aboutsummaryrefslogtreecommitdiff
path: root/gdb/s390-tdep.c
blob: 94defe5aee9ee9b058050be9799b506433a68a32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
/* Target-dependent code for GDB, the GNU debugger.

   Copyright 2001, 2002 Free Software Foundation, Inc.

   Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
   for IBM Deutschland Entwicklung GmbH, IBM Corporation.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

#define S390_TDEP		/* for special macros in tm-s390.h */
#include <defs.h>
#include "arch-utils.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "symfile.h"
#include "objfiles.h"
#include "tm.h"
#include "../bfd/bfd.h"
#include "floatformat.h"
#include "regcache.h"
#include "value.h"
#include "gdb_assert.h"




/* Number of bytes of storage in the actual machine representation
   for register N.  */
int
s390_register_raw_size (int reg_nr)
{
  if (S390_FP0_REGNUM <= reg_nr
      && reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS)
    return S390_FPR_SIZE;
  else
    return 4;
}

int
s390x_register_raw_size (int reg_nr)
{
  return (reg_nr == S390_FPC_REGNUM)
    || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
}

int
s390_cannot_fetch_register (int regno)
{
  return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
    (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
}

int
s390_register_byte (int reg_nr)
{
  if (reg_nr <= S390_GP_LAST_REGNUM)
    return reg_nr * S390_GPR_SIZE;
  if (reg_nr <= S390_LAST_ACR)
    return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
  if (reg_nr <= S390_LAST_CR)
    return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
  if (reg_nr == S390_FPC_REGNUM)
    return S390_FPC_OFFSET;
  else
    return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
}

#ifndef GDBSERVER
#define S390_MAX_INSTR_SIZE (6)
#define S390_SYSCALL_OPCODE (0x0a)
#define S390_SYSCALL_SIZE   (2)
#define S390_SIGCONTEXT_SREGS_OFFSET (8)
#define S390X_SIGCONTEXT_SREGS_OFFSET (8)
#define S390_SIGREGS_FP0_OFFSET       (144)
#define S390X_SIGREGS_FP0_OFFSET      (216)
#define S390_UC_MCONTEXT_OFFSET    (256)
#define S390X_UC_MCONTEXT_OFFSET   (344)
#define S390_STACK_FRAME_OVERHEAD  (GDB_TARGET_IS_ESAME ? 160:96)
#define S390_SIGNAL_FRAMESIZE  (GDB_TARGET_IS_ESAME ? 160:96)
#define s390_NR_sigreturn          119
#define s390_NR_rt_sigreturn       173



struct frame_extra_info
{
  int initialised;
  int good_prologue;
  CORE_ADDR function_start;
  CORE_ADDR skip_prologue_function_start;
  CORE_ADDR saved_pc_valid;
  CORE_ADDR saved_pc;
  CORE_ADDR sig_fixed_saved_pc_valid;
  CORE_ADDR sig_fixed_saved_pc;
  CORE_ADDR frame_pointer_saved_pc;	/* frame pointer needed for alloca */
  CORE_ADDR stack_bought;	/* amount we decrement the stack pointer by */
  CORE_ADDR sigcontext;
};


static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);

int
s390_readinstruction (bfd_byte instr[], CORE_ADDR at,
		      struct disassemble_info *info)
{
  int instrlen;

  static int s390_instrlen[] = {
    2,
    4,
    4,
    6
  };
  if ((*info->read_memory_func) (at, &instr[0], 2, info))
    return -1;
  instrlen = s390_instrlen[instr[0] >> 6];
  if (instrlen > 2)
    {
      if ((*info->read_memory_func) (at + 2, &instr[2], instrlen - 2, info))
        return -1;
    }
  return instrlen;
}

static void
s390_memset_extra_info (struct frame_extra_info *fextra_info)
{
  memset (fextra_info, 0, sizeof (struct frame_extra_info));
}



const char *
s390_register_name (int reg_nr)
{
  static char *register_names[] = {
    "pswm", "pswa",
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
    "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
    "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
    "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
    "fpc",
    "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
    "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
  };

  if (reg_nr <= S390_LAST_REGNUM)
    return register_names[reg_nr];
  else
    return NULL;
}




int
s390_stab_reg_to_regnum (int regno)
{
  return regno >= 64 ? S390_PSWM_REGNUM - 64 :
    regno >= 48 ? S390_FIRST_ACR - 48 :
    regno >= 32 ? S390_FIRST_CR - 32 :
    regno <= 15 ? (regno + 2) :
    S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
    (((regno - 16) & 4) >> 2);
}


/* Return true if REGIDX is the number of a register used to pass
     arguments, false otherwise.  */
static int
is_arg_reg (int regidx)
{
  return 2 <= regidx && regidx <= 6;
}


/* s390_get_frame_info based on Hartmuts
   prologue definition in
   gcc-2.8.1/config/l390/linux.c 

   It reads one instruction at a time & based on whether
   it looks like prologue code or not it makes a decision on
   whether the prologue is over, there are various state machines
   in the code to determine if the prologue code is possilby valid.
   
   This is done to hopefully allow the code survive minor revs of
   calling conventions.

 */

int
s390_get_frame_info (CORE_ADDR pc, struct frame_extra_info *fextra_info,
		     struct frame_info *fi, int init_extra_info)
{
#define CONST_POOL_REGIDX 13
#define GOT_REGIDX        12
  bfd_byte instr[S390_MAX_INSTR_SIZE];
  CORE_ADDR test_pc = pc, test_pc2;
  CORE_ADDR orig_sp = 0, save_reg_addr = 0, *saved_regs = NULL;
  int valid_prologue, good_prologue = 0;
  int gprs_saved[S390_NUM_GPRS];
  int fprs_saved[S390_NUM_FPRS];
  int regidx, instrlen;
  int const_pool_state;
  int varargs_state;
  int loop_cnt, gdb_gpr_store, gdb_fpr_store;
  int offset, expected_offset;
  int err = 0;
  disassemble_info info;

  /* Have we seen an instruction initializing the frame pointer yet?
     If we've seen an `lr %r11, %r15', then frame_pointer_found is
     non-zero, and frame_pointer_regidx == 11.  Otherwise,
     frame_pointer_found is zero and frame_pointer_regidx is 15,
     indicating that we're using the stack pointer as our frame
     pointer.  */
  int frame_pointer_found = 0;
  int frame_pointer_regidx = 0xf;

  /* What we've seen so far regarding saving the back chain link:
     0 -- nothing yet; sp still has the same value it had at the entry
          point.  Since not all functions allocate frames, this is a
          valid state for the prologue to finish in.
     1 -- We've saved the original sp in some register other than the
          frame pointer (hard-coded to be %r11, yuck).
          save_link_regidx is the register we saved it in.
     2 -- We've seen the initial `bras' instruction of the sequence for
          reserving more than 32k of stack:
                bras %rX, .+8
                .long N
                s %r15, 0(%rX)
          where %rX is not the constant pool register.
          subtract_sp_regidx is %rX, and fextra_info->stack_bought is N.
     3 -- We've reserved space for a new stack frame.  This means we
          either saw a simple `ahi %r15,-N' in state 1, or the final
          `s %r15, ...' in state 2.
     4 -- The frame and link are now fully initialized.  We've
          reserved space for the new stack frame, and stored the old
          stack pointer captured in the back chain pointer field.  */
  int save_link_state = 0;
  int save_link_regidx, subtract_sp_regidx;

  /* What we've seen so far regarding r12 --- the GOT (Global Offset
     Table) pointer.  We expect to see `l %r12, N(%r13)', which loads
     r12 with the offset from the constant pool to the GOT, and then
     an `ar %r12, %r13', which adds the constant pool address,
     yielding the GOT's address.  Here's what got_state means:
     0 -- seen nothing
     1 -- seen `l %r12, N(%r13)', but no `ar'
     2 -- seen load and add, so GOT pointer is totally initialized
     When got_state is 1, then got_load_addr is the address of the
     load instruction, and got_load_len is the length of that
     instruction.  */
  int got_state= 0;
  CORE_ADDR got_load_addr = 0, got_load_len = 0;

  const_pool_state = varargs_state = 0;

  memset (gprs_saved, 0, sizeof (gprs_saved));
  memset (fprs_saved, 0, sizeof (fprs_saved));
  info.read_memory_func = dis_asm_read_memory;

  save_link_regidx = subtract_sp_regidx = 0;
  if (fextra_info)
    {
      if (fi && fi->frame)
	{
          orig_sp = fi->frame;
          if (! init_extra_info && fextra_info->initialised)
            orig_sp += fextra_info->stack_bought;
	  saved_regs = fi->saved_regs;
	}
      if (init_extra_info || !fextra_info->initialised)
	{
	  s390_memset_extra_info (fextra_info);
	  fextra_info->function_start = pc;
	  fextra_info->initialised = 1;
	}
    }
  instrlen = 0;
  do
    {
      valid_prologue = 0;
      test_pc += instrlen;
      /* add the previous instruction len */
      instrlen = s390_readinstruction (instr, test_pc, &info);
      if (instrlen < 0)
	{
	  good_prologue = 0;
	  err = -1;
	  break;
	}
      /* We probably are in a glibc syscall */
      if (instr[0] == S390_SYSCALL_OPCODE && test_pc == pc)
	{
	  good_prologue = 1;
	  if (saved_regs && fextra_info && fi->next && fi->next->extra_info
	      && fi->next->extra_info->sigcontext)
	    {
	      /* We are backtracing from a signal handler */
	      save_reg_addr = fi->next->extra_info->sigcontext +
		REGISTER_BYTE (S390_GP0_REGNUM);
	      for (regidx = 0; regidx < S390_NUM_GPRS; regidx++)
		{
		  saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
		  save_reg_addr += S390_GPR_SIZE;
		}
	      save_reg_addr = fi->next->extra_info->sigcontext +
		(GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
		 S390_SIGREGS_FP0_OFFSET);
	      for (regidx = 0; regidx < S390_NUM_FPRS; regidx++)
		{
		  saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
		  save_reg_addr += S390_FPR_SIZE;
		}
	    }
	  break;
	}
      if (save_link_state == 0)
	{
	  /* check for a stack relative STMG or STM */
	  if (((GDB_TARGET_IS_ESAME &&
		((instr[0] == 0xeb) && (instr[5] == 0x24))) ||
	       (instr[0] == 0x90)) && ((instr[2] >> 4) == 0xf))
	    {
	      regidx = (instr[1] >> 4);
	      if (regidx < 6)
		varargs_state = 1;
	      offset = ((instr[2] & 0xf) << 8) + instr[3];
	      expected_offset =
		S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
	      if (offset != expected_offset)
		{
		  good_prologue = 0;
		  break;
		}
	      if (saved_regs)
		save_reg_addr = orig_sp + offset;
	      for (; regidx <= (instr[1] & 0xf); regidx++)
		{
		  if (gprs_saved[regidx])
		    {
		      good_prologue = 0;
		      break;
		    }
		  good_prologue = 1;
		  gprs_saved[regidx] = 1;
		  if (saved_regs)
		    {
		      saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
		      save_reg_addr += S390_GPR_SIZE;
		    }
		}
	      valid_prologue = 1;
	      continue;
	    }
	}
      /* check for a stack relative STG or ST */
      if ((save_link_state == 0 || save_link_state == 3) &&
	  ((GDB_TARGET_IS_ESAME &&
	    ((instr[0] == 0xe3) && (instr[5] == 0x24))) ||
	   (instr[0] == 0x50)) && ((instr[2] >> 4) == 0xf))
	{
	  regidx = instr[1] >> 4;
	  offset = ((instr[2] & 0xf) << 8) + instr[3];
	  if (offset == 0)
	    {
	      if (save_link_state == 3 && regidx == save_link_regidx)
		{
		  save_link_state = 4;
		  valid_prologue = 1;
		  continue;
		}
	      else
		break;
	    }
	  if (regidx < 6)
	    varargs_state = 1;
	  expected_offset =
	    S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
	  if (offset != expected_offset)
	    {
	      good_prologue = 0;
	      break;
	    }
	  if (gprs_saved[regidx])
	    {
	      good_prologue = 0;
	      break;
	    }
	  good_prologue = 1;
	  gprs_saved[regidx] = 1;
	  if (saved_regs)
	    {
	      save_reg_addr = orig_sp + offset;
	      saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
	    }
	  valid_prologue = 1;
	  continue;
	}

      /* Check for an fp-relative STG, ST, or STM.  This is probably
          spilling an argument from a register out into a stack slot.
          This could be a user instruction, but if we haven't included
          any other suspicious instructions in the prologue, this
          could only be an initializing store, which isn't too bad to
          skip.  The consequences of not including arg-to-stack spills
          are more serious, though --- you don't see the proper values
          of the arguments.  */
      if ((save_link_state == 3 || save_link_state == 4)
          && ((instr[0] == 0x50      /* st %rA, D(%rX,%rB) */
               && (instr[1] & 0xf) == 0 /* %rX is zero, no index reg */
               && is_arg_reg ((instr[1] >> 4) & 0xf)
               && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)
              || (instr[0] == 0x90 /* stm %rA, %rB, D(%rC) */
                  && is_arg_reg ((instr[1] >> 4) & 0xf)
                  && is_arg_reg (instr[1] & 0xf)
                  && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)))
        {
          valid_prologue = 1;
          continue;
        }

      /* check for STD */
      if (instr[0] == 0x60 && (instr[2] >> 4) == 0xf)
	{
	  regidx = instr[1] >> 4;
	  if (regidx == 0 || regidx == 2)
	    varargs_state = 1;
	  if (fprs_saved[regidx])
	    {
	      good_prologue = 0;
	      break;
	    }
	  fprs_saved[regidx] = 1;
	  if (saved_regs)
	    {
	      save_reg_addr = orig_sp + (((instr[2] & 0xf) << 8) + instr[3]);
	      saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
	    }
	  valid_prologue = 1;
	  continue;
	}


      if (const_pool_state == 0)
	{

	  if (GDB_TARGET_IS_ESAME)
	    {
	      /* Check for larl CONST_POOL_REGIDX,offset on ESAME */
	      if ((instr[0] == 0xc0)
		  && (instr[1] == (CONST_POOL_REGIDX << 4)))
		{
		  const_pool_state = 2;
		  valid_prologue = 1;
		  continue;
		}
	    }
	  else
	    {
	      /* Check for BASR gpr13,gpr0 used to load constant pool pointer to r13 in old compiler */
	      if (instr[0] == 0xd && (instr[1] & 0xf) == 0
		  && ((instr[1] >> 4) == CONST_POOL_REGIDX))
		{
		  const_pool_state = 1;
		  valid_prologue = 1;
		  continue;
		}
	    }
	  /* Check for new fangled bras %r13,newpc to load new constant pool */
	  /* embedded in code, older pre abi compilers also emitted this stuff.  */
	  if ((instr[0] == 0xa7) && ((instr[1] & 0xf) == 0x5) &&
	      ((instr[1] >> 4) == CONST_POOL_REGIDX)
	      && ((instr[2] & 0x80) == 0))
	    {
	      const_pool_state = 2;
	      test_pc +=
		(((((instr[2] & 0xf) << 8) + instr[3]) << 1) - instrlen);
	      valid_prologue = 1;
	      continue;
	    }
	}
      /* Check for AGHI or AHI CONST_POOL_REGIDX,val */
      if (const_pool_state == 1 && (instr[0] == 0xa7) &&
	  ((GDB_TARGET_IS_ESAME &&
	    (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xb))) ||
	   (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xa))))
	{
	  const_pool_state = 2;
	  valid_prologue = 1;
	  continue;
	}
      /* Check for LGR or LR gprx,15 */
      if ((GDB_TARGET_IS_ESAME &&
	   instr[0] == 0xb9 && instr[1] == 0x04 && (instr[3] & 0xf) == 0xf) ||
	  (instr[0] == 0x18 && (instr[1] & 0xf) == 0xf))
	{
	  if (GDB_TARGET_IS_ESAME)
	    regidx = instr[3] >> 4;
	  else
	    regidx = instr[1] >> 4;
	  if (save_link_state == 0 && regidx != 0xb)
	    {
	      /* Almost defintely code for
	         decrementing the stack pointer 
	         ( i.e. a non leaf function 
	         or else leaf with locals ) */
	      save_link_regidx = regidx;
	      save_link_state = 1;
	      valid_prologue = 1;
	      continue;
	    }
	  /* We use this frame pointer for alloca
	     unfortunately we need to assume its gpr11
	     otherwise we would need a smarter prologue
	     walker. */
	  if (!frame_pointer_found && regidx == 0xb)
	    {
	      frame_pointer_regidx = 0xb;
	      frame_pointer_found = 1;
	      if (fextra_info)
		fextra_info->frame_pointer_saved_pc = test_pc;
	      valid_prologue = 1;
	      continue;
	    }
	}
      /* Check for AHI or AGHI gpr15,val */
      if (save_link_state == 1 && (instr[0] == 0xa7) &&
	  ((GDB_TARGET_IS_ESAME && (instr[1] == 0xfb)) || (instr[1] == 0xfa)))
	{
	  if (fextra_info)
	    fextra_info->stack_bought =
	      -extract_signed_integer (&instr[2], 2);
	  save_link_state = 3;
	  valid_prologue = 1;
	  continue;
	}
      /* Alternatively check for the complex construction for
         buying more than 32k of stack
         BRAS gprx,.+8
         long val
         s    %r15,0(%gprx)  gprx currently r1 */
      if ((save_link_state == 1) && (instr[0] == 0xa7)
	  && ((instr[1] & 0xf) == 0x5) && (instr[2] == 0)
	  && (instr[3] == 0x4) && ((instr[1] >> 4) != CONST_POOL_REGIDX))
	{
	  subtract_sp_regidx = instr[1] >> 4;
	  save_link_state = 2;
	  if (fextra_info)
	    target_read_memory (test_pc + instrlen,
				(char *) &fextra_info->stack_bought,
				sizeof (fextra_info->stack_bought));
	  test_pc += 4;
	  valid_prologue = 1;
	  continue;
	}
      if (save_link_state == 2 && instr[0] == 0x5b
	  && instr[1] == 0xf0 &&
	  instr[2] == (subtract_sp_regidx << 4) && instr[3] == 0)
	{
	  save_link_state = 3;
	  valid_prologue = 1;
	  continue;
	}
      /* check for LA gprx,offset(15) used for varargs */
      if ((instr[0] == 0x41) && ((instr[2] >> 4) == 0xf) &&
	  ((instr[1] & 0xf) == 0))
	{
	  /* some code uses gpr7 to point to outgoing args */
	  if (((instr[1] >> 4) == 7) && (save_link_state == 0) &&
	      ((instr[2] & 0xf) == 0)
	      && (instr[3] == S390_STACK_FRAME_OVERHEAD))
	    {
	      valid_prologue = 1;
	      continue;
	    }
	  if (varargs_state == 1)
	    {
	      varargs_state = 2;
	      valid_prologue = 1;
	      continue;
	    }
	}
      /* Check for a GOT load */

      if (GDB_TARGET_IS_ESAME)
	{
	  /* Check for larl  GOT_REGIDX, on ESAME */
	  if ((got_state == 0) && (instr[0] == 0xc0)
	      && (instr[1] == (GOT_REGIDX << 4)))
	    {
	      got_state = 2;
	      valid_prologue = 1;
	      continue;
	    }
	}
      else
	{
	  /* check for l GOT_REGIDX,x(CONST_POOL_REGIDX) */
	  if (got_state == 0 && const_pool_state == 2 && instr[0] == 0x58
	      && (instr[2] == (CONST_POOL_REGIDX << 4))
	      && ((instr[1] >> 4) == GOT_REGIDX))
	    {
	      got_state = 1;
              got_load_addr = test_pc;
              got_load_len = instrlen;
	      valid_prologue = 1;
	      continue;
	    }
	  /* Check for subsequent ar got_regidx,basr_regidx */
	  if (got_state == 1 && instr[0] == 0x1a &&
	      instr[1] == ((GOT_REGIDX << 4) | CONST_POOL_REGIDX))
	    {
	      got_state = 2;
	      valid_prologue = 1;
	      continue;
	    }
	}
    }
  while (valid_prologue && good_prologue);
  if (good_prologue)
    {
      /* If this function doesn't reference the global offset table,
         then the compiler may use r12 for other things.  If the last
         instruction we saw was a load of r12 from the constant pool,
         with no subsequent add to make the address PC-relative, then
         the load was probably a genuine body instruction; don't treat
         it as part of the prologue.  */
      if (got_state == 1
          && got_load_addr + got_load_len == test_pc)
        {
          test_pc = got_load_addr;
          instrlen = got_load_len;
        }
        
      good_prologue = (((const_pool_state == 0) || (const_pool_state == 2)) &&
		       ((save_link_state == 0) || (save_link_state == 4)) &&
		       ((varargs_state == 0) || (varargs_state == 2)));
    }
  if (fextra_info)
    {
      fextra_info->good_prologue = good_prologue;
      fextra_info->skip_prologue_function_start =
	(good_prologue ? test_pc : pc);
    }
  if (saved_regs)
    /* The SP's element of the saved_regs array holds the old SP,
       not the address at which it is saved.  */
    saved_regs[S390_SP_REGNUM] = orig_sp;
  return err;
}


int
s390_check_function_end (CORE_ADDR pc)
{
  bfd_byte instr[S390_MAX_INSTR_SIZE];
  disassemble_info info;
  int regidx, instrlen;

  info.read_memory_func = dis_asm_read_memory;
  instrlen = s390_readinstruction (instr, pc, &info);
  if (instrlen < 0)
    return -1;
  /* check for BR */
  if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
    return 0;
  regidx = instr[1] & 0xf;
  /* Check for LMG or LG */
  instrlen =
    s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4), &info);
  if (instrlen < 0)
    return -1;
  if (GDB_TARGET_IS_ESAME)
    {

      if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
	return 0;
    }
  else if (instrlen != 4 || instr[0] != 0x98)
    {
      return 0;
    }
  if ((instr[2] >> 4) != 0xf)
    return 0;
  if (regidx == 14)
    return 1;
  instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8),
				   &info);
  if (instrlen < 0)
    return -1;
  if (GDB_TARGET_IS_ESAME)
    {
      /* Check for LG */
      if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
	return 0;
    }
  else
    {
      /* Check for L */
      if (instrlen != 4 || instr[0] != 0x58)
	return 0;
    }
  if (instr[2] >> 4 != 0xf)
    return 0;
  if (instr[1] >> 4 != regidx)
    return 0;
  return 1;
}

static CORE_ADDR
s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
{
  CORE_ADDR function_start, test_function_start;
  int loop_cnt, err, function_end;
  struct frame_extra_info fextra_info;
  function_start = get_pc_function_start (pc);

  if (function_start == 0)
    {
      test_function_start = pc;
      if (test_function_start & 1)
	return 0;		/* This has to be bogus */
      loop_cnt = 0;
      do
	{

	  err =
	    s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
	  loop_cnt++;
	  test_function_start -= 2;
	  function_end = s390_check_function_end (test_function_start);
	}
      while (!(function_end == 1 || err || loop_cnt >= 4096 ||
	       (fextra_info.good_prologue)));
      if (fextra_info.good_prologue)
	function_start = fextra_info.function_start;
      else if (function_end == 1)
	function_start = test_function_start;
    }
  return function_start;
}



CORE_ADDR
s390_function_start (struct frame_info *fi)
{
  CORE_ADDR function_start = 0;

  if (fi->extra_info && fi->extra_info->initialised)
    function_start = fi->extra_info->function_start;
  else if (fi->pc)
    function_start = get_pc_function_start (fi->pc);
  return function_start;
}




int
s390_frameless_function_invocation (struct frame_info *fi)
{
  struct frame_extra_info fextra_info, *fextra_info_ptr;
  int frameless = 0;

  if (fi->next == NULL)		/* no may be frameless */
    {
      if (fi->extra_info)
	fextra_info_ptr = fi->extra_info;
      else
	{
	  fextra_info_ptr = &fextra_info;
	  s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
			       fextra_info_ptr, fi, 1);
	}
      frameless = ((fextra_info_ptr->stack_bought == 0));
    }
  return frameless;

}


static int
s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
		   CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
{
  bfd_byte instr[S390_MAX_INSTR_SIZE];
  disassemble_info info;
  int instrlen;
  CORE_ADDR scontext;
  int retval = 0;
  CORE_ADDR orig_sp;
  CORE_ADDR temp_sregs;

  scontext = temp_sregs = 0;

  info.read_memory_func = dis_asm_read_memory;
  instrlen = s390_readinstruction (instr, pc, &info);
  if (sigcaller_pc)
    *sigcaller_pc = 0;
  if (((instrlen == S390_SYSCALL_SIZE) &&
       (instr[0] == S390_SYSCALL_OPCODE)) &&
      ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
    {
      if (sighandler_fi)
	{
	  if (s390_frameless_function_invocation (sighandler_fi))
	    orig_sp = sighandler_fi->frame;
	  else
	    orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
					read_memory_integer (sighandler_fi->
							     frame,
							     S390_GPR_SIZE));
	  if (orig_sp && sigcaller_pc)
	    {
	      scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
	      if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
		{
		  /* We got a new style rt_signal */
		  /* get address of read ucontext->uc_mcontext */
		  temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
					  S390X_UC_MCONTEXT_OFFSET :
					  S390_UC_MCONTEXT_OFFSET);
		}
	      else
		{
		  /* read sigcontext->sregs */
		  temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
						 read_memory_integer (scontext
								      +
								      (GDB_TARGET_IS_ESAME
								       ?
								       S390X_SIGCONTEXT_SREGS_OFFSET
								       :
								       S390_SIGCONTEXT_SREGS_OFFSET),
								      S390_GPR_SIZE));

		}
	      /* read sigregs->psw.addr */
	      *sigcaller_pc =
		ADDR_BITS_REMOVE ((CORE_ADDR)
				  read_memory_integer (temp_sregs +
						       REGISTER_BYTE
						       (S390_PC_REGNUM),
						       S390_PSW_ADDR_SIZE));
	    }
	}
      retval = 1;
    }
  if (sregs)
    *sregs = temp_sregs;
  return retval;
}

/*
  We need to do something better here but this will keep us out of trouble
  for the moment.
  For some reason the blockframe.c calls us with fi->next->fromleaf
  so this seems of little use to us. */
void
s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
{
  CORE_ADDR sigcaller_pc;

  fi->pc = 0;
  if (next_fromleaf)
    {
      fi->pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
      /* fix signal handlers */
    }
  else if (fi->next && fi->next->pc)
    fi->pc = s390_frame_saved_pc_nofix (fi->next);
  if (fi->pc && fi->next && fi->next->frame &&
      s390_is_sigreturn (fi->pc, fi->next, NULL, &sigcaller_pc))
    {
      fi->pc = sigcaller_pc;
    }

}

void
s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
  fi->extra_info = frame_obstack_alloc (sizeof (struct frame_extra_info));
  if (fi->pc)
    s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
			 fi->extra_info, fi, 1);
  else
    s390_memset_extra_info (fi->extra_info);
}

/* If saved registers of frame FI are not known yet, read and cache them.
   &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
   in which case the framedata are read.  */

void
s390_frame_init_saved_regs (struct frame_info *fi)
{

  int quick;

  if (fi->saved_regs == NULL)
    {
      /* zalloc memsets the saved regs */
      frame_saved_regs_zalloc (fi);
      if (fi->pc)
	{
	  quick = (fi->extra_info && fi->extra_info->initialised
		   && fi->extra_info->good_prologue);
	  s390_get_frame_info (quick ? fi->extra_info->function_start :
			       s390_sniff_pc_function_start (fi->pc, fi),
			       fi->extra_info, fi, !quick);
	}
    }
}



CORE_ADDR
s390_frame_args_address (struct frame_info *fi)
{

  /* Apparently gdb already knows gdb_args_offset itself */
  return fi->frame;
}


static CORE_ADDR
s390_frame_saved_pc_nofix (struct frame_info *fi)
{
  if (fi->extra_info && fi->extra_info->saved_pc_valid)
    return fi->extra_info->saved_pc;

  if (deprecated_generic_find_dummy_frame (fi->pc, fi->frame))
    return deprecated_read_register_dummy (fi->pc, fi->frame, S390_PC_REGNUM);

  s390_frame_init_saved_regs (fi);
  if (fi->extra_info)
    {
      fi->extra_info->saved_pc_valid = 1;
      if (fi->extra_info->good_prologue
          && fi->saved_regs[S390_RETADDR_REGNUM])
        fi->extra_info->saved_pc
          = ADDR_BITS_REMOVE (read_memory_integer
                              (fi->saved_regs[S390_RETADDR_REGNUM],
                               S390_GPR_SIZE));
      else
        fi->extra_info->saved_pc
          = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
      return fi->extra_info->saved_pc;
    }
  return 0;
}

CORE_ADDR
s390_frame_saved_pc (struct frame_info *fi)
{
  CORE_ADDR saved_pc = 0, sig_pc;

  if (fi->extra_info && fi->extra_info->sig_fixed_saved_pc_valid)
    return fi->extra_info->sig_fixed_saved_pc;
  saved_pc = s390_frame_saved_pc_nofix (fi);

  if (fi->extra_info)
    {
      fi->extra_info->sig_fixed_saved_pc_valid = 1;
      if (saved_pc)
	{
	  if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
	    saved_pc = sig_pc;
	}
      fi->extra_info->sig_fixed_saved_pc = saved_pc;
    }
  return saved_pc;
}




/* We want backtraces out of signal handlers so we don't
   set thisframe->signal_handler_caller to 1 */

CORE_ADDR
s390_frame_chain (struct frame_info *thisframe)
{
  CORE_ADDR prev_fp = 0;

  if (deprecated_generic_find_dummy_frame (thisframe->pc, thisframe->frame))
    return deprecated_read_register_dummy (thisframe->pc, thisframe->frame,
					   S390_SP_REGNUM);
  else
    {
      int sigreturn = 0;
      CORE_ADDR sregs = 0;
      struct frame_extra_info prev_fextra_info;

      memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
      if (thisframe->pc)
	{
	  CORE_ADDR saved_pc, sig_pc;

	  saved_pc = s390_frame_saved_pc_nofix (thisframe);
	  if (saved_pc)
	    {
	      if ((sigreturn =
		   s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
		saved_pc = sig_pc;
	      s390_get_frame_info (s390_sniff_pc_function_start
				   (saved_pc, NULL), &prev_fextra_info, NULL,
				   1);
	    }
	}
      if (sigreturn)
	{
	  /* read sigregs,regs.gprs[11 or 15] */
	  prev_fp = read_memory_integer (sregs +
					 REGISTER_BYTE (S390_GP0_REGNUM +
							(prev_fextra_info.
							 frame_pointer_saved_pc
							 ? 11 : 15)),
					 S390_GPR_SIZE);
	  thisframe->extra_info->sigcontext = sregs;
	}
      else
	{
	  if (thisframe->saved_regs)
	    {
	      int regno;

              if (prev_fextra_info.frame_pointer_saved_pc
                  && thisframe->saved_regs[S390_FRAME_REGNUM])
                regno = S390_FRAME_REGNUM;
              else
                regno = S390_SP_REGNUM;

	      if (thisframe->saved_regs[regno])
                {
                  /* The SP's entry of `saved_regs' is special.  */
                  if (regno == S390_SP_REGNUM)
                    prev_fp = thisframe->saved_regs[regno];
                  else
                    prev_fp =
                      read_memory_integer (thisframe->saved_regs[regno],
                                           S390_GPR_SIZE);
                }
	    }
	}
    }
  return ADDR_BITS_REMOVE (prev_fp);
}

/*
  Whether struct frame_extra_info is actually needed I'll have to figure
  out as our frames are similar to rs6000 there is a possibility
  i386 dosen't need it. */



/* a given return value in `regbuf' with a type `valtype', extract and copy its
   value into `valbuf' */
void
s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
{
  /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
     We need to truncate the return value into float size (4 byte) if
     necessary. */
  int len = TYPE_LENGTH (valtype);

  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
    memcpy (valbuf, &regbuf[REGISTER_BYTE (S390_FP0_REGNUM)], len);
  else
    {
      int offset = 0;
      /* return value is copied starting from r2. */
      if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
	offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
      memcpy (valbuf,
	      regbuf + REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
	      TYPE_LENGTH (valtype));
    }
}


static char *
s390_promote_integer_argument (struct type *valtype, char *valbuf,
			       char *reg_buff, int *arglen)
{
  char *value = valbuf;
  int len = TYPE_LENGTH (valtype);

  if (len < S390_GPR_SIZE)
    {
      /* We need to upgrade this value to a register to pass it correctly */
      int idx, diff = S390_GPR_SIZE - len, negative =
	(!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
      for (idx = 0; idx < S390_GPR_SIZE; idx++)
	{
	  reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
			   value[idx - diff]);
	}
      value = reg_buff;
      *arglen = S390_GPR_SIZE;
    }
  else
    {
      if (len & (S390_GPR_SIZE - 1))
	{
	  fprintf_unfiltered (gdb_stderr,
			      "s390_promote_integer_argument detected an argument not "
			      "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
			      "we might not deal with this correctly.\n");
	}
      *arglen = len;
    }

  return (value);
}

void
s390_store_return_value (struct type *valtype, char *valbuf)
{
  int arglen;
  char *reg_buff = alloca (max (S390_FPR_SIZE, REGISTER_SIZE)), *value;

  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
    {
      if (TYPE_LENGTH (valtype) == 4
          || TYPE_LENGTH (valtype) == 8)
        deprecated_write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM),
					 valbuf, TYPE_LENGTH (valtype));
      else
        error ("GDB is unable to return `long double' values "
               "on this architecture.");
    }
  else
    {
      value =
	s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
      /* Everything else is returned in GPR2 and up. */
      deprecated_write_register_bytes (REGISTER_BYTE (S390_GP0_REGNUM + 2),
				       value, arglen);
    }
}
static int
gdb_print_insn_s390 (bfd_vma memaddr, disassemble_info * info)
{
  bfd_byte instrbuff[S390_MAX_INSTR_SIZE];
  int instrlen, cnt;

  instrlen = s390_readinstruction (instrbuff, (CORE_ADDR) memaddr, info);
  if (instrlen < 0)
    {
      (*info->memory_error_func) (instrlen, memaddr, info);
      return -1;
    }
  for (cnt = 0; cnt < instrlen; cnt++)
    info->fprintf_func (info->stream, "%02X ", instrbuff[cnt]);
  for (cnt = instrlen; cnt < S390_MAX_INSTR_SIZE; cnt++)
    info->fprintf_func (info->stream, "   ");
  instrlen = print_insn_s390 (memaddr, info);
  return instrlen;
}



/* Not the most efficent code in the world */
int
s390_fp_regnum (void)
{
  int regno = S390_SP_REGNUM;
  struct frame_extra_info fextra_info;

  CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));

  s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
		       NULL, 1);
  if (fextra_info.frame_pointer_saved_pc)
    regno = S390_FRAME_REGNUM;
  return regno;
}

CORE_ADDR
s390_read_fp (void)
{
  return read_register (s390_fp_regnum ());
}


static void
s390_pop_frame_regular (struct frame_info *frame)
{
  int regnum;

  write_register (S390_PC_REGNUM, FRAME_SAVED_PC (frame));

  /* Restore any saved registers.  */
  if (frame->saved_regs)
    {
      for (regnum = 0; regnum < NUM_REGS; regnum++)
        if (frame->saved_regs[regnum] != 0)
          {
            ULONGEST value;
            
            value = read_memory_unsigned_integer (frame->saved_regs[regnum],
                                                  REGISTER_RAW_SIZE (regnum));
            write_register (regnum, value);
          }

      /* Actually cut back the stack.  Remember that the SP's element of
         saved_regs is the old SP itself, not the address at which it is
         saved.  */
      write_register (S390_SP_REGNUM, frame->saved_regs[S390_SP_REGNUM]);
    }

  /* Throw away any cached frame information.  */
  flush_cached_frames ();
}


/* Destroy the innermost (Top-Of-Stack) stack frame, restoring the 
   machine state that was in effect before the frame was created. 
   Used in the contexts of the "return" command, and of 
   target function calls from the debugger.  */
void
s390_pop_frame (void)
{
  /* This function checks for and handles generic dummy frames, and
     calls back to our function for ordinary frames.  */
  generic_pop_current_frame (s390_pop_frame_regular);
}


/* Return non-zero if TYPE is an integer-like type, zero otherwise.
   "Integer-like" types are those that should be passed the way
   integers are: integers, enums, ranges, characters, and booleans.  */
static int
is_integer_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_INT
          || code == TYPE_CODE_ENUM
          || code == TYPE_CODE_RANGE
          || code == TYPE_CODE_CHAR
          || code == TYPE_CODE_BOOL);
}


/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
   "Pointer-like" types are those that should be passed the way
   pointers are: pointers and references.  */
static int
is_pointer_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_PTR
          || code == TYPE_CODE_REF);
}


/* Return non-zero if TYPE is a `float singleton' or `double
   singleton', zero otherwise.

   A `T singleton' is a struct type with one member, whose type is
   either T or a `T singleton'.  So, the following are all float
   singletons:

   struct { float x };
   struct { struct { float x; } x; };
   struct { struct { struct { float x; } x; } x; };

   ... and so on.

   WHY THE HECK DO WE CARE ABOUT THIS???  Well, it turns out that GCC
   passes all float singletons and double singletons as if they were
   simply floats or doubles.  This is *not* what the ABI says it
   should do.  */
static int
is_float_singleton (struct type *type)
{
  return (TYPE_CODE (type) == TYPE_CODE_STRUCT
          && TYPE_NFIELDS (type) == 1
          && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT
              || is_float_singleton (TYPE_FIELD_TYPE (type, 0))));
}


/* Return non-zero if TYPE is a struct-like type, zero otherwise.
   "Struct-like" types are those that should be passed as structs are:
   structs and unions.

   As an odd quirk, not mentioned in the ABI, GCC passes float and
   double singletons as if they were a plain float, double, etc.  (The
   corresponding union types are handled normally.)  So we exclude
   those types here.  *shrug* */
static int
is_struct_like (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_UNION
          || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
}


/* Return non-zero if TYPE is a float-like type, zero otherwise.
   "Float-like" types are those that should be passed as
   floating-point values are.

   You'd think this would just be floats, doubles, long doubles, etc.
   But as an odd quirk, not mentioned in the ABI, GCC passes float and
   double singletons as if they were a plain float, double, etc.  (The
   corresponding union types are handled normally.)  So we exclude
   those types here.  *shrug* */
static int
is_float_like (struct type *type)
{
  return (TYPE_CODE (type) == TYPE_CODE_FLT
          || is_float_singleton (type));
}


/* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
   defined by the parameter passing conventions described in the
   "GNU/Linux for S/390 ELF Application Binary Interface Supplement".
   Otherwise, return zero.  */
static int
is_double_or_float (struct type *type)
{
  return (is_float_like (type)
          && (TYPE_LENGTH (type) == 4
              || TYPE_LENGTH (type) == 8));
}


/* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
   the parameter passing conventions described in the "GNU/Linux for
   S/390 ELF Application Binary Interface Supplement".  Return zero
   otherwise.  */
static int
is_simple_arg (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);

  /* This is almost a direct translation of the ABI's language, except
     that we have to exclude 8-byte structs; those are DOUBLE_ARGs.  */
  return ((is_integer_like (type) && length <= 4)
          || is_pointer_like (type)
          || (is_struct_like (type) && length != 8)
          || (is_float_like (type) && length == 16));
}


/* Return non-zero if TYPE should be passed as a pointer to a copy,
   zero otherwise.  TYPE must be a SIMPLE_ARG, as recognized by
   `is_simple_arg'.  */
static int
pass_by_copy_ref (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);

  return ((is_struct_like (type) && length != 1 && length != 2 && length != 4)
          || (is_float_like (type) && length == 16));
}


/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
   word as required for the ABI.  */
static LONGEST
extend_simple_arg (struct value *arg)
{
  struct type *type = VALUE_TYPE (arg);

  /* Even structs get passed in the least significant bits of the
     register / memory word.  It's not really right to extract them as
     an integer, but it does take care of the extension.  */
  if (TYPE_UNSIGNED (type))
    return extract_unsigned_integer (VALUE_CONTENTS (arg),
                                     TYPE_LENGTH (type));
  else
    return extract_signed_integer (VALUE_CONTENTS (arg),
                                   TYPE_LENGTH (type));
}


/* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
   parameter passing conventions described in the "GNU/Linux for S/390
   ELF Application Binary Interface Supplement".  Return zero
   otherwise.  */
static int
is_double_arg (struct type *type)
{
  unsigned length = TYPE_LENGTH (type);

  return ((is_integer_like (type)
           || is_struct_like (type))
          && length == 8);
}


/* Round ADDR up to the next N-byte boundary.  N must be a power of
   two.  */
static CORE_ADDR
round_up (CORE_ADDR addr, int n)
{
  /* Check that N is really a power of two.  */
  gdb_assert (n && (n & (n-1)) == 0);
  return ((addr + n - 1) & -n);
}


/* Round ADDR down to the next N-byte boundary.  N must be a power of
   two.  */
static CORE_ADDR
round_down (CORE_ADDR addr, int n)
{
  /* Check that N is really a power of two.  */
  gdb_assert (n && (n & (n-1)) == 0);
  return (addr & -n);
}


/* Return the alignment required by TYPE.  */
static int
alignment_of (struct type *type)
{
  int alignment;

  if (is_integer_like (type)
      || is_pointer_like (type)
      || TYPE_CODE (type) == TYPE_CODE_FLT)
    alignment = TYPE_LENGTH (type);
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
           || TYPE_CODE (type) == TYPE_CODE_UNION)
    {
      int i;

      alignment = 1;
      for (i = 0; i < TYPE_NFIELDS (type); i++)
        {
          int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));

          if (field_alignment > alignment)
            alignment = field_alignment;
        }
    }
  else
    alignment = 1;

  /* Check that everything we ever return is a power of two.  Lots of
     code doesn't want to deal with aligning things to arbitrary
     boundaries.  */
  gdb_assert ((alignment & (alignment - 1)) == 0);

  return alignment;
}


/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
   place to be passed to a function, as specified by the "GNU/Linux
   for S/390 ELF Application Binary Interface Supplement".

   SP is the current stack pointer.  We must put arguments, links,
   padding, etc. whereever they belong, and return the new stack
   pointer value.
   
   If STRUCT_RETURN is non-zero, then the function we're calling is
   going to return a structure by value; STRUCT_ADDR is the address of
   a block we've allocated for it on the stack.

   Our caller has taken care of any type promotions needed to satisfy
   prototypes or the old K&R argument-passing rules.  */
CORE_ADDR
s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
		     int struct_return, CORE_ADDR struct_addr)
{
  int i;
  int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);

  /* The number of arguments passed by reference-to-copy.  */
  int num_copies;

  /* If the i'th argument is passed as a reference to a copy, then
     copy_addr[i] is the address of the copy we made.  */
  CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));

  /* Build the reference-to-copy area.  */
  num_copies = 0;
  for (i = 0; i < nargs; i++)
    {
      struct value *arg = args[i];
      struct type *type = VALUE_TYPE (arg);
      unsigned length = TYPE_LENGTH (type);

      if (is_simple_arg (type)
          && pass_by_copy_ref (type))
        {
          sp -= length;
          sp = round_down (sp, alignment_of (type));
          write_memory (sp, VALUE_CONTENTS (arg), length);
          copy_addr[i] = sp;
          num_copies++;
        }
    }

  /* Reserve space for the parameter area.  As a conservative
     simplification, we assume that everything will be passed on the
     stack.  */
  {
    int i;

    for (i = 0; i < nargs; i++)
      {
        struct value *arg = args[i];
        struct type *type = VALUE_TYPE (arg);
        int length = TYPE_LENGTH (type);
        
        sp = round_down (sp, alignment_of (type));

        /* SIMPLE_ARG values get extended to 32 bits.  Assume every
           argument is.  */
        if (length < 4) length = 4;
        sp -= length;
      }
  }

  /* Include space for any reference-to-copy pointers.  */
  sp = round_down (sp, pointer_size);
  sp -= num_copies * pointer_size;
    
  /* After all that, make sure it's still aligned on an eight-byte
     boundary.  */
  sp = round_down (sp, 8);

  /* Finally, place the actual parameters, working from SP towards
     higher addresses.  The code above is supposed to reserve enough
     space for this.  */
  {
    int fr = 0;
    int gr = 2;
    CORE_ADDR starg = sp;

    for (i = 0; i < nargs; i++)
      {
        struct value *arg = args[i];
        struct type *type = VALUE_TYPE (arg);
        
        if (is_double_or_float (type)
            && fr <= 2)
          {
            /* When we store a single-precision value in an FP register,
               it occupies the leftmost bits.  */
            deprecated_write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM + fr),
					     VALUE_CONTENTS (arg),
					     TYPE_LENGTH (type));
            fr += 2;
          }
        else if (is_simple_arg (type)
                 && gr <= 6)
          {
            /* Do we need to pass a pointer to our copy of this
               argument?  */
            if (pass_by_copy_ref (type))
              write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
            else
              write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));

            gr++;
          }
        else if (is_double_arg (type)
                 && gr <= 5)
          {
            deprecated_write_register_gen (S390_GP0_REGNUM + gr,
					   VALUE_CONTENTS (arg));
            deprecated_write_register_gen (S390_GP0_REGNUM + gr + 1,
					   VALUE_CONTENTS (arg) + 4);
            gr += 2;
          }
        else
          {
            /* The `OTHER' case.  */
            enum type_code code = TYPE_CODE (type);
            unsigned length = TYPE_LENGTH (type);
            
            /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
               in it, then don't go back and use it again later.  */
            if (is_double_arg (type) && gr == 6)
              gr = 7;

            if (is_simple_arg (type))
              {
                /* Simple args are always either extended to 32 bits,
                   or pointers.  */
                starg = round_up (starg, 4);

                /* Do we need to pass a pointer to our copy of this
                   argument?  */
                if (pass_by_copy_ref (type))
                  write_memory_signed_integer (starg, pointer_size,
                                               copy_addr[i]);
                else
                  /* Simple args are always extended to 32 bits.  */
                  write_memory_signed_integer (starg, 4,
                                               extend_simple_arg (arg));
                starg += 4;
              }
            else
              {
                /* You'd think we should say:
                   starg = round_up (starg, alignment_of (type));
                   Unfortunately, GCC seems to simply align the stack on
                   a four-byte boundary, even when passing doubles.  */
                starg = round_up (starg, 4);
                write_memory (starg, VALUE_CONTENTS (arg), length);
                starg += length;
              }
          }
      }
  }

  /* Allocate the standard frame areas: the register save area, the
     word reserved for the compiler (which seems kind of meaningless),
     and the back chain pointer.  */
  sp -= 96;

  /* Write the back chain pointer into the first word of the stack
     frame.  This will help us get backtraces from within functions
     called from GDB.  */
  write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
                                 read_fp ());

  return sp;
}


static int
s390_use_struct_convention (int gcc_p, struct type *value_type)
{
  enum type_code code = TYPE_CODE (value_type);

  return (code == TYPE_CODE_STRUCT
          || code == TYPE_CODE_UNION);
}


/* Return the GDB type object for the "standard" data type
   of data in register N.  */
struct type *
s390_register_virtual_type (int regno)
{
  if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS)
    return builtin_type_double;
  else
    return builtin_type_int;
}


struct type *
s390x_register_virtual_type (int regno)
{
  return (regno == S390_FPC_REGNUM) ||
    (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
    (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
}



void
s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  write_register (S390_GP0_REGNUM + 2, addr);
}



const static unsigned char *
s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  static unsigned char breakpoint[] = { 0x0, 0x1 };

  *lenptr = sizeof (breakpoint);
  return breakpoint;
}

/* Advance PC across any function entry prologue instructions to reach some
   "real" code.  */
CORE_ADDR
s390_skip_prologue (CORE_ADDR pc)
{
  struct frame_extra_info fextra_info;

  s390_get_frame_info (pc, &fextra_info, NULL, 1);
  return fextra_info.skip_prologue_function_start;
}

/* Immediately after a function call, return the saved pc.
   Can't go through the frames for this because on some machines
   the new frame is not set up until the new function executes
   some instructions.  */
CORE_ADDR
s390_saved_pc_after_call (struct frame_info *frame)
{
  return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
}

static CORE_ADDR
s390_addr_bits_remove (CORE_ADDR addr)
{
  return (addr) & 0x7fffffff;
}


static CORE_ADDR
s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
  write_register (S390_RETADDR_REGNUM, CALL_DUMMY_ADDRESS ());
  return sp;
}

struct gdbarch *
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  static LONGEST s390_call_dummy_words[] = { 0 };
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int elf_flags;

  /* First see if there is already a gdbarch that can satisfy the request.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found: is the request for a s390 architecture? */
  if (info.bfd_arch_info->arch != bfd_arch_s390)
    return NULL;		/* No; then it's not for us.  */

  /* Yes: create a new gdbarch for the specified machine type.  */
  gdbarch = gdbarch_alloc (&info, NULL);

  set_gdbarch_believe_pcc_promotion (gdbarch, 0);
  set_gdbarch_char_signed (gdbarch, 0);

  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_frame_args_address (gdbarch, s390_frame_args_address);
  set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
  set_gdbarch_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
  set_gdbarch_frame_locals_address (gdbarch, s390_frame_args_address);
  /* We can't do this */
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
  set_gdbarch_store_struct_return (gdbarch, s390_store_struct_return);
  set_gdbarch_deprecated_extract_return_value (gdbarch, s390_extract_return_value);
  set_gdbarch_deprecated_store_return_value (gdbarch, s390_store_return_value);
  /* Amount PC must be decremented by after a breakpoint.
     This is often the number of bytes in BREAKPOINT
     but not always.  */
  set_gdbarch_decr_pc_after_break (gdbarch, 2);
  set_gdbarch_pop_frame (gdbarch, s390_pop_frame);
  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  /* Offset from address of function to start of its code.
     Zero on most machines.  */
  set_gdbarch_function_start_offset (gdbarch, 0);
  set_gdbarch_max_register_raw_size (gdbarch, 8);
  set_gdbarch_max_register_virtual_size (gdbarch, 8);
  set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
  set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
  set_gdbarch_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
  set_gdbarch_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
  set_gdbarch_read_fp (gdbarch, s390_read_fp);
  /* This function that tells us whether the function invocation represented
     by FI does not have a frame on the stack associated with it.  If it
     does not, FRAMELESS is set to 1, else 0.  */
  set_gdbarch_frameless_function_invocation (gdbarch,
					     s390_frameless_function_invocation);
  /* Return saved PC from a frame */
  set_gdbarch_frame_saved_pc (gdbarch, s390_frame_saved_pc);
  /* FRAME_CHAIN takes a frame's nominal address
     and produces the frame's chain-pointer. */
  set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
  set_gdbarch_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
  set_gdbarch_register_byte (gdbarch, s390_register_byte);
  set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
  set_gdbarch_fp_regnum (gdbarch, S390_FP_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
  set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
  set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
  set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
  set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
  set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention);
  set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
  set_gdbarch_register_name (gdbarch, s390_register_name);
  set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
  set_gdbarch_deprecated_extract_struct_value_address
    (gdbarch, generic_cannot_extract_struct_value_address);

  /* Parameters for inferior function calls.  */
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_push_arguments (gdbarch, s390_push_arguments);
  set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
  set_gdbarch_push_return_address (gdbarch, s390_push_return_address);
  set_gdbarch_sizeof_call_dummy_words (gdbarch,
                                       sizeof (s390_call_dummy_words));
  set_gdbarch_call_dummy_words (gdbarch, s390_call_dummy_words);
  set_gdbarch_coerce_float_to_double (gdbarch,
                                      standard_coerce_float_to_double);

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_s390_31:
      set_gdbarch_register_size (gdbarch, 4);
      set_gdbarch_register_raw_size (gdbarch, s390_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, s390_register_raw_size);
      set_gdbarch_register_virtual_type (gdbarch, s390_register_virtual_type);

      set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
      set_gdbarch_register_bytes (gdbarch, S390_REGISTER_BYTES);
      break;
    case bfd_mach_s390_64:
      set_gdbarch_register_size (gdbarch, 8);
      set_gdbarch_register_raw_size (gdbarch, s390x_register_raw_size);
      set_gdbarch_register_virtual_size (gdbarch, s390x_register_raw_size);
      set_gdbarch_register_virtual_type (gdbarch,
					 s390x_register_virtual_type);

      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_gdbarch_register_bytes (gdbarch, S390X_REGISTER_BYTES);
      break;
    }

  return gdbarch;
}



void
_initialize_s390_tdep (void)
{

  /* Hook us into the gdbarch mechanism.  */
  register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
  if (!tm_print_insn)		/* Someone may have already set it */
    tm_print_insn = gdb_print_insn_s390;
}

#endif /* GDBSERVER */