr,
                 CORE_ADDR array_len, 
                 CORE_ADDR elt_size,
                 int *i)
{
  struct prologue_value offset;

  /* Note that, since ->k is a CORE_ADDR, and CORE_ADDR is unsigned,
     if addr is *before* the start of the array, then this isn't going
     to be negative...  */
  pv_subtract (&offset, addr, array_addr);

  if (offset.kind == pv_constant)
    {
      /* This is a rather odd test.  We want to know if the SIZE bytes
         at ADDR don't overlap the array at all, so you'd expect it to
         be an || expression: "if we're completely before || we're
         completely after".  But with unsigned arithmetic, things are
         different: since it's a number circle, not a number line, the
         right values for offset.k are actually one contiguous range.  */
      if (offset.k <= -size
          && offset.k >= array_len * elt_size)
        return pv_definite_no;
      else if (offset.k % elt_size != 0
               || size != elt_size)
        return pv_maybe;
      else
        {
          *i = offset.k / elt_size;
          return pv_definite_yes;
        }
    }
  else
    return pv_maybe;
}



/* Decoding S/390 instructions.  */

/* Named opcode values for the S/390 instructions we recognize.  Some
   instructions have their opcode split across two fields; those are the
   op1_* and op2_* enums.  */
enum
  {
    op1_lhi  = 0xa7,   op2_lhi  = 0x08,
    op1_lghi = 0xa7,   op2_lghi = 0x09,
    op_lr    = 0x18,
    op_lgr   = 0xb904,
    op_l     = 0x58,
    op1_ly   = 0xe3,   op2_ly   = 0x58,
    op1_lg   = 0xe3,   op2_lg   = 0x04,
    op_lm    = 0x98,
    op1_lmy  = 0xeb,   op2_lmy  = 0x98,
    op1_lmg  = 0xeb,   op2_lmg  = 0x04,
    op_st    = 0x50,
    op1_sty  = 0xe3,   op2_sty  = 0x50,
    op1_stg  = 0xe3,   op2_stg  = 0x24,
    op_std   = 0x60,
    op_stm   = 0x90,
    op1_stmy = 0xeb,   op2_stmy = 0x90,
    op1_stmg = 0xeb,   op2_stmg = 0x24,
    op1_aghi = 0xa7,   op2_aghi = 0x0b,
    op1_ahi  = 0xa7,   op2_ahi  = 0x0a,
    op_ar    = 0x1a,
    op_agr   = 0xb908,
    op_a     = 0x5a,
    op1_ay   = 0xe3,   op2_ay   = 0x5a,
    op1_ag   = 0xe3,   op2_ag   = 0x08,
    op_sr    = 0x1b,
    op_sgr   = 0xb909,
    op_s     = 0x5b,
    op1_sy   = 0xe3,   op2_sy   = 0x5b,
    op1_sg   = 0xe3,   op2_sg   = 0x09,
    op_nr    = 0x14,
    op_ngr   = 0xb980,
    op_la    = 0x41,
    op1_lay  = 0xe3,   op2_lay  = 0x71,
    op1_larl = 0xc0,   op2_larl = 0x00,
    op_basr  = 0x0d,
    op_bas   = 0x4d,
    op_bcr   = 0x07,
    op_bc    = 0x0d,
    op1_bras = 0xa7,   op2_bras = 0x05,
    op1_brasl= 0xc0,   op2_brasl= 0x05,
    op1_brc  = 0xa7,   op2_brc  = 0x04,
    op1_brcl = 0xc0,   op2_brcl = 0x04,
  };


/* Read a single instruction from address AT.  */

#define S390_MAX_INSTR_SIZE 6
static int
s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
{
  static int s390_instrlen[] = { 2, 4, 4, 6 };
  int instrlen;

  if (read_memory_nobpt (at, &instr[0], 2))
    return -1;
  instrlen = s390_instrlen[instr[0] >> 6];
  if (instrlen > 2)
    {
      if (read_memory_nobpt (at + 2, &instr[2], instrlen - 2))
        return -1;
    }
  return instrlen;
}


/* The functions below are for recognizing and decoding S/390
   instructions of various formats.  Each of them checks whether INSN
   is an instruction of the given format, with the specified opcodes.
   If it is, it sets the remaining arguments to the values of the
   instruction's fields, and returns a non-zero value; otherwise, it
   returns zero.

   These functions' arguments appear in the order they appear in the
   instruction, not in the machine-language form.  So, opcodes always
   come first, even though they're sometimes scattered around the
   instructions.  And displacements appear before base and extension
   registers, as they do in the assembly syntax, not at the end, as
   they do in the machine language.  */
static int
is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
{
  if (insn[0] == op1 && (insn[1] & 0xf) == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      /* i2 is a 16-bit signed quantity.  */
      *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
      return 1;
    }
  else
    return 0;
}


static int
is_ril (bfd_byte *insn, int op1, int op2,
        unsigned int *r1, int *i2)
{
  if (insn[0] == op1 && (insn[1] & 0xf) == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      /* i2 is a signed quantity.  If the host 'int' is 32 bits long,
         no sign extension is necessary, but we don't want to assume
         that.  */
      *i2 = (((insn[2] << 24)
              | (insn[3] << 16)
              | (insn[4] << 8)
              | (insn[5])) ^ 0x80000000) - 0x80000000;
      return 1;
    }
  else
    return 0;
}


static int
is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
{
  if (insn[0] == op)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r2 = insn[1] & 0xf;
      return 1;
    }
  else
    return 0;
}


static int
is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
{
  if (((insn[0] << 8) | insn[1]) == op)
    {
      /* Yes, insn[3].  insn[2] is unused in RRE format.  */
      *r1 = (insn[3] >> 4) & 0xf;
      *r2 = insn[3] & 0xf;
      return 1;
    }
  else
    return 0;
}


static int
is_rs (bfd_byte *insn, int op,
       unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
{
  if (insn[0] == op)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r3 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      *d2 = ((insn[2] & 0xf) << 8) | insn[3];
      return 1;
    }
  else
    return 0;
}


static int
is_rsy (bfd_byte *insn, int op1, int op2,
        unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
{
  if (insn[0] == op1
      && insn[5] == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r3 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      /* The 'long displacement' is a 20-bit signed integer.  */
      *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) 
		^ 0x80000) - 0x80000;
      return 1;
    }
  else
    return 0;
}


static int
is_rx (bfd_byte *insn, int op,
       unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
{
  if (insn[0] == op)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *x2 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      *d2 = ((insn[2] & 0xf) << 8) | insn[3];
      return 1;
    }
  else
    return 0;
}


static int
is_rxy (bfd_byte *insn, int op1, int op2,
        unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
{
  if (insn[0] == op1
      && insn[5] == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *x2 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      /* The 'long displacement' is a 20-bit signed integer.  */
      *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) 
		^ 0x80000) - 0x80000;
      return 1;
    }
  else
    return 0;
}


/* Set ADDR to the effective address for an X-style instruction, like:

        L R1, D2(X2, B2)

   Here, X2 and B2 are registers, and D2 is a signed 20-bit
   constant; the effective address is the sum of all three.  If either
   X2 or B2 are zero, then it doesn't contribute to the sum --- this
   means that r0 can't be used as either X2 or B2.

   GPR is an array of general register values, indexed by GPR number,
   not GDB register number.  */
static void
compute_x_addr (struct prologue_value *addr, 
                struct prologue_value *gpr,
                int d2, unsigned int x2, unsigned int b2)
{
  /* We can't just add stuff directly in addr; it might alias some of
     the registers we need to read.  */
  struct prologue_value result;

  pv_set_to_constant (&result, d2);
  if (x2)
    pv_add (&result, &result, &gpr[x2]);
  if (b2)
    pv_add (&result, &result, &gpr[b2]);

  *addr = result;
}


/* The number of GPR and FPR spill slots in an S/390 stack frame.  We
   track general-purpose registers r2 -- r15, and floating-point
   registers f0, f2, f4, and f6.  */
#define S390_NUM_SPILL_SLOTS (14 + 4)
#define S390_NUM_GPRS 16
#define S390_NUM_FPRS 16

struct s390_prologue_data {

  /* The size of a GPR or FPR.  */
  int gpr_size;
  int fpr_size;

  /* The general-purpose registers.  */
  struct prologue_value gpr[S390_NUM_GPRS];

  /* The floating-point registers.  */
  struct prologue_value fpr[S390_NUM_FPRS];

  /* The register spill stack slots in the caller's frame ---
     general-purpose registers r2 through r15, and floating-point
     registers.  spill[i] is where gpr i+2 gets spilled;
     spill[(14, 15, 16, 17)] is where (f0, f2, f4, f6) get spilled.  */
  struct prologue_value spill[S390_NUM_SPILL_SLOTS];

  /* The value of the back chain slot.  This is only valid if the stack
     pointer is known to be less than its original value --- that is,
     if we have indeed allocated space on the stack.  */
  struct prologue_value back_chain;
};


/* If the SIZE bytes at ADDR are a stack slot we're actually tracking,
   return pv_definite_yes and set *STACK to point to the slot.  If
   we're sure that they are not any of our stack slots, then return
   pv_definite_no.  Otherwise, return pv_maybe.

   DATA describes our current state (registers and stack slots).  */
static enum pv_boolean
s390_on_stack (struct prologue_value *addr,
               CORE_ADDR size,
	       struct s390_prologue_data *data,
               struct prologue_value **stack)
{
  struct prologue_value gpr_spill_addr;
  struct prologue_value fpr_spill_addr;
  struct prologue_value back_chain_addr;  
  int i;
  enum pv_boolean b;

  /* Construct the addresses of the spill arrays and the back chain.  */
  pv_set_to_register (&gpr_spill_addr, S390_SP_REGNUM, 2 * data->gpr_size);
  pv_set_to_register (&fpr_spill_addr, S390_SP_REGNUM, 16 * data->gpr_size);
  back_chain_addr = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];

  /* We have to check for GPR and FPR references using two separate
     calls to pv_is_array_ref, since the GPR and FPR spill slots are
     different sizes.  (SPILL is an array, but the thing it tracks
     isn't really an array.)  */

  /* Was it a reference to the GPR spill array?  */
  b = pv_is_array_ref (addr, size, &gpr_spill_addr, 14, data->gpr_size, &i);
  if (b == pv_definite_yes)
    {
      *stack = &data->spill[i];
      return pv_definite_yes;
    }
  if (b == pv_maybe)
    return pv_maybe;

  /* Was it a reference to the FPR spill array?  */
  b = pv_is_array_ref (addr, size, &fpr_spill_addr, 4, data->fpr_size, &i);
  if (b == pv_definite_yes)
    {
      *stack = &data->spill[14 + i];
      return pv_definite_yes;
    }
  if (b == pv_maybe)
    return pv_maybe;

  /* Was it a reference to the back chain?
     This isn't quite right.  We ought to check whether we have
     actually allocated any new frame at all.  */
  b = pv_is_array_ref (addr, size, &back_chain_addr, 1, data->gpr_size, &i);
  if (b == pv_definite_yes)
    {
      *stack = &data->back_chain;
      return pv_definite_yes;
    }
  if (b == pv_maybe)
    return pv_maybe;

  /* All the above queries returned definite 'no's.  */
  return pv_definite_no;
}


/* Do a SIZE-byte store of VALUE to ADDR.  */
static void
s390_store (struct prologue_value *addr,
            CORE_ADDR size,
            struct prologue_value *value,
	    struct s390_prologue_data *data)
{
  struct prologue_value *stack;

  /* We can do it if it's definitely a reference to something on the stack.  */
  if (s390_on_stack (addr, size, data, &stack) == pv_definite_yes)
    {
      *stack = *value;
      return;
    }

  /* Note: If s390_on_stack returns pv_maybe, you might think we should
     forget our cached values, as any of those might have been hit.

     However, we make the assumption that --since the fields we track
     are save areas private to compiler, and never directly exposed to 
     the user-- every access to our data is explicit.  Hence, every 
     memory access we cannot follow can't hit our data.  */
}

/* Do a SIZE-byte load from ADDR into VALUE.  */
static void
s390_load (struct prologue_value *addr,
	   CORE_ADDR size,
	   struct prologue_value *value,
	   struct s390_prologue_data *data)
{
  struct prologue_value *stack;

  /* If it's a load from an in-line constant pool, then we can
     simulate that, under the assumption that the code isn't
     going to change between the time the processor actually
     executed it creating the current frame, and the time when
     we're analyzing the code to unwind past that frame.  */
  if (addr->kind == pv_constant)
    {
      struct section_table *secp;
      secp = target_section_by_addr (&current_target, addr->k);
      if (secp != NULL
          && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
              & SEC_READONLY))
	{
          pv_set_to_constant (value, read_memory_integer (addr->k, size));
	  return;
	}
    }

  /* If it's definitely a reference to something on the stack, 
     we can do that.  */
  if (s390_on_stack (addr, size, data, &stack) == pv_definite_yes)
    {
      *value = *stack;
      return;
    }

  /* Otherwise, we don't know the value.  */
  pv_set_to_unknown (value);
}
            

/* Analyze the prologue of the function starting at START_PC,
   continuing at most until CURRENT_PC.  Initialize DATA to
   hold all information we find out about the state of the registers
   and stack slots.  Return the address of the instruction after
   the last one that changed the SP, FP, or back chain; or zero
   on error.  */
static CORE_ADDR
s390_analyze_prologue (struct gdbarch *gdbarch,
		       CORE_ADDR start_pc,
		       CORE_ADDR current_pc,
		       struct s390_prologue_data *data)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;

  /* Our return value:
     The address of the instruction after the last one that changed
     the SP, FP, or back chain;  zero if we got an error trying to 
     read memory.  */
  CORE_ADDR result = start_pc;

  /* The current PC for our abstract interpretation.  */
  CORE_ADDR pc;

  /* The address of the next instruction after that.  */
  CORE_ADDR next_pc;
  
  /* Set up everything's initial value.  */
  {
    int i;

    /* For the purpose of prologue tracking, we consider the GPR size to
       be equal to the ABI word size, even if it is actually larger
       (i.e. when running a 32-bit binary under a 64-bit kernel).  */
    data->gpr_size = word_size;
    data->fpr_size = 8;

    for (i = 0; i < S390_NUM_GPRS; i++)
      pv_set_to_register (&data->gpr[i], S390_R0_REGNUM + i, 0);

    for (i = 0; i < S390_NUM_FPRS; i++)
      pv_set_to_register (&data->fpr[i], S390_F0_REGNUM + i, 0);

    for (i = 0; i < S390_NUM_SPILL_SLOTS; i++)
      pv_set_to_unknown (&data->spill[i]);

    pv_set_to_unknown (&data->back_chain);
  }

  /* Start interpreting instructions, until we hit the frame's
     current PC or the first branch instruction.  */
  for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
    {
      bfd_byte insn[S390_MAX_INSTR_SIZE];
      int insn_len = s390_readinstruction (insn, pc);

      /* Fields for various kinds of instructions.  */
      unsigned int b2, r1, r2, x2, r3;
      int i2, d2;

      /* The values of SP, FP, and back chain before this instruction,
         for detecting instructions that change them.  */
      struct prologue_value pre_insn_sp, pre_insn_fp, pre_insn_back_chain;

      /* If we got an error trying to read the instruction, report it.  */
      if (insn_len < 0)
        {
          result = 0;
          break;
        }

      next_pc = pc + insn_len;

      pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
      pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
      pre_insn_back_chain = data->back_chain;

      /* LHI r1, i2 --- load halfword immediate */
      if (word_size == 4
	  && is_ri (insn, op1_lhi, op2_lhi, &r1, &i2))
        pv_set_to_constant (&data->gpr[r1], i2);

      /* LGHI r1, i2 --- load halfword immediate (64-bit version) */
      else if (word_size == 8
	       && is_ri (insn, op1_lghi, op2_lghi, &r1, &i2))
        pv_set_to_constant (&data->gpr[r1], i2);

      /* LR r1, r2 --- load from register */
      else if (word_size == 4
	       && is_rr (insn, op_lr, &r1, &r2))
        data->gpr[r1] = data->gpr[r2];

      /* LGR r1, r2 --- load from register (64-bit version) */
      else if (word_size == 8
               && is_rre (insn, op_lgr, &r1, &r2))
        data->gpr[r1] = data->gpr[r2];

      /* L r1, d2(x2, b2) --- load */
      else if (word_size == 4
	       && is_rx (insn, op_l, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &data->gpr[r1], data);
        }

      /* LY r1, d2(x2, b2) --- load (long-displacement version) */
      else if (word_size == 4
	       && is_rxy (insn, op1_ly, op2_ly, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &data->gpr[r1], data);
        }

      /* LG r1, d2(x2, b2) --- load (64-bit version) */
      else if (word_size == 8
	       && is_rxy (insn, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 8, &data->gpr[r1], data);
        }

      /* ST r1, d2(x2, b2) --- store */
      else if (word_size == 4
	       && is_rx (insn, op_st, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_store (&addr, 4, &data->gpr[r1], data);
        }

      /* STY r1, d2(x2, b2) --- store (long-displacement version) */
      else if (word_size == 4
	       && is_rxy (insn, op1_sty, op2_sty, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_store (&addr, 4, &data->gpr[r1], data);
        }

      /* STG r1, d2(x2, b2) --- store (64-bit version) */
      else if (word_size == 8
	       && is_rxy (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_store (&addr, 8, &data->gpr[r1], data);
        }

      /* STD r1, d2(x2,b2) --- store floating-point register  */
      else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
        {
          struct prologue_value addr;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
          s390_store (&addr, 8, &data->fpr[r1], data);
        }

      /* STM r1, r3, d2(b2) --- store multiple */
      else if (word_size == 4
	       && is_rs (insn, op_stm, &r1, &r3, &d2, &b2))
        {
          int regnum;
          int offset;
          struct prologue_value addr;

          for (regnum = r1, offset = 0;
               regnum <= r3;
               regnum++, offset += 4)
            {
              compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
              s390_store (&addr, 4, &data->gpr[regnum], data);
            }
        }

      /* STMY r1, r3, d2(b2) --- store multiple (long-displacement version) */
      else if (word_size == 4
	       && is_rsy (insn, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2))
        {
          int regnum;
          int offset;
          struct prologue_value addr;

          for (regnum = r1, offset = 0;
               regnum <= r3;
               regnum++, offset += 4)
            {
              compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
              s390_store (&addr, 4, &data->gpr[regnum], data);
            }
        }

      /* STMG r1, r3, d2(b2) --- store multiple (64-bit version) */
      else if (word_size == 8
	       && is_rsy (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
        {
          int regnum;
          int offset;
          struct prologue_value addr;

          for (regnum = r1, offset = 0;
               regnum <= r3;
               regnum++, offset += 8)
            {
              compute_x_addr (&addr, data->gpr, d2 + offset, 0, b2);
              s390_store (&addr, 8, &data->gpr[regnum], data);
            }
        }

      /* AHI r1, i2 --- add halfword immediate */
      else if (word_size == 4
	       && is_ri (insn, op1_ahi, op2_ahi, &r1, &i2))
        pv_add_constant (&data->gpr[r1], i2);

      /* AGHI r1, i2 --- add halfword immediate (64-bit version) */
      else if (word_size == 8
               && is_ri (insn, op1_aghi, op2_aghi, &r1, &i2))
        pv_add_constant (&data->gpr[r1], i2);

      /* AR r1, r2 -- add register */
      else if (word_size == 4
	       && is_rr (insn, op_ar, &r1, &r2))
        pv_add (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* AGR r1, r2 -- add register (64-bit version) */
      else if (word_size == 8
	       && is_rre (insn, op_agr, &r1, &r2))
        pv_add (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* A r1, d2(x2, b2) -- add */
      else if (word_size == 4
	       && is_rx (insn, op_a, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &value, data);
	
	  pv_add (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* AY r1, d2(x2, b2) -- add (long-displacement version) */
      else if (word_size == 4
	       && is_rxy (insn, op1_ay, op2_ay, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &value, data);
	
	  pv_add (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* AG r1, d2(x2, b2) -- add (64-bit version) */
      else if (word_size == 8
	       && is_rxy (insn, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 8, &value, data);
	
	  pv_add (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* SR r1, r2 -- subtract register */
      else if (word_size == 4
	       && is_rr (insn, op_sr, &r1, &r2))
        pv_subtract (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* SGR r1, r2 -- subtract register (64-bit version) */
      else if (word_size == 8
	       && is_rre (insn, op_sgr, &r1, &r2))
        pv_subtract (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* S r1, d2(x2, b2) -- subtract */
      else if (word_size == 4
	       && is_rx (insn, op_s, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &value, data);
	
	  pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* SY r1, d2(x2, b2) -- subtract (long-displacement version) */
      else if (word_size == 4
	       && is_rxy (insn, op1_sy, op2_sy, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 4, &value, data);
	
	  pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* SG r1, d2(x2, b2) -- subtract (64-bit version) */
      else if (word_size == 8
	       && is_rxy (insn, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
	{
          struct prologue_value addr;
          struct prologue_value value;

          compute_x_addr (&addr, data->gpr, d2, x2, b2);
	  s390_load (&addr, 8, &value, data);
	
	  pv_subtract (&data->gpr[r1], &data->gpr[r1], &value);
	}

      /* NR r1, r2 --- logical and */
      else if (word_size == 4
	       && is_rr (insn, op_nr, &r1, &r2))
        pv_logical_and (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* NGR r1, r2 >--- logical and (64-bit version) */
      else if (word_size == 8
               && is_rre (insn, op_ngr, &r1, &r2))
        pv_logical_and (&data->gpr[r1], &data->gpr[r1], &data->gpr[r2]);

      /* LA r1, d2(x2, b2) --- load address */
      else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2))
        compute_x_addr (&data->gpr[r1], data->gpr, d2, x2, b2);

      /* LAY r1, d2(x2, b2) --- load address (long-displacement version) */
      else if (is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
        compute_x_addr (&data->gpr[r1], data->gpr, d2, x2, b2);

      /* LARL r1, i2 --- load address relative long */
      else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
        pv_set_to_constant (&data->gpr[r1], pc + i2 * 2);

      /* BASR r1, 0 --- branch and save
         Since r2 is zero, this saves the PC in r1, but doesn't branch.  */
      else if (is_rr (insn, op_basr, &r1, &r2)
               && r2 == 0)
        pv_set_to_constant (&data->gpr[r1], next_pc);

      /* BRAS r1, i2 --- branch relative and save */
      else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
        {
          pv_set_to_constant (&data->gpr[r1], next_pc);
          next_pc = pc + i2 * 2;

          /* We'd better not interpret any backward branches.  We'll
             never terminate.  */
          if (next_pc <= pc)
            break;
        }

      /* Terminate search when hitting any other branch instruction.  */
      else if (is_rr (insn, op_basr, &r1, &r2)
	       || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
	       || is_rr (insn, op_bcr, &r1, &r2)
	       || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
	       || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
	       || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
	       || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
	break;

      else
        /* An instruction we don't know how to simulate.  The only
           safe thing to do would be to set every value we're tracking
           to 'unknown'.  Instead, we'll be optimistic: we assume that
	   we *can* interpret every instruction that the compiler uses
	   to manipulate any of the data we're interested in here --
	   then we can just ignore anything else.  */
        ;

      /* Record the address after the last instruction that changed
         the FP, SP, or backlink.  Ignore instructions that changed
         them back to their original values --- those are probably
         restore instructions.  (The back chain is never restored,
         just popped.)  */
      {
        struct prologue_value *sp = &data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
        struct prologue_value *fp = &data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
        
        if ((! pv_is_identical (&pre_insn_sp, sp)
             && ! pv_is_register (sp, S390_SP_REGNUM, 0))
            || (! pv_is_identical (&pre_insn_fp, fp)
                && ! pv_is_register (fp, S390_FRAME_REGNUM, 0))
            || ! pv_is_identical (&pre_insn_back_chain, &data->back_chain))
          result = next_pc;
      }
    }

  return result;
}

/* Advance PC across any function entry prologue instructions to reach 
   some "real" code.  */
static CORE_ADDR
s390_skip_prologue (CORE_ADDR pc)
{
  struct s390_prologue_data data;
  CORE_ADDR skip_pc;
  skip_pc = s390_analyze_prologue (current_gdbarch, pc, (CORE_ADDR)-1, &data);
  return skip_pc ? skip_pc : pc;
}

/* Return true if we are in the functin's epilogue, i.e. after the
   instruction that destroyed the function's stack frame.  */
static int
s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;

  /* In frameless functions, there's not frame to destroy and thus
     we don't care about the epilogue.

     In functions with frame, the epilogue sequence is a pair of
     a LM-type instruction that restores (amongst others) the
     return register %r14 and the stack pointer %r15, followed
     by a branch 'br %r14' --or equivalent-- that effects the
     actual return.

     In that situation, this function needs to return 'true' in
     exactly one case: when pc points to that branch instruction.

     Thus we try to disassemble the one instructions immediately
     preceeding pc and check whether it is an LM-type instruction
     modifying the stack pointer.

     Note that disassembling backwards is not reliable, so there
     is a slight chance of false positives here ...  */

  bfd_byte insn[6];
  unsigned int r1, r3, b2;
  int d2;

  if (word_size == 4
      && !read_memory_nobpt (pc - 4, insn, 4)
      && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
    return 1;

  if (word_size == 4
      && !read_memory_nobpt (pc - 6, insn, 6)
      && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
    return 1;

  if (word_size == 8
      && !read_memory_nobpt (pc - 6, insn, 6)
      && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
    return 1;

  return 0;
}


/* Normal stack frames.  */

struct s390_unwind_cache {

  CORE_ADDR func;
  CORE_ADDR frame_base;
  CORE_ADDR local_base;

  struct trad_frame_saved_reg *saved_regs;
};

static int
s390_prologue_frame_unwind_cache (struct frame_info *next_frame,
				  struct s390_unwind_cache *info)
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  struct s390_prologue_data data;
  struct prologue_value *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
  struct prologue_value *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
  int slot_num;
  CORE_ADDR slot_addr;
  CORE_ADDR func;
  CORE_ADDR result;
  ULONGEST reg;
  CORE_ADDR prev_sp;
  int frame_pointer;
  int size;

  /* Try to find the function start address.  If we can't find it, we don't
     bother searching for it -- with modern compilers this would be mostly
     pointless anyway.  Trust that we'll either have valid DWARF-2 CFI data
     or else a valid backchain ...  */
  func = frame_func_unwind (next_frame);
  if (!func)
    return 0;

  /* Try to analyze the prologue.  */
  result = s390_analyze_prologue (gdbarch, func,
				  frame_pc_unwind (next_frame), &data);
  if (!result)
    return 0;

  /* If this was successful, we should have found the instruction that
     sets the stack pointer register to the previous value of the stack 
     pointer minus the frame size.  */
  if (sp->kind != pv_register || sp->reg != S390_SP_REGNUM)
    return 0;

  /* A frame size of zero at this point can mean either a real 
     frameless function, or else a failure to find the prologue.
     Perform some sanity checks to verify we really have a 
     frameless function.  */
  if (sp->k == 0)
    {
      /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame 
	 size zero.  This is only possible if the next frame is a sentinel 
	 frame, a dummy frame, or a signal trampoline frame.  */
      /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
	 needed, instead the code should simpliy rely on its
	 analysis.  */
      if (get_frame_type (next_frame) == NORMAL_FRAME)
	return 0;

      /* If we really have a frameless function, %r14 must be valid
	 -- in particular, it must point to a different function.  */
      reg = frame_unwind_register_unsigned (next_frame, S390_RETADDR_REGNUM);
      reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
      if (get_pc_function_start (reg) == func)
	{
	  /* However, there is one case where it *is* valid for %r14
	     to point to the same function -- if this is a recursive
	     call, and we have stopped in the prologue *before* the
	     stack frame was allocated.

	     Recognize this case by looking ahead a bit ...  */

	  struct s390_prologue_data data2;
	  struct prologue_value *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];

	  if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
	        && sp->kind == pv_register
	        && sp->reg == S390_SP_REGNUM
	        && sp->k != 0))
	    return 0;
	}
    }


  /* OK, we've found valid prologue data.  */
  size = -sp->k;

  /* If the frame pointer originally also holds the same value
     as the stack pointer, we're probably using it.  If it holds
     some other value -- even a constant offset -- it is most
     likely used as temp register.  */
  if (pv_is_identical (sp, fp))
    frame_pointer = S390_FRAME_REGNUM;
  else
    frame_pointer = S390_SP_REGNUM;

  /* If we've detected a function with stack frame, we'll still have to 
     treat it as frameless if we're currently within the function epilog 
     code at a point where the frame pointer has already been restored.  
     This can only happen in an innermost frame.  */
  /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
     instead the code should simpliy rely on its analysis.  */
  if (size > 0 && get_frame_type (next_frame) != NORMAL_FRAME)
    {
      /* See the comment in s390_in_function_epilogue_p on why this is
	 not completely reliable ...  */
      if (s390_in_function_epilogue_p (gdbarch, frame_pc_unwind (next_frame)))
	{
	  memset (&data, 0, sizeof (data));
	  size = 0;
	  frame_pointer = S390_SP_REGNUM;
	}
    }

  /* Once we know the frame register and the frame size, we can unwind
     the current value of the frame register from the next frame, and
     add back the frame size to arrive that the previous frame's 
     stack pointer value.  */
  prev_sp = frame_unwind_register_unsigned (next_frame, frame_pointer) + size;

  /* Scan the spill array; if a spill slot says it holds the
     original value of some register, then record that slot's
     address as the place that register was saved.  */

  /* Slots for %r2 .. %r15.  */
  for (slot_num = 0, slot_addr = prev_sp + 2 * data.gpr_size;
       slot_num < 14;
       slot_num++, slot_addr += data.gpr_size)
    {
      struct prologue_value *slot = &data.spill[slot_num];

      if (slot->kind == pv_register
          && slot->k == 0)
        info->saved_regs[slot->reg].addr = slot_addr;
    }

  /* Slots for %f0 .. %f6.  */
  for (slot_num = 14, slot_addr = prev_sp + 16 * data.gpr_size;
       slot_num < S390_NUM_SPILL_SLOTS;
       slot_num++, slot_addr += data.fpr_size)
    {
      struct prologue_value *slot = &data.spill[slot_num];

      if (slot->kind == pv_register
          && slot->k == 0)
        info->saved_regs[slot->reg].addr = slot_addr;
    }

  /* Function return will set PC to %r14.  */
  info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];

  /* In frameless functions, we unwind simply by moving the return
     address to the PC.  However, if we actually stored to the
     save area, use that -- we might only think the function frameless
     because we're in the middle of the prologue ...  */
  if (size == 0
      && !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
    {
      info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;
    }

  /* Another sanity check: unless this is a frameless function,
     we should have found spill slots for SP and PC.
     If not, we cannot unwind further -- this happens e.g. in
     libc's thread_start routine.  */
  if (size > 0)
    {
      if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
	  || !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM))
	prev_sp = -1;
    }

  /* We use the current value of the frame register as local_base,
     and the top of the register save area as frame_base.  */
  if (prev_sp != -1)
    {
      info->frame_base = prev_sp + 16*word_size + 32;
      info->local_base = prev_sp - size;
    }

  info->func = func;
  return 1;
}

static void
s390_backchain_frame_unwind_cache (struct frame_info *next_frame,
				   struct s390_unwind_cache *info)
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  CORE_ADDR backchain;
  ULONGEST reg;
  LONGEST sp;

  /* Get the backchain.  */
  reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
  backchain = read_memory_unsigned_integer (reg, word_size);

  /* A zero backchain terminates the frame chain.  As additional
     sanity check, let's verify that the spill slot for SP in the
     save area pointed to by the backchain in fact links back to
     the save area.  */
  if (backchain != 0
      && safe_read_memory_integer (backchain + 15*word_size, word_size, &sp)
      && (CORE_ADDR)sp == backchain)
    {
      /* We don't know which registers were saved, but it will have
         to be at least %r14 and %r15.  This will allow us to continue
         unwinding, but other prev-frame registers may be incorrect ...  */
      info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
      info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;

      /* Function return will set PC to %r14.  */
      info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];

      /* We use the current value of the frame register as local_base,
         and the top of the register save area as frame_base.  */
      info->frame_base = backchain + 16*word_size + 32;
      info->local_base = reg;
    }

  info->func = frame_pc_unwind (next_frame);
}

static struct s390_unwind_cache *
s390_frame_unwind_cache (struct frame_info *next_frame,
			 void **this_prologue_cache)
{
  struct s390_unwind_cache *info;
  if (*this_prologue_cache)
    return *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
  *this_prologue_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
  info->func = -1;
  info->frame_base = -1;
  info->local_base = -1;

  /* Try to use prologue analysis to fill the unwind cache.
     If this fails, fall back to reading the stack backchain.  */
  if (!s390_prologue_frame_unwind_cache (next_frame, info))
    s390_backchain_frame_unwind_cache (next_frame, info);

  return info;
}

static void
s390_frame_this_id (struct frame_info *next_frame,
		    void **this_prologue_cache,
		    struct frame_id *this_id)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (next_frame, this_prologue_cache);

  if (info->frame_base == -1)
    return;

  *this_id = frame_id_build (info->frame_base, info->func);
}

static void
s390_frame_prev_register (struct frame_info *next_frame,
			  void **this_prologue_cache,
			  int regnum, int *optimizedp,
			  enum lval_type *lvalp, CORE_ADDR *addrp,
			  int *realnump, void *bufferp)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (next_frame, this_prologue_cache);
  trad_frame_prev_register (next_frame, info->saved_regs, regnum,
                            optimizedp, lvalp, addrp, realnump, bufferp);
}

static const struct frame_unwind s390_frame_unwind = {
  NORMAL_FRAME,
  s390_frame_this_id,
  s390_frame_prev_register
};

static const struct frame_unwind *
s390_frame_sniffer (struct frame_info *next_frame)
{
  return &s390_frame_unwind;
}


/* Code stubs and their stack frames.  For things like PLTs and NULL
   function calls (where there is no true frame and the return address
   is in the RETADDR register).  */

struct s390_stub_unwind_cache
{
  CORE_ADDR frame_base;
  struct trad_frame_saved_reg *saved_regs;
};

static struct s390_stub_unwind_cache *
s390_stub_frame_unwind_cache (struct frame_info *next_frame,
			      void **this_prologue_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  struct s390_stub_unwind_cache *info;
  ULONGEST reg;

  if (*this_prologue_cache)
    return *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
  *this_prologue_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);

  /* The return address is in register %r14.  */
  info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM;

  /* Retrieve stack pointer and determine our frame base.  */
  reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
  info->frame_base = reg + 16*word_size + 32;

  return info;
}

static void
s390_stub_frame_this_id (struct frame_info *next_frame,
			 void **this_prologue_cache,
			 struct frame_id *this_id)
{
  struct s390_stub_unwind_cache *info
    = s390_stub_frame_unwind_cache (next_frame, this_prologue_cache);
  *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
}

static void
s390_stub_frame_prev_register (struct frame_info *next_frame,
			       void **this_prologue_cache,
			       int regnum, int *optimizedp,
			       enum lval_type *lvalp, CORE_ADDR *addrp,
			       int *realnump, void *bufferp)
{
  struct s390_stub_unwind_cache *info
    = s390_stub_frame_unwind_cache (next_frame, this_prologue_cache);
  trad_frame_prev_register (next_frame, info->saved_regs, regnum,
                            optimizedp, lvalp, addrp, realnump, bufferp);
}

static const struct frame_unwind s390_stub_frame_unwind = {
  NORMAL_FRAME,
  s390_stub_frame_this_id,
  s390_stub_frame_prev_register
};

static const struct frame_unwind *
s390_stub_frame_sniffer (struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  bfd_byte insn[S390_MAX_INSTR_SIZE];

  /* If the current PC points to non-readable memory, we assume we
     have trapped due to an invalid function pointer call.  We handle
     the non-existing current function like a PLT stub.  */
  if (in_plt_section (pc, NULL)
      || s390_readinstruction (insn, pc) < 0)
    return &s390_stub_frame_unwind;
  return NULL;
}


/* Signal trampoline stack frames.  */

struct s390_sigtramp_unwind_cache {
  CORE_ADDR frame_base;
  struct trad_frame_saved_reg *saved_regs;
};

static struct s390_sigtramp_unwind_cache *
s390_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
				  void **this_prologue_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  struct s390_sigtramp_unwind_cache *info;
  ULONGEST this_sp, prev_sp;
  CORE_ADDR next_ra, next_cfa, sigreg_ptr;
  int i;

  if (*this_prologue_cache)
    return *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
  *this_prologue_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);

  this_sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
  next_ra = frame_pc_unwind (next_frame);
  next_cfa = this_sp + 16*word_size + 32;

  /* New-style RT frame:
	retcode + alignment (8 bytes)
	siginfo (128 bytes)
	ucontext (contains sigregs at offset 5 words)  */
  if (next_ra == next_cfa)
    {
      sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
    }

  /* Old-style RT frame and all non-RT frames:
	old signal mask (8 bytes)
	pointer to sigregs  */
  else
    {
      sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, word_size);
    }

  /* The sigregs structure looks like this:
            long   psw_mask;
            long   psw_addr;
            long   gprs[16];
            int    acrs[16];
            int    fpc;
            int    __pad;
            double fprs[16];  */

  /* Let's ignore the PSW mask, it will not be restored anyway.  */
  sigreg_ptr += word_size;

  /* Next comes the PSW address.  */
  info->saved_regs[S390_PC_REGNUM].addr = sigreg_ptr;
  sigreg_ptr += word_size;

  /* Then the GPRs.  */
  for (i = 0; i < 16; i++)
    {
      info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
      sigreg_ptr += word_size;
    }

  /* Then the ACRs.  */
  for (i = 0; i < 16; i++)
    {
      info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
      sigreg_ptr += 4;
    }

  /* The floating-point control word.  */
  info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
  sigreg_ptr += 8;

  /* And finally the FPRs.  */
  for (i = 0; i < 16; i++)
    {
      info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
      sigreg_ptr += 8;
    }

  /* Restore the previous frame's SP.  */
  prev_sp = read_memory_unsigned_integer (
			info->saved_regs[S390_SP_REGNUM].addr,
			word_size);

  /* Determine our frame base.  */
  info->frame_base = prev_sp + 16*word_size + 32;

  return info;
}

static void
s390_sigtramp_frame_this_id (struct frame_info *next_frame,
			     void **this_prologue_cache,
			     struct frame_id *this_id)
{
  struct s390_sigtramp_unwind_cache *info
    = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
  *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame));
}

static void
s390_sigtramp_frame_prev_register (struct frame_info *next_frame,
				   void **this_prologue_cache,
				   int regnum, int *optimizedp,
				   enum lval_type *lvalp, CORE_ADDR *addrp,
				   int *realnump, void *bufferp)
{
  struct s390_sigtramp_unwind_cache *info
    = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
  trad_frame_prev_register (next_frame, info->saved_regs, regnum,
                            optimizedp, lvalp, addrp, realnump, bufferp);
}

static const struct frame_unwind s390_sigtramp_frame_unwind = {
  SIGTRAMP_FRAME,
  s390_sigtramp_frame_this_id,
  s390_sigtramp_frame_prev_register
};

static const struct frame_unwind *
s390_sigtramp_frame_sniffer (struct frame_info *next_frame)
{
  CORE_ADDR pc = frame_pc_unwind (next_frame);
  bfd_byte sigreturn[2];

  if (read_memory_nobpt (pc, sigreturn, 2))
    return NULL;

  if (sigreturn[0] != 0x0a /* svc */)
    return NULL;

  if (sigreturn[1] != 119 /* sigreturn */
      && sigreturn[1] != 173 /* rt_sigreturn */)
    return NULL;
  
  return &s390_sigtramp_frame_unwind;
}


/* Frame base handling.  */

static CORE_ADDR
s390_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (next_frame, this_cache);
  return info->frame_base;
}

static CORE_ADDR
s390_local_base_address (struct frame_info *next_frame, void **this_cache)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (next_frame, this_cache);
  return info->local_base;
}

static const struct frame_base s390_frame_base = {
  &s390_frame_unwind,
  s390_frame_base_address,
  s390_local_base_address,
  s390_local_base_address
};

static CORE_ADDR
s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST pc;
  pc = frame_unwind_register_unsigned (next_frame, S390_PC_REGNUM);
  return gdbarch_addr_bits_remove (gdbarch, pc);
}

static CORE_ADDR
s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST sp;
  sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
  return gdbarch_addr_bits_remove (gdbarch, sp);
}


/* DWARF-2 frame support.  */

static void
s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
                            struct dwarf2_frame_state_reg *reg)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  switch (tdep->abi)
    {
    case ABI_LINUX_S390:
      /* Call-saved registers.  */
      if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
	  || regnum == S390_F4_REGNUM
	  || regnum == S390_F6_REGNUM)
	reg->how = DWARF2_FRAME_REG_SAME_VALUE;

      /* Call-clobbered registers.  */
      else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
	       || (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
		   && regnum != S390_F4_REGNUM && regnum != S390_F6_REGNUM))
	reg->how = DWARF2_FRAME_REG_UNDEFINED;

      /* The return address column.  */
      else if (regnum == S390_PC_REGNUM)
	reg->how = DWARF2_FRAME_REG_RA;
      break;

    case ABI_LINUX_ZSERIES:
      /* Call-saved registers.  */
      if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
	  || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM))
	reg->how = DWARF2_FRAME_REG_SAME_VALUE;

      /* Call-clobbered registers.  */
      else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM)
	       || (regnum >= S390_F0_REGNUM && regnum <= S390_F7_REGNUM))
	reg->how = DWARF2_FRAME_REG_UNDEFINED;

      /* The return address column.  */
      else if (regnum == S390_PC_REGNUM)
	reg->how = DWARF2_FRAME_REG_RA;
      break;
    }
}


/* Dummy function calls.  */

/* Return non-zero if TYPE is an integer-like type, zero otherwise.
   "Integer-like" types are those that should be passed the way
   integers are: integers, enums, ranges, characters, and booleans.  */
static int
is_integer_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_INT
          || code == TYPE_CODE_ENUM
          || code == TYPE_CODE_RANGE
          || code == TYPE_CODE_CHAR
          || code == TYPE_CODE_BOOL);
}

/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
   "Pointer-like" types are those that should be passed the way
   pointers are: pointers and references.  */
static int
is_pointer_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_PTR
          || code == TYPE_CODE_REF);
}


/* Return non-zero if TYPE is a `float singleton' or `double
   singleton', zero otherwise.

   A `T singleton' is a struct type with one member, whose type is
   either T or a `T singleton'.  So, the following are all float
   singletons:

   struct { float x };
   struct { struct { float x; } x; };
   struct { struct { struct { float x; } x; } x; };

   ... and so on.

   All such structures are passed as if they were floats or doubles,
   as the (revised) ABI says.  */
static int
is_float_singleton (struct type *type)
{
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
    {
      struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
      CHECK_TYPEDEF (singleton_type);

      return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
	      || is_float_singleton (singleton_type));
    }

  return 0;
}


/* Return non-zero if TYPE is a struct-like type, zero otherwise.
   "Struct-like" types are those that should be passed as structs are:
   structs and unions.

   As an odd quirk, not mentioned in the ABI, GCC passes float and
   double singletons as if they were a plain float, double, etc.  (The
   corresponding union types are handled normally.)  So we exclude
   those types here.  *shrug* */
static int
is_struct_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_UNION
          || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
}


/* Return non-zero if TYPE is a float-like type, zero otherwise.
   "Float-like" types are those that should be passed as
   floating-point values are.

   You'd think this would just be floats, doubles, long doubles, etc.
   But as an odd quirk, not mentioned in the ABI, GCC passes float and
   double singletons as if they were a plain float, double, etc.  (The
   corresponding union types are handled normally.)  So we include
   those types here.  *shrug* */
static int
is_float_like (struct type *type)
{
  return (TYPE_CODE (type) == TYPE_CODE_FLT
          || is_float_singleton (type));
}


static int
is_power_of_two (unsigned int n)
{
  return ((n & (n - 1)) == 0);
}

/* Return non-zero if TYPE should be passed as a pointer to a copy,
   zero otherwise.  */
static int
s390_function_arg_pass_by_reference (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);
  if (length > 8)
    return 1;

  /* FIXME: All complex and vector types are also returned by reference.  */
  return is_struct_like (type) && !is_power_of_two (length);
}

/* Return non-zero if TYPE should be passed in a float register
   if possible.  */
static int
s390_function_arg_float (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);
  if (length > 8)
    return 0;

  return is_float_like (type);
}

/* Return non-zero if TYPE should be passed in an integer register
   (or a pair of integer registers) if possible.  */
static int
s390_function_arg_integer (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);
  if (length > 8)
    return 0;

   return is_integer_like (type)
	  || is_pointer_like (type)
	  || (is_struct_like (type) && is_power_of_two (length));
}

/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
   word as required for the ABI.  */
static LONGEST
extend_simple_arg (struct value *arg)
{
  struct type *type = VALUE_TYPE (arg);

  /* Even structs get passed in the least significant bits of the
     register / memory word.  It's not really right to extract them as
     an integer, but it does take care of the extension.  */
  if (TYPE_UNSIGNED (type))
    return extract_unsigned_integer (VALUE_CONTENTS (arg),
                                     TYPE_LENGTH (type));
  else
    return extract_signed_integer (VALUE_CONTENTS (arg),
                                   TYPE_LENGTH (type));
}


/* Return the alignment required by TYPE.  */
static int
alignment_of (struct type *type)
{
  int alignment;

  if (is_integer_like (type)
      || is_pointer_like (type)
      || TYPE_CODE (type) == TYPE_CODE_FLT)
    alignment = TYPE_LENGTH (type);
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
           || TYPE_CODE (type) == TYPE_CODE_UNION)
    {
      int i;

      alignment = 1;
      for (i = 0; i < TYPE_NFIELDS (type); i++)
        {
          int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));

          if (field_alignment > alignment)
            alignment = field_alignment;
        }
    }
  else
    alignment = 1;

  /* Check that everything we ever return is a power of two.  Lots of
     code doesn't want to deal with aligning things to arbitrary
     boundaries.  */
  gdb_assert ((alignment & (alignment - 1)) == 0);

  return alignment;
}


/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
   place to be passed to a function, as specified by the "GNU/Linux
   for S/390 ELF Application Binary Interface Supplement".

   SP is the current stack pointer.  We must put arguments, links,
   padding, etc. whereever they belong, and return the new stack
   pointer value.
   
   If STRUCT_RETURN is non-zero, then the function we're calling is
   going to return a structure by value; STRUCT_ADDR is the address of
   a block we've allocated for it on the stack.

   Our caller has taken care of any type promotions needed to satisfy
   prototypes or the old K&R argument-passing rules.  */
static CORE_ADDR
s390_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
		      struct regcache *regcache, CORE_ADDR bp_addr,
		      int nargs, struct value **args, CORE_ADDR sp,
		      int struct_return, CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  ULONGEST orig_sp;
  int i;

  /* If the i'th argument is passed as a reference to a copy, then
     copy_addr[i] is the address of the copy we made.  */
  CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));

  /* Build the reference-to-copy area.  */
  for (i = 0; i < nargs; i++)
    {
      struct value *arg = args[i];
      struct type *type = VALUE_TYPE (arg);
      unsigned length = TYPE_LENGTH (type);

      if (s390_function_arg_pass_by_reference (type))
        {
          sp -= length;
          sp = align_down (sp, alignment_of (type));
          write_memory (sp, VALUE_CONTENTS (arg), length);
          copy_addr[i] = sp;
        }
    }

  /* Reserve space for the parameter area.  As a conservative
     simplification, we assume that everything will be passed on the
     stack.  Since every argument larger than 8 bytes will be 
     passed by reference, we use this simple upper bound.  */
  sp -= nargs * 8;

  /* After all that, make sure it's still aligned on an eight-byte
     boundary.  */
  sp = align_down (sp, 8);

  /* Finally, place the actual parameters, working from SP towards
     higher addresses.  The code above is supposed to reserve enough
     space for this.  */
  {
    int fr = 0;
    int gr = 2;
    CORE_ADDR starg = sp;

    /* A struct is returned using general register 2.  */
    if (struct_return)
      {
	regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
				        struct_addr);
	gr++;
      }

    for (i = 0; i < nargs; i++)
      {
        struct value *arg = args[i];
        struct type *type = VALUE_TYPE (arg);
        unsigned length = TYPE_LENGTH (type);

	if (s390_function_arg_pass_by_reference (type))
	  {
	    if (gr <= 6)
	      {
		regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
					        copy_addr[i]);
		gr++;
	      }
	    else
	      {
		write_memory_unsigned_integer (starg, word_size, copy_addr[i]);
		starg += word_size;
	      }
	  }
	else if (s390_function_arg_float (type))
	  {
	    /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
	       the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6.  */
	    if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
	      {
		/* When we store a single-precision value in an FP register,
		   it occupies the leftmost bits.  */
		regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
					    0, length, VALUE_CONTENTS (arg));
		fr += 2;
	      }
	    else
	      {
		/* When we store a single-precision value in a stack slot,
		   it occupies the rightmost bits.  */
		starg = align_up (starg + length, word_size);
                write_memory (starg - length, VALUE_CONTENTS (arg), length);
	      }
	  }
	else if (s390_function_arg_integer (type) && length <= word_size)
	  {
	    if (gr <= 6)
	      {
		/* Integer arguments are always extended to word size.  */
		regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
					      extend_simple_arg (arg));
		gr++;
	      }
	    else
	      {
		/* Integer arguments are always extended to word size.  */
		write_memory_signed_integer (starg, word_size,
                                             extend_simple_arg (arg));
                starg += word_size;
	      }
	  }
	else if (s390_function_arg_integer (type) && length == 2*word_size)
	  {
	    if (gr <= 5)
	      {
		regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
				       VALUE_CONTENTS (arg));
		regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
				       VALUE_CONTENTS (arg) + word_size);
		gr += 2;
	      }
	    else
	      {
		/* If we skipped r6 because we couldn't fit a DOUBLE_ARG
		   in it, then don't go back and use it again later.  */
		gr = 7;

		write_memory (starg, VALUE_CONTENTS (arg), length);
		starg += length;
	      }
	  }
	else
	  internal_error (__FILE__, __LINE__, "unknown argument type");
      }
  }

  /* Allocate the standard frame areas: the register save area, the
     word reserved for the compiler (which seems kind of meaningless),
     and the back chain pointer.  */
  sp -= 16*word_size + 32;

  /* Write the back chain pointer into the first word of the stack
     frame.  This is needed to unwind across a dummy frame.  */
  regcache_cooked_read_unsigned (regcache, S390_SP_REGNUM, &orig_sp);
  write_memory_unsigned_integer (sp, word_size, orig_sp);

  /* Store return address.  */
  regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
  
  /* Store updated stack pointer.  */
  regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);

  /* We need to return the 'stack part' of the frame ID,
     which is actually the top of the register save area
     allocated on the original stack.  */
  return orig_sp + 16*word_size + 32;
}

/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
   dummy frame.  The frame ID's base needs to match the TOS value
   returned by push_dummy_call, and the PC match the dummy frame's
   breakpoint.  */
static struct frame_id
s390_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  CORE_ADDR this_sp = s390_unwind_sp (gdbarch, next_frame);
  CORE_ADDR prev_sp = read_memory_unsigned_integer (this_sp, word_size);

  return frame_id_build (prev_sp + 16*word_size + 32,
                         frame_pc_unwind (next_frame));
}

static CORE_ADDR
s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  /* Both the 32- and 64-bit ABI's say that the stack pointer should
     always be aligned on an eight-byte boundary.  */
  return (addr & -8);
}


/* Function return value access.  */

static enum return_value_convention
s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
{
  int length = TYPE_LENGTH (type);
  if (length > 8)
    return RETURN_VALUE_STRUCT_CONVENTION;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_ARRAY:
      return RETURN_VALUE_STRUCT_CONVENTION;

    default:
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

static enum return_value_convention
s390_return_value (struct gdbarch *gdbarch, struct type *type, 
		   struct regcache *regcache, void *out, const void *in)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  int length = TYPE_LENGTH (type);
  enum return_value_convention rvc = 
			s390_return_value_convention (gdbarch, type);
  if (in)
    {
      switch (rvc)
	{
	case RETURN_VALUE_REGISTER_CONVENTION:
	  if (TYPE_CODE (type) == TYPE_CODE_FLT)
	    {
	      /* When we store a single-precision value in an FP register,
		 it occupies the leftmost bits.  */
	      regcache_cooked_write_part (regcache, S390_F0_REGNUM, 
					  0, length, in);
	    }
	  else if (length <= word_size)
	    {
	      /* Integer arguments are always extended to word size.  */
	      if (TYPE_UNSIGNED (type))
		regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
			extract_unsigned_integer (in, length));
	      else
		regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
			extract_signed_integer (in, length));
	    }
	  else if (length == 2*word_size)
	    {
	      regcache_cooked_write (regcache, S390_R2_REGNUM, in);
	      regcache_cooked_write (regcache, S390_R3_REGNUM,
				     (const char *)in + word_size);
	    }
	  else
	    internal_error (__FILE__, __LINE__, "invalid return type");
	  break;

	case RETURN_VALUE_STRUCT_CONVENTION:
	  error ("Cannot set function return value.");
	  break;
	}
    }
  else if (out)
    {
      switch (rvc)
	{
	case RETURN_VALUE_REGISTER_CONVENTION:
	  if (TYPE_CODE (type) == TYPE_CODE_FLT)
	    {
	      /* When we store a single-precision value in an FP register,
		 it occupies the leftmost bits.  */
	      regcache_cooked_read_part (regcache, S390_F0_REGNUM, 
					 0, length, out);
	    }
	  else if (length <= word_size)
	    {
	      /* Integer arguments occupy the rightmost bits.  */
	      regcache_cooked_read_part (regcache, S390_R2_REGNUM, 
					 word_size - length, length, out);
	    }
	  else if (length == 2*word_size)
	    {
	      regcache_cooked_read (regcache, S390_R2_REGNUM, out);
	      regcache_cooked_read (regcache, S390_R3_REGNUM,
				    (char *)out + word_size);
	    }
	  else
	    internal_error (__FILE__, __LINE__, "invalid return type");
	  break;

	case RETURN_VALUE_STRUCT_CONVENTION:
	  error ("Function return value unknown.");
	  break;
	}
    }

  return rvc;
}


/* Breakpoints.  */

static const unsigned char *
s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  static unsigned char breakpoint[] = { 0x0, 0x1 };

  *lenptr = sizeof (breakpoint);
  return breakpoint;
}


/* Address handling.  */

static CORE_ADDR
s390_addr_bits_remove (CORE_ADDR addr)
{
  return addr & 0x7fffffff;
}

static int
s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
{
  if (byte_size == 4)
    return TYPE_FLAG_ADDRESS_CLASS_1;
  else
    return 0;
}

static const char *
s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
{
  if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1)
    return "mode32";
  else
    return NULL;
}

static int
s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
				       int *type_flags_ptr)
{
  if (strcmp (name, "mode32") == 0)
    {
      *type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1;
      return 1;
    }
  else
    return 0;
}


/* Link map offsets.  */

static struct link_map_offsets *
s390_svr4_fetch_link_map_offsets (void)
{
  static struct link_map_offsets lmo;
  static struct link_map_offsets *lmp = NULL;

  if (lmp == NULL)
    {
      lmp = &lmo;

      lmo.r_debug_size = 8;

      lmo.r_map_offset = 4;
      lmo.r_map_size   = 4;

      lmo.link_map_size = 20;

      lmo.l_addr_offset = 0;
      lmo.l_addr_size   = 4;

      lmo.l_name_offset = 4;
      lmo.l_name_size   = 4;

      lmo.l_next_offset = 12;
      lmo.l_next_size   = 4;

      lmo.l_prev_offset = 16;
      lmo.l_prev_size   = 4;
    }

  return lmp;
}

static struct link_map_offsets *
s390x_svr4_fetch_link_map_offsets (void)
{
  static struct link_map_offsets lmo;
  static struct link_map_offsets *lmp = NULL;

  if (lmp == NULL)
    {
      lmp = &lmo;

      lmo.r_debug_size = 16;   /* All we need.  */

      lmo.r_map_offset = 8;
      lmo.r_map_size   = 8;

      lmo.link_map_size = 40;   /* All we need.  */

      lmo.l_addr_offset = 0;
      lmo.l_addr_size   = 8;

      lmo.l_name_offset = 8;
      lmo.l_name_size   = 8;

      lmo.l_next_offset = 24;
      lmo.l_next_size   = 8;

      lmo.l_prev_offset = 32;
      lmo.l_prev_size   = 8;
    }

  return lmp;
}


/* Set up gdbarch struct.  */

static struct gdbarch *
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;

  /* First see if there is already a gdbarch that can satisfy the request.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found: is the request for a s390 architecture? */
  if (info.bfd_arch_info->arch != bfd_arch_s390)
    return NULL;		/* No; then it's not for us.  */

  /* Yes: create a new gdbarch for the specified machine type.  */
  tdep = XCALLOC (1, struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  set_gdbarch_believe_pcc_promotion (gdbarch, 0);
  set_gdbarch_char_signed (gdbarch, 0);

  /* Amount PC must be decremented by after a breakpoint.  This is
     often the number of bytes returned by BREAKPOINT_FROM_PC but not
     always.  */
  set_gdbarch_decr_pc_after_break (gdbarch, 2);
  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
  set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
  set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);

  set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
  set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, S390_NUM_PSEUDO_REGS);
  set_gdbarch_register_name (gdbarch, s390_register_name);
  set_gdbarch_register_type (gdbarch, s390_register_type);
  set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
  set_gdbarch_convert_register_p (gdbarch, s390_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, s390_register_to_value);
  set_gdbarch_value_to_register (gdbarch, s390_value_to_register);
  set_gdbarch_register_reggroup_p (gdbarch, s390_register_reggroup_p);
  set_gdbarch_regset_from_core_section (gdbarch,
                                        s390_regset_from_core_section);

  /* Inferior function calls.  */
  set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
  set_gdbarch_unwind_dummy_id (gdbarch, s390_unwind_dummy_id);
  set_gdbarch_frame_align (gdbarch, s390_frame_align);
  set_gdbarch_return_value (gdbarch, s390_return_value);

  /* Frame handling.  */
  set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
  dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
  frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
  frame_unwind_append_sniffer (gdbarch, s390_stub_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, s390_sigtramp_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, s390_frame_sniffer);
  frame_base_set_default (gdbarch, &s390_frame_base);
  set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_s390_31:
      tdep->abi = ABI_LINUX_S390;

      tdep->gregset = &s390_gregset;
      tdep->sizeof_gregset = s390_sizeof_gregset;
      tdep->fpregset = &s390_fpregset;
      tdep->sizeof_fpregset = s390_sizeof_fpregset;

      set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
      set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
      set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
      set_solib_svr4_fetch_link_map_offsets (gdbarch,
					     s390_svr4_fetch_link_map_offsets);

      break;
    case bfd_mach_s390_64:
      tdep->abi = ABI_LINUX_ZSERIES;

      tdep->gregset = &s390x_gregset;
      tdep->sizeof_gregset = s390x_sizeof_gregset;
      tdep->fpregset = &s390_fpregset;
      tdep->sizeof_fpregset = s390_sizeof_fpregset;

      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_pseudo_register_read (gdbarch, s390x_pseudo_register_read);
      set_gdbarch_pseudo_register_write (gdbarch, s390x_pseudo_register_write);
      set_solib_svr4_fetch_link_map_offsets (gdbarch,
					     s390x_svr4_fetch_link_map_offsets);
      set_gdbarch_address_class_type_flags (gdbarch,
                                            s390_address_class_type_flags);
      set_gdbarch_address_class_type_flags_to_name (gdbarch,
                                                    s390_address_class_type_flags_to_name);
      set_gdbarch_address_class_name_to_type_flags (gdbarch,
                                                    s390_address_class_name_to_type_flags);
      break;
    }

  set_gdbarch_print_insn (gdbarch, print_insn_s390);

  return gdbarch;
}



extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */

void
_initialize_s390_tdep (void)
{

  /* Hook us into the gdbarch mechanism.  */
  register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
}