aboutsummaryrefslogtreecommitdiff
path: root/gdb/s390-linux-tdep.c
blob: edc0da11370717b0c30570010d74537cf761a632 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
/* Target-dependent code for GDB, the GNU debugger.

   Copyright (C) 2001-2015 Free Software Foundation, Inc.

   Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
   for IBM Deutschland Entwicklung GmbH, IBM Corporation.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "frame.h"
#include "inferior.h"
#include "infrun.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "objfiles.h"
#include "floatformat.h"
#include "regcache.h"
#include "trad-frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "dwarf2-frame.h"
#include "reggroups.h"
#include "regset.h"
#include "value.h"
#include "dis-asm.h"
#include "solib-svr4.h"
#include "prologue-value.h"
#include "linux-tdep.h"
#include "s390-linux-tdep.h"
#include "auxv.h"
#include "xml-syscall.h"

#include "stap-probe.h"
#include "ax.h"
#include "ax-gdb.h"
#include "user-regs.h"
#include "cli/cli-utils.h"
#include <ctype.h>
#include "elf/common.h"
#include "elf/s390.h"
#include "elf-bfd.h"

#include "features/s390-linux32.c"
#include "features/s390-linux32v1.c"
#include "features/s390-linux32v2.c"
#include "features/s390-linux64.c"
#include "features/s390-linux64v1.c"
#include "features/s390-linux64v2.c"
#include "features/s390-te-linux64.c"
#include "features/s390-vx-linux64.c"
#include "features/s390-tevx-linux64.c"
#include "features/s390x-linux64.c"
#include "features/s390x-linux64v1.c"
#include "features/s390x-linux64v2.c"
#include "features/s390x-te-linux64.c"
#include "features/s390x-vx-linux64.c"
#include "features/s390x-tevx-linux64.c"

#define XML_SYSCALL_FILENAME_S390 "syscalls/s390-linux.xml"
#define XML_SYSCALL_FILENAME_S390X "syscalls/s390x-linux.xml"

enum s390_abi_kind
{
  ABI_LINUX_S390,
  ABI_LINUX_ZSERIES
};

enum s390_vector_abi_kind
{
  S390_VECTOR_ABI_NONE,
  S390_VECTOR_ABI_128
};

/* The tdep structure.  */

struct gdbarch_tdep
{
  /* ABI version.  */
  enum s390_abi_kind abi;

  /* Vector ABI.  */
  enum s390_vector_abi_kind vector_abi;

  /* Pseudo register numbers.  */
  int gpr_full_regnum;
  int pc_regnum;
  int cc_regnum;
  int v0_full_regnum;

  int have_linux_v1;
  int have_linux_v2;
  int have_tdb;
};


/* ABI call-saved register information.  */

static int
s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  switch (tdep->abi)
    {
    case ABI_LINUX_S390:
      if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
	  || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
	  || regnum == S390_A0_REGNUM)
	return 1;

      break;

    case ABI_LINUX_ZSERIES:
      if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
	  || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
	  || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
	return 1;

      break;
    }

  return 0;
}

static int
s390_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
  /* The last-break address is read-only.  */
  return regnum == S390_LAST_BREAK_REGNUM;
}

static void
s390_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);

  /* Set special SYSTEM_CALL register to 0 to prevent the kernel from
     messing with the PC we just installed, if we happen to be within
     an interrupted system call that the kernel wants to restart.

     Note that after we return from the dummy call, the SYSTEM_CALL and
     ORIG_R2 registers will be automatically restored, and the kernel
     continues to restart the system call at this point.  */
  if (register_size (gdbarch, S390_SYSTEM_CALL_REGNUM) > 0)
    regcache_cooked_write_unsigned (regcache, S390_SYSTEM_CALL_REGNUM, 0);
}


/* DWARF Register Mapping.  */

static const short s390_dwarf_regmap[] =
{
  /* 0-15: General Purpose Registers.  */
  S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
  S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
  S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
  S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,

  /* 16-31: Floating Point Registers / Vector Registers 0-15. */
  S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
  S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
  S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
  S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,

  /* 32-47: Control Registers (not mapped).  */
  -1, -1, -1, -1, -1, -1, -1, -1,
  -1, -1, -1, -1, -1, -1, -1, -1,

  /* 48-63: Access Registers.  */
  S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
  S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
  S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
  S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,

  /* 64-65: Program Status Word.  */
  S390_PSWM_REGNUM,
  S390_PSWA_REGNUM,

  /* 66-67: Reserved.  */
  -1, -1,

  /* 68-83: Vector Registers 16-31.  */
  S390_V16_REGNUM, S390_V18_REGNUM, S390_V20_REGNUM, S390_V22_REGNUM,
  S390_V17_REGNUM, S390_V19_REGNUM, S390_V21_REGNUM, S390_V23_REGNUM,
  S390_V24_REGNUM, S390_V26_REGNUM, S390_V28_REGNUM, S390_V30_REGNUM,
  S390_V25_REGNUM, S390_V27_REGNUM, S390_V29_REGNUM, S390_V31_REGNUM,

  /* End of "official" DWARF registers.  The remainder of the map is
     for GDB internal use only.  */

  /* GPR Lower Half Access.  */
  S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
  S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
  S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
  S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
};

enum { s390_dwarf_reg_r0l = ARRAY_SIZE (s390_dwarf_regmap) - 16 };

/* Convert DWARF register number REG to the appropriate register
   number used by GDB.  */
static int
s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int gdb_reg = -1;

  /* In a 32-on-64 debug scenario, debug info refers to the full
     64-bit GPRs.  Note that call frame information still refers to
     the 32-bit lower halves, because s390_adjust_frame_regnum uses
     special register numbers to access GPRs.  */
  if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
    return tdep->gpr_full_regnum + reg;

  if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
    gdb_reg = s390_dwarf_regmap[reg];

  if (tdep->v0_full_regnum == -1)
    {
      if (gdb_reg >= S390_V16_REGNUM && gdb_reg <= S390_V31_REGNUM)
	gdb_reg = -1;
    }
  else
    {
      if (gdb_reg >= S390_F0_REGNUM && gdb_reg <= S390_F15_REGNUM)
	gdb_reg = gdb_reg - S390_F0_REGNUM + tdep->v0_full_regnum;
    }

  return gdb_reg;
}

/* Translate a .eh_frame register to DWARF register, or adjust a
   .debug_frame register.  */
static int
s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
{
  /* See s390_dwarf_reg_to_regnum for comments.  */
  return (num >= 0 && num < 16) ? num + s390_dwarf_reg_r0l : num;
}


/* Pseudo registers.  */

static int
regnum_is_gpr_full (struct gdbarch_tdep *tdep, int regnum)
{
  return (tdep->gpr_full_regnum != -1
	  && regnum >= tdep->gpr_full_regnum
	  && regnum <= tdep->gpr_full_regnum + 15);
}

/* Check whether REGNUM indicates a full vector register (v0-v15).
   These pseudo-registers are composed of f0-f15 and v0l-v15l.  */

static int
regnum_is_vxr_full (struct gdbarch_tdep *tdep, int regnum)
{
  return (tdep->v0_full_regnum != -1
	  && regnum >= tdep->v0_full_regnum
	  && regnum <= tdep->v0_full_regnum + 15);
}

/* Return the name of register REGNO.  Return the empty string for
   registers that shouldn't be visible.  */

static const char *
s390_register_name (struct gdbarch *gdbarch, int regnum)
{
  if (regnum >= S390_V0_LOWER_REGNUM
      && regnum <= S390_V15_LOWER_REGNUM)
    return "";
  return tdesc_register_name (gdbarch, regnum);
}

static const char *
s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (regnum == tdep->pc_regnum)
    return "pc";

  if (regnum == tdep->cc_regnum)
    return "cc";

  if (regnum_is_gpr_full (tdep, regnum))
    {
      static const char *full_name[] = {
	"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
      };
      return full_name[regnum - tdep->gpr_full_regnum];
    }

  if (regnum_is_vxr_full (tdep, regnum))
    {
      static const char *full_name[] = {
	"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
	"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
      };
      return full_name[regnum - tdep->v0_full_regnum];
    }

  internal_error (__FILE__, __LINE__, _("invalid regnum"));
}

static struct type *
s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (regnum == tdep->pc_regnum)
    return builtin_type (gdbarch)->builtin_func_ptr;

  if (regnum == tdep->cc_regnum)
    return builtin_type (gdbarch)->builtin_int;

  if (regnum_is_gpr_full (tdep, regnum))
    return builtin_type (gdbarch)->builtin_uint64;

  if (regnum_is_vxr_full (tdep, regnum))
    return tdesc_find_type (gdbarch, "vec128");

  internal_error (__FILE__, __LINE__, _("invalid regnum"));
}

static enum register_status
s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int regnum, gdb_byte *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int regsize = register_size (gdbarch, regnum);
  ULONGEST val;

  if (regnum == tdep->pc_regnum)
    {
      enum register_status status;

      status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
      if (status == REG_VALID)
	{
	  if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
	    val &= 0x7fffffff;
	  store_unsigned_integer (buf, regsize, byte_order, val);
	}
      return status;
    }

  if (regnum == tdep->cc_regnum)
    {
      enum register_status status;

      status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
      if (status == REG_VALID)
	{
	  if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
	    val = (val >> 12) & 3;
	  else
	    val = (val >> 44) & 3;
	  store_unsigned_integer (buf, regsize, byte_order, val);
	}
      return status;
    }

  if (regnum_is_gpr_full (tdep, regnum))
    {
      enum register_status status;
      ULONGEST val_upper;

      regnum -= tdep->gpr_full_regnum;

      status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
      if (status == REG_VALID)
	status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
					     &val_upper);
      if (status == REG_VALID)
	{
	  val |= val_upper << 32;
	  store_unsigned_integer (buf, regsize, byte_order, val);
	}
      return status;
    }

  if (regnum_is_vxr_full (tdep, regnum))
    {
      enum register_status status;

      regnum -= tdep->v0_full_regnum;

      status = regcache_raw_read (regcache, S390_F0_REGNUM + regnum, buf);
      if (status == REG_VALID)
	status = regcache_raw_read (regcache,
				    S390_V0_LOWER_REGNUM + regnum, buf + 8);
      return status;
    }

  internal_error (__FILE__, __LINE__, _("invalid regnum"));
}

static void
s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int regnum, const gdb_byte *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int regsize = register_size (gdbarch, regnum);
  ULONGEST val, psw;

  if (regnum == tdep->pc_regnum)
    {
      val = extract_unsigned_integer (buf, regsize, byte_order);
      if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
	{
	  regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
	  val = (psw & 0x80000000) | (val & 0x7fffffff);
	}
      regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
      return;
    }

  if (regnum == tdep->cc_regnum)
    {
      val = extract_unsigned_integer (buf, regsize, byte_order);
      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
      if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
	val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
      else
	val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
      regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
      return;
    }

  if (regnum_is_gpr_full (tdep, regnum))
    {
      regnum -= tdep->gpr_full_regnum;
      val = extract_unsigned_integer (buf, regsize, byte_order);
      regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
				   val & 0xffffffff);
      regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
				   val >> 32);
      return;
    }

  if (regnum_is_vxr_full (tdep, regnum))
    {
      regnum -= tdep->v0_full_regnum;
      regcache_raw_write (regcache, S390_F0_REGNUM + regnum, buf);
      regcache_raw_write (regcache, S390_V0_LOWER_REGNUM + regnum, buf + 8);
      return;
    }

  internal_error (__FILE__, __LINE__, _("invalid regnum"));
}

/* 'float' values are stored in the upper half of floating-point
   registers, even though we are otherwise a big-endian platform.  The
   same applies to a 'float' value within a vector.  */

static struct value *
s390_value_from_register (struct gdbarch *gdbarch, struct type *type,
			  int regnum, struct frame_id frame_id)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct value *value = default_value_from_register (gdbarch, type,
						     regnum, frame_id);
  check_typedef (type);

  if ((regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
       && TYPE_LENGTH (type) < 8)
      || regnum_is_vxr_full (tdep, regnum)
      || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM))
    set_value_offset (value, 0);

  return value;
}

/* Register groups.  */

static int
s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
				 struct reggroup *group)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* We usually save/restore the whole PSW, which includes PC and CC.
     However, some older gdbservers may not support saving/restoring
     the whole PSW yet, and will return an XML register description
     excluding those from the save/restore register groups.  In those
     cases, we still need to explicitly save/restore PC and CC in order
     to push or pop frames.  Since this doesn't hurt anything if we
     already save/restore the whole PSW (it's just redundant), we add
     PC and CC at this point unconditionally.  */
  if (group == save_reggroup || group == restore_reggroup)
    return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;

  if (group == vector_reggroup)
    return regnum_is_vxr_full (tdep, regnum);

  if (group == general_reggroup && regnum_is_vxr_full (tdep, regnum))
    return 0;

  return default_register_reggroup_p (gdbarch, regnum, group);
}


/* Maps for register sets.  */

static const struct regcache_map_entry s390_gregmap[] =
  {
    { 1, S390_PSWM_REGNUM },
    { 1, S390_PSWA_REGNUM },
    { 16, S390_R0_REGNUM },
    { 16, S390_A0_REGNUM },
    { 1, S390_ORIG_R2_REGNUM },
    { 0 }
  };

static const struct regcache_map_entry s390_fpregmap[] =
  {
    { 1, S390_FPC_REGNUM, 8 },
    { 16, S390_F0_REGNUM, 8 },
    { 0 }
  };

static const struct regcache_map_entry s390_regmap_upper[] =
  {
    { 16, S390_R0_UPPER_REGNUM, 4 },
    { 0 }
  };

static const struct regcache_map_entry s390_regmap_last_break[] =
  {
    { 1, REGCACHE_MAP_SKIP, 4 },
    { 1, S390_LAST_BREAK_REGNUM, 4 },
    { 0 }
  };

static const struct regcache_map_entry s390x_regmap_last_break[] =
  {
    { 1, S390_LAST_BREAK_REGNUM, 8 },
    { 0 }
  };

static const struct regcache_map_entry s390_regmap_system_call[] =
  {
    { 1, S390_SYSTEM_CALL_REGNUM, 4 },
    { 0 }
  };

static const struct regcache_map_entry s390_regmap_tdb[] =
  {
    { 1, S390_TDB_DWORD0_REGNUM, 8 },
    { 1, S390_TDB_ABORT_CODE_REGNUM, 8 },
    { 1, S390_TDB_CONFLICT_TOKEN_REGNUM, 8 },
    { 1, S390_TDB_ATIA_REGNUM, 8 },
    { 12, REGCACHE_MAP_SKIP, 8 },
    { 16, S390_TDB_R0_REGNUM, 8 },
    { 0 }
  };

static const struct regcache_map_entry s390_regmap_vxrs_low[] =
  {
    { 16, S390_V0_LOWER_REGNUM, 8 },
    { 0 }
  };

static const struct regcache_map_entry s390_regmap_vxrs_high[] =
  {
    { 16, S390_V16_REGNUM, 16 },
    { 0 }
  };


/* Supply the TDB regset.  Like regcache_supply_regset, but invalidate
   the TDB registers unless the TDB format field is valid.  */

static void
s390_supply_tdb_regset (const struct regset *regset, struct regcache *regcache,
		    int regnum, const void *regs, size_t len)
{
  ULONGEST tdw;
  enum register_status ret;
  int i;

  regcache_supply_regset (regset, regcache, regnum, regs, len);
  ret = regcache_cooked_read_unsigned (regcache, S390_TDB_DWORD0_REGNUM, &tdw);
  if (ret != REG_VALID || (tdw >> 56) != 1)
    regcache_supply_regset (regset, regcache, regnum, NULL, len);
}

const struct regset s390_gregset = {
  s390_gregmap,
  regcache_supply_regset,
  regcache_collect_regset
};

const struct regset s390_fpregset = {
  s390_fpregmap,
  regcache_supply_regset,
  regcache_collect_regset
};

static const struct regset s390_upper_regset = {
  s390_regmap_upper,
  regcache_supply_regset,
  regcache_collect_regset
};

const struct regset s390_last_break_regset = {
  s390_regmap_last_break,
  regcache_supply_regset,
  regcache_collect_regset
};

const struct regset s390x_last_break_regset = {
  s390x_regmap_last_break,
  regcache_supply_regset,
  regcache_collect_regset
};

const struct regset s390_system_call_regset = {
  s390_regmap_system_call,
  regcache_supply_regset,
  regcache_collect_regset
};

const struct regset s390_tdb_regset = {
  s390_regmap_tdb,
  s390_supply_tdb_regset,
  regcache_collect_regset
};

const struct regset s390_vxrs_low_regset = {
  s390_regmap_vxrs_low,
  regcache_supply_regset,
  regcache_collect_regset
};

const struct regset s390_vxrs_high_regset = {
  s390_regmap_vxrs_high,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Iterate over supported core file register note sections. */

static void
s390_iterate_over_regset_sections (struct gdbarch *gdbarch,
				   iterate_over_regset_sections_cb *cb,
				   void *cb_data,
				   const struct regcache *regcache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const int gregset_size = (tdep->abi == ABI_LINUX_S390 ?
			    s390_sizeof_gregset : s390x_sizeof_gregset);

  cb (".reg", gregset_size, &s390_gregset, NULL, cb_data);
  cb (".reg2", s390_sizeof_fpregset, &s390_fpregset, NULL, cb_data);

  if (tdep->abi == ABI_LINUX_S390 && tdep->gpr_full_regnum != -1)
    cb (".reg-s390-high-gprs", 16 * 4, &s390_upper_regset,
	"s390 GPR upper halves", cb_data);

  if (tdep->have_linux_v1)
    cb (".reg-s390-last-break", 8,
	(gdbarch_ptr_bit (gdbarch) == 32
	 ? &s390_last_break_regset : &s390x_last_break_regset),
	"s930 last-break address", cb_data);

  if (tdep->have_linux_v2)
    cb (".reg-s390-system-call", 4, &s390_system_call_regset,
	"s390 system-call", cb_data);

  /* If regcache is set, we are in "write" (gcore) mode.  In this
     case, don't iterate over the TDB unless its registers are
     available.  */
  if (tdep->have_tdb
      && (regcache == NULL
	  || REG_VALID == regcache_register_status (regcache,
						    S390_TDB_DWORD0_REGNUM)))
    cb (".reg-s390-tdb", s390_sizeof_tdbregset, &s390_tdb_regset,
	"s390 TDB", cb_data);

  if (tdep->v0_full_regnum != -1)
    {
      cb (".reg-s390-vxrs-low", 16 * 8, &s390_vxrs_low_regset,
	  "s390 vector registers 0-15 lower half", cb_data);
      cb (".reg-s390-vxrs-high", 16 * 16, &s390_vxrs_high_regset,
	  "s390 vector registers 16-31", cb_data);
    }
}

static const struct target_desc *
s390_core_read_description (struct gdbarch *gdbarch,
			    struct target_ops *target, bfd *abfd)
{
  asection *section = bfd_get_section_by_name (abfd, ".reg");
  CORE_ADDR hwcap = 0;
  int high_gprs, v1, v2, te, vx;

  target_auxv_search (target, AT_HWCAP, &hwcap);
  if (!section)
    return NULL;

  high_gprs = (bfd_get_section_by_name (abfd, ".reg-s390-high-gprs")
	       != NULL);
  v1 = (bfd_get_section_by_name (abfd, ".reg-s390-last-break") != NULL);
  v2 = (bfd_get_section_by_name (abfd, ".reg-s390-system-call") != NULL);
  vx = (hwcap & HWCAP_S390_VX);
  te = (hwcap & HWCAP_S390_TE);

  switch (bfd_section_size (abfd, section))
    {
    case s390_sizeof_gregset:
      if (high_gprs)
	return (te && vx ? tdesc_s390_tevx_linux64 :
		vx ? tdesc_s390_vx_linux64 :
		te ? tdesc_s390_te_linux64 :
		v2 ? tdesc_s390_linux64v2 :
		v1 ? tdesc_s390_linux64v1 : tdesc_s390_linux64);
      else
	return (v2 ? tdesc_s390_linux32v2 :
		v1 ? tdesc_s390_linux32v1 : tdesc_s390_linux32);

    case s390x_sizeof_gregset:
      return (te && vx ? tdesc_s390x_tevx_linux64 :
	      vx ? tdesc_s390x_vx_linux64 :
	      te ? tdesc_s390x_te_linux64 :
	      v2 ? tdesc_s390x_linux64v2 :
	      v1 ? tdesc_s390x_linux64v1 : tdesc_s390x_linux64);

    default:
      return NULL;
    }
}


/* Decoding S/390 instructions.  */

/* Named opcode values for the S/390 instructions we recognize.  Some
   instructions have their opcode split across two fields; those are the
   op1_* and op2_* enums.  */
enum
  {
    op1_lhi  = 0xa7,   op2_lhi  = 0x08,
    op1_lghi = 0xa7,   op2_lghi = 0x09,
    op1_lgfi = 0xc0,   op2_lgfi = 0x01,
    op_lr    = 0x18,
    op_lgr   = 0xb904,
    op_l     = 0x58,
    op1_ly   = 0xe3,   op2_ly   = 0x58,
    op1_lg   = 0xe3,   op2_lg   = 0x04,
    op_lm    = 0x98,
    op1_lmy  = 0xeb,   op2_lmy  = 0x98,
    op1_lmg  = 0xeb,   op2_lmg  = 0x04,
    op_st    = 0x50,
    op1_sty  = 0xe3,   op2_sty  = 0x50,
    op1_stg  = 0xe3,   op2_stg  = 0x24,
    op_std   = 0x60,
    op_stm   = 0x90,
    op1_stmy = 0xeb,   op2_stmy = 0x90,
    op1_stmg = 0xeb,   op2_stmg = 0x24,
    op1_aghi = 0xa7,   op2_aghi = 0x0b,
    op1_ahi  = 0xa7,   op2_ahi  = 0x0a,
    op1_agfi = 0xc2,   op2_agfi = 0x08,
    op1_afi  = 0xc2,   op2_afi  = 0x09,
    op1_algfi= 0xc2,   op2_algfi= 0x0a,
    op1_alfi = 0xc2,   op2_alfi = 0x0b,
    op_ar    = 0x1a,
    op_agr   = 0xb908,
    op_a     = 0x5a,
    op1_ay   = 0xe3,   op2_ay   = 0x5a,
    op1_ag   = 0xe3,   op2_ag   = 0x08,
    op1_slgfi= 0xc2,   op2_slgfi= 0x04,
    op1_slfi = 0xc2,   op2_slfi = 0x05,
    op_sr    = 0x1b,
    op_sgr   = 0xb909,
    op_s     = 0x5b,
    op1_sy   = 0xe3,   op2_sy   = 0x5b,
    op1_sg   = 0xe3,   op2_sg   = 0x09,
    op_nr    = 0x14,
    op_ngr   = 0xb980,
    op_la    = 0x41,
    op1_lay  = 0xe3,   op2_lay  = 0x71,
    op1_larl = 0xc0,   op2_larl = 0x00,
    op_basr  = 0x0d,
    op_bas   = 0x4d,
    op_bcr   = 0x07,
    op_bc    = 0x0d,
    op_bctr  = 0x06,
    op_bctgr = 0xb946,
    op_bct   = 0x46,
    op1_bctg = 0xe3,   op2_bctg = 0x46,
    op_bxh   = 0x86,
    op1_bxhg = 0xeb,   op2_bxhg = 0x44,
    op_bxle  = 0x87,
    op1_bxleg= 0xeb,   op2_bxleg= 0x45,
    op1_bras = 0xa7,   op2_bras = 0x05,
    op1_brasl= 0xc0,   op2_brasl= 0x05,
    op1_brc  = 0xa7,   op2_brc  = 0x04,
    op1_brcl = 0xc0,   op2_brcl = 0x04,
    op1_brct = 0xa7,   op2_brct = 0x06,
    op1_brctg= 0xa7,   op2_brctg= 0x07,
    op_brxh  = 0x84,
    op1_brxhg= 0xec,   op2_brxhg= 0x44,
    op_brxle = 0x85,
    op1_brxlg= 0xec,   op2_brxlg= 0x45,
    op_svc   = 0x0a,
  };


/* Read a single instruction from address AT.  */

#define S390_MAX_INSTR_SIZE 6
static int
s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
{
  static int s390_instrlen[] = { 2, 4, 4, 6 };
  int instrlen;

  if (target_read_memory (at, &instr[0], 2))
    return -1;
  instrlen = s390_instrlen[instr[0] >> 6];
  if (instrlen > 2)
    {
      if (target_read_memory (at + 2, &instr[2], instrlen - 2))
	return -1;
    }
  return instrlen;
}


/* The functions below are for recognizing and decoding S/390
   instructions of various formats.  Each of them checks whether INSN
   is an instruction of the given format, with the specified opcodes.
   If it is, it sets the remaining arguments to the values of the
   instruction's fields, and returns a non-zero value; otherwise, it
   returns zero.

   These functions' arguments appear in the order they appear in the
   instruction, not in the machine-language form.  So, opcodes always
   come first, even though they're sometimes scattered around the
   instructions.  And displacements appear before base and extension
   registers, as they do in the assembly syntax, not at the end, as
   they do in the machine language.  */
static int
is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
{
  if (insn[0] == op1 && (insn[1] & 0xf) == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      /* i2 is a 16-bit signed quantity.  */
      *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
      return 1;
    }
  else
    return 0;
}


static int
is_ril (bfd_byte *insn, int op1, int op2,
	unsigned int *r1, int *i2)
{
  if (insn[0] == op1 && (insn[1] & 0xf) == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      /* i2 is a signed quantity.  If the host 'int' is 32 bits long,
	 no sign extension is necessary, but we don't want to assume
	 that.  */
      *i2 = (((insn[2] << 24)
	      | (insn[3] << 16)
	      | (insn[4] << 8)
	      | (insn[5])) ^ 0x80000000) - 0x80000000;
      return 1;
    }
  else
    return 0;
}


static int
is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
{
  if (insn[0] == op)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r2 = insn[1] & 0xf;
      return 1;
    }
  else
    return 0;
}


static int
is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
{
  if (((insn[0] << 8) | insn[1]) == op)
    {
      /* Yes, insn[3].  insn[2] is unused in RRE format.  */
      *r1 = (insn[3] >> 4) & 0xf;
      *r2 = insn[3] & 0xf;
      return 1;
    }
  else
    return 0;
}


static int
is_rs (bfd_byte *insn, int op,
       unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
{
  if (insn[0] == op)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r3 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      *d2 = ((insn[2] & 0xf) << 8) | insn[3];
      return 1;
    }
  else
    return 0;
}


static int
is_rsy (bfd_byte *insn, int op1, int op2,
	unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
{
  if (insn[0] == op1
      && insn[5] == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r3 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      /* The 'long displacement' is a 20-bit signed integer.  */
      *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
		^ 0x80000) - 0x80000;
      return 1;
    }
  else
    return 0;
}


static int
is_rsi (bfd_byte *insn, int op,
	unsigned int *r1, unsigned int *r3, int *i2)
{
  if (insn[0] == op)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r3 = insn[1] & 0xf;
      /* i2 is a 16-bit signed quantity.  */
      *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
      return 1;
    }
  else
    return 0;
}


static int
is_rie (bfd_byte *insn, int op1, int op2,
	unsigned int *r1, unsigned int *r3, int *i2)
{
  if (insn[0] == op1
      && insn[5] == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *r3 = insn[1] & 0xf;
      /* i2 is a 16-bit signed quantity.  */
      *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
      return 1;
    }
  else
    return 0;
}


static int
is_rx (bfd_byte *insn, int op,
       unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
{
  if (insn[0] == op)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *x2 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      *d2 = ((insn[2] & 0xf) << 8) | insn[3];
      return 1;
    }
  else
    return 0;
}


static int
is_rxy (bfd_byte *insn, int op1, int op2,
	unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
{
  if (insn[0] == op1
      && insn[5] == op2)
    {
      *r1 = (insn[1] >> 4) & 0xf;
      *x2 = insn[1] & 0xf;
      *b2 = (insn[2] >> 4) & 0xf;
      /* The 'long displacement' is a 20-bit signed integer.  */
      *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
		^ 0x80000) - 0x80000;
      return 1;
    }
  else
    return 0;
}


/* Prologue analysis.  */

#define S390_NUM_GPRS 16
#define S390_NUM_FPRS 16

struct s390_prologue_data {

  /* The stack.  */
  struct pv_area *stack;

  /* The size and byte-order of a GPR or FPR.  */
  int gpr_size;
  int fpr_size;
  enum bfd_endian byte_order;

  /* The general-purpose registers.  */
  pv_t gpr[S390_NUM_GPRS];

  /* The floating-point registers.  */
  pv_t fpr[S390_NUM_FPRS];

  /* The offset relative to the CFA where the incoming GPR N was saved
     by the function prologue.  0 if not saved or unknown.  */
  int gpr_slot[S390_NUM_GPRS];

  /* Likewise for FPRs.  */
  int fpr_slot[S390_NUM_FPRS];

  /* Nonzero if the backchain was saved.  This is assumed to be the
     case when the incoming SP is saved at the current SP location.  */
  int back_chain_saved_p;
};

/* Return the effective address for an X-style instruction, like:

	L R1, D2(X2, B2)

   Here, X2 and B2 are registers, and D2 is a signed 20-bit
   constant; the effective address is the sum of all three.  If either
   X2 or B2 are zero, then it doesn't contribute to the sum --- this
   means that r0 can't be used as either X2 or B2.  */
static pv_t
s390_addr (struct s390_prologue_data *data,
	   int d2, unsigned int x2, unsigned int b2)
{
  pv_t result;

  result = pv_constant (d2);
  if (x2)
    result = pv_add (result, data->gpr[x2]);
  if (b2)
    result = pv_add (result, data->gpr[b2]);

  return result;
}

/* Do a SIZE-byte store of VALUE to D2(X2,B2).  */
static void
s390_store (struct s390_prologue_data *data,
	    int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
	    pv_t value)
{
  pv_t addr = s390_addr (data, d2, x2, b2);
  pv_t offset;

  /* Check whether we are storing the backchain.  */
  offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);

  if (pv_is_constant (offset) && offset.k == 0)
    if (size == data->gpr_size
	&& pv_is_register_k (value, S390_SP_REGNUM, 0))
      {
	data->back_chain_saved_p = 1;
	return;
      }


  /* Check whether we are storing a register into the stack.  */
  if (!pv_area_store_would_trash (data->stack, addr))
    pv_area_store (data->stack, addr, size, value);


  /* Note: If this is some store we cannot identify, you might think we
     should forget our cached values, as any of those might have been hit.

     However, we make the assumption that the register save areas are only
     ever stored to once in any given function, and we do recognize these
     stores.  Thus every store we cannot recognize does not hit our data.  */
}

/* Do a SIZE-byte load from D2(X2,B2).  */
static pv_t
s390_load (struct s390_prologue_data *data,
	   int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)

{
  pv_t addr = s390_addr (data, d2, x2, b2);

  /* If it's a load from an in-line constant pool, then we can
     simulate that, under the assumption that the code isn't
     going to change between the time the processor actually
     executed it creating the current frame, and the time when
     we're analyzing the code to unwind past that frame.  */
  if (pv_is_constant (addr))
    {
      struct target_section *secp;
      secp = target_section_by_addr (&current_target, addr.k);
      if (secp != NULL
	  && (bfd_get_section_flags (secp->the_bfd_section->owner,
				     secp->the_bfd_section)
	      & SEC_READONLY))
	return pv_constant (read_memory_integer (addr.k, size,
						 data->byte_order));
    }

  /* Check whether we are accessing one of our save slots.  */
  return pv_area_fetch (data->stack, addr, size);
}

/* Function for finding saved registers in a 'struct pv_area'; we pass
   this to pv_area_scan.

   If VALUE is a saved register, ADDR says it was saved at a constant
   offset from the frame base, and SIZE indicates that the whole
   register was saved, record its offset in the reg_offset table in
   PROLOGUE_UNTYPED.  */
static void
s390_check_for_saved (void *data_untyped, pv_t addr,
		      CORE_ADDR size, pv_t value)
{
  struct s390_prologue_data *data = data_untyped;
  int i, offset;

  if (!pv_is_register (addr, S390_SP_REGNUM))
    return;

  offset = 16 * data->gpr_size + 32 - addr.k;

  /* If we are storing the original value of a register, we want to
     record the CFA offset.  If the same register is stored multiple
     times, the stack slot with the highest address counts.  */

  for (i = 0; i < S390_NUM_GPRS; i++)
    if (size == data->gpr_size
	&& pv_is_register_k (value, S390_R0_REGNUM + i, 0))
      if (data->gpr_slot[i] == 0
	  || data->gpr_slot[i] > offset)
	{
	  data->gpr_slot[i] = offset;
	  return;
	}

  for (i = 0; i < S390_NUM_FPRS; i++)
    if (size == data->fpr_size
	&& pv_is_register_k (value, S390_F0_REGNUM + i, 0))
      if (data->fpr_slot[i] == 0
	  || data->fpr_slot[i] > offset)
	{
	  data->fpr_slot[i] = offset;
	  return;
	}
}

/* Analyze the prologue of the function starting at START_PC,
   continuing at most until CURRENT_PC.  Initialize DATA to
   hold all information we find out about the state of the registers
   and stack slots.  Return the address of the instruction after
   the last one that changed the SP, FP, or back chain; or zero
   on error.  */
static CORE_ADDR
s390_analyze_prologue (struct gdbarch *gdbarch,
		       CORE_ADDR start_pc,
		       CORE_ADDR current_pc,
		       struct s390_prologue_data *data)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;

  /* Our return value:
     The address of the instruction after the last one that changed
     the SP, FP, or back chain;  zero if we got an error trying to
     read memory.  */
  CORE_ADDR result = start_pc;

  /* The current PC for our abstract interpretation.  */
  CORE_ADDR pc;

  /* The address of the next instruction after that.  */
  CORE_ADDR next_pc;

  /* Set up everything's initial value.  */
  {
    int i;

    data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));

    /* For the purpose of prologue tracking, we consider the GPR size to
       be equal to the ABI word size, even if it is actually larger
       (i.e. when running a 32-bit binary under a 64-bit kernel).  */
    data->gpr_size = word_size;
    data->fpr_size = 8;
    data->byte_order = gdbarch_byte_order (gdbarch);

    for (i = 0; i < S390_NUM_GPRS; i++)
      data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);

    for (i = 0; i < S390_NUM_FPRS; i++)
      data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);

    for (i = 0; i < S390_NUM_GPRS; i++)
      data->gpr_slot[i]  = 0;

    for (i = 0; i < S390_NUM_FPRS; i++)
      data->fpr_slot[i]  = 0;

    data->back_chain_saved_p = 0;
  }

  /* Start interpreting instructions, until we hit the frame's
     current PC or the first branch instruction.  */
  for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
    {
      bfd_byte insn[S390_MAX_INSTR_SIZE];
      int insn_len = s390_readinstruction (insn, pc);

      bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
      bfd_byte *insn32 = word_size == 4 ? insn : dummy;
      bfd_byte *insn64 = word_size == 8 ? insn : dummy;

      /* Fields for various kinds of instructions.  */
      unsigned int b2, r1, r2, x2, r3;
      int i2, d2;

      /* The values of SP and FP before this instruction,
	 for detecting instructions that change them.  */
      pv_t pre_insn_sp, pre_insn_fp;
      /* Likewise for the flag whether the back chain was saved.  */
      int pre_insn_back_chain_saved_p;

      /* If we got an error trying to read the instruction, report it.  */
      if (insn_len < 0)
	{
	  result = 0;
	  break;
	}

      next_pc = pc + insn_len;

      pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
      pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
      pre_insn_back_chain_saved_p = data->back_chain_saved_p;


      /* LHI r1, i2 --- load halfword immediate.  */
      /* LGHI r1, i2 --- load halfword immediate (64-bit version).  */
      /* LGFI r1, i2 --- load fullword immediate.  */
      if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
	  || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
	  || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
	data->gpr[r1] = pv_constant (i2);

      /* LR r1, r2 --- load from register.  */
      /* LGR r1, r2 --- load from register (64-bit version).  */
      else if (is_rr (insn32, op_lr, &r1, &r2)
	       || is_rre (insn64, op_lgr, &r1, &r2))
	data->gpr[r1] = data->gpr[r2];

      /* L r1, d2(x2, b2) --- load.  */
      /* LY r1, d2(x2, b2) --- load (long-displacement version).  */
      /* LG r1, d2(x2, b2) --- load (64-bit version).  */
      else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
	       || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
	       || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
	data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);

      /* ST r1, d2(x2, b2) --- store.  */
      /* STY r1, d2(x2, b2) --- store (long-displacement version).  */
      /* STG r1, d2(x2, b2) --- store (64-bit version).  */
      else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
	       || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
	       || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
	s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);

      /* STD r1, d2(x2,b2) --- store floating-point register.  */
      else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
	s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);

      /* STM r1, r3, d2(b2) --- store multiple.  */
      /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
	 version).  */
      /* STMG r1, r3, d2(b2) --- store multiple (64-bit version).  */
      else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
	       || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
	       || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
	{
	  for (; r1 <= r3; r1++, d2 += data->gpr_size)
	    s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
	}

      /* AHI r1, i2 --- add halfword immediate.  */
      /* AGHI r1, i2 --- add halfword immediate (64-bit version).  */
      /* AFI r1, i2 --- add fullword immediate.  */
      /* AGFI r1, i2 --- add fullword immediate (64-bit version).  */
      else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
	       || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
	       || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
	       || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
	data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);

      /* ALFI r1, i2 --- add logical immediate.  */
      /* ALGFI r1, i2 --- add logical immediate (64-bit version).  */
      else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
	       || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
	data->gpr[r1] = pv_add_constant (data->gpr[r1],
					 (CORE_ADDR)i2 & 0xffffffff);

      /* AR r1, r2 -- add register.  */
      /* AGR r1, r2 -- add register (64-bit version).  */
      else if (is_rr (insn32, op_ar, &r1, &r2)
	       || is_rre (insn64, op_agr, &r1, &r2))
	data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);

      /* A r1, d2(x2, b2) -- add.  */
      /* AY r1, d2(x2, b2) -- add (long-displacement version).  */
      /* AG r1, d2(x2, b2) -- add (64-bit version).  */
      else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
	       || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
	       || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
	data->gpr[r1] = pv_add (data->gpr[r1],
				s390_load (data, d2, x2, b2, data->gpr_size));

      /* SLFI r1, i2 --- subtract logical immediate.  */
      /* SLGFI r1, i2 --- subtract logical immediate (64-bit version).  */
      else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
	       || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
	data->gpr[r1] = pv_add_constant (data->gpr[r1],
					 -((CORE_ADDR)i2 & 0xffffffff));

      /* SR r1, r2 -- subtract register.  */
      /* SGR r1, r2 -- subtract register (64-bit version).  */
      else if (is_rr (insn32, op_sr, &r1, &r2)
	       || is_rre (insn64, op_sgr, &r1, &r2))
	data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);

      /* S r1, d2(x2, b2) -- subtract.  */
      /* SY r1, d2(x2, b2) -- subtract (long-displacement version).  */
      /* SG r1, d2(x2, b2) -- subtract (64-bit version).  */
      else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
	       || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
	       || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
	data->gpr[r1] = pv_subtract (data->gpr[r1],
				s390_load (data, d2, x2, b2, data->gpr_size));

      /* LA r1, d2(x2, b2) --- load address.  */
      /* LAY r1, d2(x2, b2) --- load address (long-displacement version).  */
      else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
	       || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
	data->gpr[r1] = s390_addr (data, d2, x2, b2);

      /* LARL r1, i2 --- load address relative long.  */
      else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
	data->gpr[r1] = pv_constant (pc + i2 * 2);

      /* BASR r1, 0 --- branch and save.
	 Since r2 is zero, this saves the PC in r1, but doesn't branch.  */
      else if (is_rr (insn, op_basr, &r1, &r2)
	       && r2 == 0)
	data->gpr[r1] = pv_constant (next_pc);

      /* BRAS r1, i2 --- branch relative and save.  */
      else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
	{
	  data->gpr[r1] = pv_constant (next_pc);
	  next_pc = pc + i2 * 2;

	  /* We'd better not interpret any backward branches.  We'll
	     never terminate.  */
	  if (next_pc <= pc)
	    break;
	}

      /* Terminate search when hitting any other branch instruction.  */
      else if (is_rr (insn, op_basr, &r1, &r2)
	       || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
	       || is_rr (insn, op_bcr, &r1, &r2)
	       || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
	       || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
	       || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
	       || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
	break;

      else
	{
	  /* An instruction we don't know how to simulate.  The only
	     safe thing to do would be to set every value we're tracking
	     to 'unknown'.  Instead, we'll be optimistic: we assume that
	     we *can* interpret every instruction that the compiler uses
	     to manipulate any of the data we're interested in here --
	     then we can just ignore anything else.  */
	}

      /* Record the address after the last instruction that changed
	 the FP, SP, or backlink.  Ignore instructions that changed
	 them back to their original values --- those are probably
	 restore instructions.  (The back chain is never restored,
	 just popped.)  */
      {
	pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
	pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];

	if ((! pv_is_identical (pre_insn_sp, sp)
	     && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
	     && sp.kind != pvk_unknown)
	    || (! pv_is_identical (pre_insn_fp, fp)
		&& ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
		&& fp.kind != pvk_unknown)
	    || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
	  result = next_pc;
      }
    }

  /* Record where all the registers were saved.  */
  pv_area_scan (data->stack, s390_check_for_saved, data);

  free_pv_area (data->stack);
  data->stack = NULL;

  return result;
}

/* Advance PC across any function entry prologue instructions to reach
   some "real" code.  */
static CORE_ADDR
s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct s390_prologue_data data;
  CORE_ADDR skip_pc, func_addr;

  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);
      if (post_prologue_pc != 0)
	return max (pc, post_prologue_pc);
    }

  skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
  return skip_pc ? skip_pc : pc;
}

/* Return true if we are in the functin's epilogue, i.e. after the
   instruction that destroyed the function's stack frame.  */
static int
s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;

  /* In frameless functions, there's not frame to destroy and thus
     we don't care about the epilogue.

     In functions with frame, the epilogue sequence is a pair of
     a LM-type instruction that restores (amongst others) the
     return register %r14 and the stack pointer %r15, followed
     by a branch 'br %r14' --or equivalent-- that effects the
     actual return.

     In that situation, this function needs to return 'true' in
     exactly one case: when pc points to that branch instruction.

     Thus we try to disassemble the one instructions immediately
     preceding pc and check whether it is an LM-type instruction
     modifying the stack pointer.

     Note that disassembling backwards is not reliable, so there
     is a slight chance of false positives here ...  */

  bfd_byte insn[6];
  unsigned int r1, r3, b2;
  int d2;

  if (word_size == 4
      && !target_read_memory (pc - 4, insn, 4)
      && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
    return 1;

  if (word_size == 4
      && !target_read_memory (pc - 6, insn, 6)
      && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
    return 1;

  if (word_size == 8
      && !target_read_memory (pc - 6, insn, 6)
      && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
    return 1;

  return 0;
}

/* Displaced stepping.  */

/* Fix up the state of registers and memory after having single-stepped
   a displaced instruction.  */
static void
s390_displaced_step_fixup (struct gdbarch *gdbarch,
			   struct displaced_step_closure *closure,
			   CORE_ADDR from, CORE_ADDR to,
			   struct regcache *regs)
{
  /* Since we use simple_displaced_step_copy_insn, our closure is a
     copy of the instruction.  */
  gdb_byte *insn = (gdb_byte *) closure;
  static int s390_instrlen[] = { 2, 4, 4, 6 };
  int insnlen = s390_instrlen[insn[0] >> 6];

  /* Fields for various kinds of instructions.  */
  unsigned int b2, r1, r2, x2, r3;
  int i2, d2;

  /* Get current PC and addressing mode bit.  */
  CORE_ADDR pc = regcache_read_pc (regs);
  ULONGEST amode = 0;

  if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
    {
      regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
      amode &= 0x80000000;
    }

  if (debug_displaced)
    fprintf_unfiltered (gdb_stdlog,
			"displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n",
			paddress (gdbarch, from), paddress (gdbarch, to),
			paddress (gdbarch, pc), insnlen, (int) amode);

  /* Handle absolute branch and save instructions.  */
  if (is_rr (insn, op_basr, &r1, &r2)
      || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
    {
      /* Recompute saved return address in R1.  */
      regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
				      amode | (from + insnlen));
    }

  /* Handle absolute branch instructions.  */
  else if (is_rr (insn, op_bcr, &r1, &r2)
	   || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
	   || is_rr (insn, op_bctr, &r1, &r2)
	   || is_rre (insn, op_bctgr, &r1, &r2)
	   || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
	   || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
	   || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
	   || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
	   || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
	   || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
    {
      /* Update PC iff branch was *not* taken.  */
      if (pc == to + insnlen)
	regcache_write_pc (regs, from + insnlen);
    }

  /* Handle PC-relative branch and save instructions.  */
  else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
	   || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
    {
      /* Update PC.  */
      regcache_write_pc (regs, pc - to + from);
      /* Recompute saved return address in R1.  */
      regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
				      amode | (from + insnlen));
    }

  /* Handle PC-relative branch instructions.  */
  else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
	   || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
	   || is_ri (insn, op1_brct, op2_brct, &r1, &i2)
	   || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
	   || is_rsi (insn, op_brxh, &r1, &r3, &i2)
	   || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
	   || is_rsi (insn, op_brxle, &r1, &r3, &i2)
	   || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
    {
      /* Update PC.  */
      regcache_write_pc (regs, pc - to + from);
    }

  /* Handle LOAD ADDRESS RELATIVE LONG.  */
  else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
    {
      /* Update PC.  */
      regcache_write_pc (regs, from + insnlen);
      /* Recompute output address in R1.  */
      regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
				      amode | (from + i2 * 2));
    }

  /* If we executed a breakpoint instruction, point PC right back at it.  */
  else if (insn[0] == 0x0 && insn[1] == 0x1)
    regcache_write_pc (regs, from);

  /* For any other insn, PC points right after the original instruction.  */
  else
    regcache_write_pc (regs, from + insnlen);

  if (debug_displaced)
    fprintf_unfiltered (gdb_stdlog,
			"displaced: (s390) pc is now %s\n",
			paddress (gdbarch, regcache_read_pc (regs)));
}


/* Helper routine to unwind pseudo registers.  */

static struct value *
s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct type *type = register_type (gdbarch, regnum);

  /* Unwind PC via PSW address.  */
  if (regnum == tdep->pc_regnum)
    {
      struct value *val;

      val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM);
      if (!value_optimized_out (val))
	{
	  LONGEST pswa = value_as_long (val);

	  if (TYPE_LENGTH (type) == 4)
	    return value_from_pointer (type, pswa & 0x7fffffff);
	  else
	    return value_from_pointer (type, pswa);
	}
    }

  /* Unwind CC via PSW mask.  */
  if (regnum == tdep->cc_regnum)
    {
      struct value *val;

      val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM);
      if (!value_optimized_out (val))
	{
	  LONGEST pswm = value_as_long (val);

	  if (TYPE_LENGTH (type) == 4)
	    return value_from_longest (type, (pswm >> 12) & 3);
	  else
	    return value_from_longest (type, (pswm >> 44) & 3);
	}
    }

  /* Unwind full GPRs to show at least the lower halves (as the
     upper halves are undefined).  */
  if (regnum_is_gpr_full (tdep, regnum))
    {
      int reg = regnum - tdep->gpr_full_regnum;
      struct value *val;

      val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
      if (!value_optimized_out (val))
	return value_cast (type, val);
    }

  return allocate_optimized_out_value (type);
}

static struct value *
s390_trad_frame_prev_register (struct frame_info *this_frame,
			       struct trad_frame_saved_reg saved_regs[],
			       int regnum)
{
  if (regnum < S390_NUM_REGS)
    return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
  else
    return s390_unwind_pseudo_register (this_frame, regnum);
}


/* Normal stack frames.  */

struct s390_unwind_cache {

  CORE_ADDR func;
  CORE_ADDR frame_base;
  CORE_ADDR local_base;

  struct trad_frame_saved_reg *saved_regs;
};

static int
s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
				  struct s390_unwind_cache *info)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  struct s390_prologue_data data;
  pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
  pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
  int i;
  CORE_ADDR cfa;
  CORE_ADDR func;
  CORE_ADDR result;
  ULONGEST reg;
  CORE_ADDR prev_sp;
  int frame_pointer;
  int size;
  struct frame_info *next_frame;

  /* Try to find the function start address.  If we can't find it, we don't
     bother searching for it -- with modern compilers this would be mostly
     pointless anyway.  Trust that we'll either have valid DWARF-2 CFI data
     or else a valid backchain ...  */
  func = get_frame_func (this_frame);
  if (!func)
    return 0;

  /* Try to analyze the prologue.  */
  result = s390_analyze_prologue (gdbarch, func,
				  get_frame_pc (this_frame), &data);
  if (!result)
    return 0;

  /* If this was successful, we should have found the instruction that
     sets the stack pointer register to the previous value of the stack
     pointer minus the frame size.  */
  if (!pv_is_register (*sp, S390_SP_REGNUM))
    return 0;

  /* A frame size of zero at this point can mean either a real
     frameless function, or else a failure to find the prologue.
     Perform some sanity checks to verify we really have a
     frameless function.  */
  if (sp->k == 0)
    {
      /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
	 size zero.  This is only possible if the next frame is a sentinel
	 frame, a dummy frame, or a signal trampoline frame.  */
      /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
	 needed, instead the code should simpliy rely on its
	 analysis.  */
      next_frame = get_next_frame (this_frame);
      while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
	next_frame = get_next_frame (next_frame);
      if (next_frame
	  && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
	return 0;

      /* If we really have a frameless function, %r14 must be valid
	 -- in particular, it must point to a different function.  */
      reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
      reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
      if (get_pc_function_start (reg) == func)
	{
	  /* However, there is one case where it *is* valid for %r14
	     to point to the same function -- if this is a recursive
	     call, and we have stopped in the prologue *before* the
	     stack frame was allocated.

	     Recognize this case by looking ahead a bit ...  */

	  struct s390_prologue_data data2;
	  pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];

	  if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
		&& pv_is_register (*sp, S390_SP_REGNUM)
		&& sp->k != 0))
	    return 0;
	}
    }


  /* OK, we've found valid prologue data.  */
  size = -sp->k;

  /* If the frame pointer originally also holds the same value
     as the stack pointer, we're probably using it.  If it holds
     some other value -- even a constant offset -- it is most
     likely used as temp register.  */
  if (pv_is_identical (*sp, *fp))
    frame_pointer = S390_FRAME_REGNUM;
  else
    frame_pointer = S390_SP_REGNUM;

  /* If we've detected a function with stack frame, we'll still have to
     treat it as frameless if we're currently within the function epilog
     code at a point where the frame pointer has already been restored.
     This can only happen in an innermost frame.  */
  /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
     instead the code should simpliy rely on its analysis.  */
  next_frame = get_next_frame (this_frame);
  while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
    next_frame = get_next_frame (next_frame);
  if (size > 0
      && (next_frame == NULL
	  || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
    {
      /* See the comment in s390_in_function_epilogue_p on why this is
	 not completely reliable ...  */
      if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
	{
	  memset (&data, 0, sizeof (data));
	  size = 0;
	  frame_pointer = S390_SP_REGNUM;
	}
    }

  /* Once we know the frame register and the frame size, we can unwind
     the current value of the frame register from the next frame, and
     add back the frame size to arrive that the previous frame's
     stack pointer value.  */
  prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
  cfa = prev_sp + 16*word_size + 32;

  /* Set up ABI call-saved/call-clobbered registers.  */
  for (i = 0; i < S390_NUM_REGS; i++)
    if (!s390_register_call_saved (gdbarch, i))
      trad_frame_set_unknown (info->saved_regs, i);

  /* CC is always call-clobbered.  */
  trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);

  /* Record the addresses of all register spill slots the prologue parser
     has recognized.  Consider only registers defined as call-saved by the
     ABI; for call-clobbered registers the parser may have recognized
     spurious stores.  */

  for (i = 0; i < 16; i++)
    if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
	&& data.gpr_slot[i] != 0)
      info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];

  for (i = 0; i < 16; i++)
    if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
	&& data.fpr_slot[i] != 0)
      info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];

  /* Function return will set PC to %r14.  */
  info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];

  /* In frameless functions, we unwind simply by moving the return
     address to the PC.  However, if we actually stored to the
     save area, use that -- we might only think the function frameless
     because we're in the middle of the prologue ...  */
  if (size == 0
      && !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
    {
      info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
    }

  /* Another sanity check: unless this is a frameless function,
     we should have found spill slots for SP and PC.
     If not, we cannot unwind further -- this happens e.g. in
     libc's thread_start routine.  */
  if (size > 0)
    {
      if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
	  || !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
	prev_sp = -1;
    }

  /* We use the current value of the frame register as local_base,
     and the top of the register save area as frame_base.  */
  if (prev_sp != -1)
    {
      info->frame_base = prev_sp + 16*word_size + 32;
      info->local_base = prev_sp - size;
    }

  info->func = func;
  return 1;
}

static void
s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
				   struct s390_unwind_cache *info)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR backchain;
  ULONGEST reg;
  LONGEST sp;
  int i;

  /* Set up ABI call-saved/call-clobbered registers.  */
  for (i = 0; i < S390_NUM_REGS; i++)
    if (!s390_register_call_saved (gdbarch, i))
      trad_frame_set_unknown (info->saved_regs, i);

  /* CC is always call-clobbered.  */
  trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);

  /* Get the backchain.  */
  reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
  backchain = read_memory_unsigned_integer (reg, word_size, byte_order);

  /* A zero backchain terminates the frame chain.  As additional
     sanity check, let's verify that the spill slot for SP in the
     save area pointed to by the backchain in fact links back to
     the save area.  */
  if (backchain != 0
      && safe_read_memory_integer (backchain + 15*word_size,
				   word_size, byte_order, &sp)
      && (CORE_ADDR)sp == backchain)
    {
      /* We don't know which registers were saved, but it will have
	 to be at least %r14 and %r15.  This will allow us to continue
	 unwinding, but other prev-frame registers may be incorrect ...  */
      info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
      info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;

      /* Function return will set PC to %r14.  */
      info->saved_regs[S390_PSWA_REGNUM]
	= info->saved_regs[S390_RETADDR_REGNUM];

      /* We use the current value of the frame register as local_base,
	 and the top of the register save area as frame_base.  */
      info->frame_base = backchain + 16*word_size + 32;
      info->local_base = reg;
    }

  info->func = get_frame_pc (this_frame);
}

static struct s390_unwind_cache *
s390_frame_unwind_cache (struct frame_info *this_frame,
			 void **this_prologue_cache)
{
  struct s390_unwind_cache *info;

  if (*this_prologue_cache)
    return *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
  *this_prologue_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
  info->func = -1;
  info->frame_base = -1;
  info->local_base = -1;

  TRY
    {
      /* Try to use prologue analysis to fill the unwind cache.
	 If this fails, fall back to reading the stack backchain.  */
      if (!s390_prologue_frame_unwind_cache (this_frame, info))
	s390_backchain_frame_unwind_cache (this_frame, info);
    }
  CATCH (ex, RETURN_MASK_ERROR)
    {
      if (ex.error != NOT_AVAILABLE_ERROR)
	throw_exception (ex);
    }
  END_CATCH

  return info;
}

static void
s390_frame_this_id (struct frame_info *this_frame,
		    void **this_prologue_cache,
		    struct frame_id *this_id)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (this_frame, this_prologue_cache);

  if (info->frame_base == -1)
    return;

  *this_id = frame_id_build (info->frame_base, info->func);
}

static struct value *
s390_frame_prev_register (struct frame_info *this_frame,
			  void **this_prologue_cache, int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (this_frame, this_prologue_cache);

  return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
}

static const struct frame_unwind s390_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  s390_frame_this_id,
  s390_frame_prev_register,
  NULL,
  default_frame_sniffer
};


/* Code stubs and their stack frames.  For things like PLTs and NULL
   function calls (where there is no true frame and the return address
   is in the RETADDR register).  */

struct s390_stub_unwind_cache
{
  CORE_ADDR frame_base;
  struct trad_frame_saved_reg *saved_regs;
};

static struct s390_stub_unwind_cache *
s390_stub_frame_unwind_cache (struct frame_info *this_frame,
			      void **this_prologue_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  struct s390_stub_unwind_cache *info;
  ULONGEST reg;

  if (*this_prologue_cache)
    return *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
  *this_prologue_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* The return address is in register %r14.  */
  info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;

  /* Retrieve stack pointer and determine our frame base.  */
  reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
  info->frame_base = reg + 16*word_size + 32;

  return info;
}

static void
s390_stub_frame_this_id (struct frame_info *this_frame,
			 void **this_prologue_cache,
			 struct frame_id *this_id)
{
  struct s390_stub_unwind_cache *info
    = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
  *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
}

static struct value *
s390_stub_frame_prev_register (struct frame_info *this_frame,
			       void **this_prologue_cache, int regnum)
{
  struct s390_stub_unwind_cache *info
    = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
  return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
}

static int
s390_stub_frame_sniffer (const struct frame_unwind *self,
			 struct frame_info *this_frame,
			 void **this_prologue_cache)
{
  CORE_ADDR addr_in_block;
  bfd_byte insn[S390_MAX_INSTR_SIZE];

  /* If the current PC points to non-readable memory, we assume we
     have trapped due to an invalid function pointer call.  We handle
     the non-existing current function like a PLT stub.  */
  addr_in_block = get_frame_address_in_block (this_frame);
  if (in_plt_section (addr_in_block)
      || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
    return 1;
  return 0;
}

static const struct frame_unwind s390_stub_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  s390_stub_frame_this_id,
  s390_stub_frame_prev_register,
  NULL,
  s390_stub_frame_sniffer
};


/* Signal trampoline stack frames.  */

struct s390_sigtramp_unwind_cache {
  CORE_ADDR frame_base;
  struct trad_frame_saved_reg *saved_regs;
};

static struct s390_sigtramp_unwind_cache *
s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
				  void **this_prologue_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct s390_sigtramp_unwind_cache *info;
  ULONGEST this_sp, prev_sp;
  CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
  int i;

  if (*this_prologue_cache)
    return *this_prologue_cache;

  info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
  *this_prologue_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
  next_ra = get_frame_pc (this_frame);
  next_cfa = this_sp + 16*word_size + 32;

  /* New-style RT frame:
	retcode + alignment (8 bytes)
	siginfo (128 bytes)
	ucontext (contains sigregs at offset 5 words).  */
  if (next_ra == next_cfa)
    {
      sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
      /* sigregs are followed by uc_sigmask (8 bytes), then by the
	 upper GPR halves if present.  */
      sigreg_high_off = 8;
    }

  /* Old-style RT frame and all non-RT frames:
	old signal mask (8 bytes)
	pointer to sigregs.  */
  else
    {
      sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
						 word_size, byte_order);
      /* sigregs are followed by signo (4 bytes), then by the
	 upper GPR halves if present.  */
      sigreg_high_off = 4;
    }

  /* The sigregs structure looks like this:
	    long   psw_mask;
	    long   psw_addr;
	    long   gprs[16];
	    int    acrs[16];
	    int    fpc;
	    int    __pad;
	    double fprs[16];  */

  /* PSW mask and address.  */
  info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
  sigreg_ptr += word_size;
  info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
  sigreg_ptr += word_size;

  /* Then the GPRs.  */
  for (i = 0; i < 16; i++)
    {
      info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
      sigreg_ptr += word_size;
    }

  /* Then the ACRs.  */
  for (i = 0; i < 16; i++)
    {
      info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
      sigreg_ptr += 4;
    }

  /* The floating-point control word.  */
  info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
  sigreg_ptr += 8;

  /* And finally the FPRs.  */
  for (i = 0; i < 16; i++)
    {
      info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
      sigreg_ptr += 8;
    }

  /* If we have them, the GPR upper halves are appended at the end.  */
  sigreg_ptr += sigreg_high_off;
  if (tdep->gpr_full_regnum != -1)
    for (i = 0; i < 16; i++)
      {
	info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
	sigreg_ptr += 4;
      }

  /* Restore the previous frame's SP.  */
  prev_sp = read_memory_unsigned_integer (
			info->saved_regs[S390_SP_REGNUM].addr,
			word_size, byte_order);

  /* Determine our frame base.  */
  info->frame_base = prev_sp + 16*word_size + 32;

  return info;
}

static void
s390_sigtramp_frame_this_id (struct frame_info *this_frame,
			     void **this_prologue_cache,
			     struct frame_id *this_id)
{
  struct s390_sigtramp_unwind_cache *info
    = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
  *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
}

static struct value *
s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
				   void **this_prologue_cache, int regnum)
{
  struct s390_sigtramp_unwind_cache *info
    = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
  return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
}

static int
s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
			     struct frame_info *this_frame,
			     void **this_prologue_cache)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  bfd_byte sigreturn[2];

  if (target_read_memory (pc, sigreturn, 2))
    return 0;

  if (sigreturn[0] != op_svc)
    return 0;

  if (sigreturn[1] != 119 /* sigreturn */
      && sigreturn[1] != 173 /* rt_sigreturn */)
    return 0;

  return 1;
}

static const struct frame_unwind s390_sigtramp_frame_unwind = {
  SIGTRAMP_FRAME,
  default_frame_unwind_stop_reason,
  s390_sigtramp_frame_this_id,
  s390_sigtramp_frame_prev_register,
  NULL,
  s390_sigtramp_frame_sniffer
};

/* Retrieve the syscall number at a ptrace syscall-stop.  Return -1
   upon error. */

static LONGEST
s390_linux_get_syscall_number (struct gdbarch *gdbarch,
			       ptid_t ptid)
{
  struct regcache *regs = get_thread_regcache (ptid);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST pc;
  ULONGEST svc_number = -1;
  unsigned opcode;

  /* Assume that the PC points after the 2-byte SVC instruction.  We
     don't currently support SVC via EXECUTE. */
  regcache_cooked_read_unsigned (regs, tdep->pc_regnum, &pc);
  pc -= 2;
  opcode = read_memory_unsigned_integer ((CORE_ADDR) pc, 1, byte_order);
  if (opcode != op_svc)
    return -1;

  svc_number = read_memory_unsigned_integer ((CORE_ADDR) pc + 1, 1,
					     byte_order);
  if (svc_number == 0)
    regcache_cooked_read_unsigned (regs, S390_R1_REGNUM, &svc_number);

  return svc_number;
}


/* Frame base handling.  */

static CORE_ADDR
s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (this_frame, this_cache);
  return info->frame_base;
}

static CORE_ADDR
s390_local_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct s390_unwind_cache *info
    = s390_frame_unwind_cache (this_frame, this_cache);
  return info->local_base;
}

static const struct frame_base s390_frame_base = {
  &s390_frame_unwind,
  s390_frame_base_address,
  s390_local_base_address,
  s390_local_base_address
};

static CORE_ADDR
s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  ULONGEST pc;
  pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
  return gdbarch_addr_bits_remove (gdbarch, pc);
}

static CORE_ADDR
s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST sp;
  sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
  return gdbarch_addr_bits_remove (gdbarch, sp);
}


/* DWARF-2 frame support.  */

static struct value *
s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
			   int regnum)
{
  return s390_unwind_pseudo_register (this_frame, regnum);
}

static void
s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
			    struct dwarf2_frame_state_reg *reg,
			    struct frame_info *this_frame)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* The condition code (and thus PSW mask) is call-clobbered.  */
  if (regnum == S390_PSWM_REGNUM)
    reg->how = DWARF2_FRAME_REG_UNDEFINED;

  /* The PSW address unwinds to the return address.  */
  else if (regnum == S390_PSWA_REGNUM)
    reg->how = DWARF2_FRAME_REG_RA;

  /* Fixed registers are call-saved or call-clobbered
     depending on the ABI in use.  */
  else if (regnum < S390_NUM_REGS)
    {
      if (s390_register_call_saved (gdbarch, regnum))
	reg->how = DWARF2_FRAME_REG_SAME_VALUE;
      else
	reg->how = DWARF2_FRAME_REG_UNDEFINED;
    }

  /* We install a special function to unwind pseudos.  */
  else
    {
      reg->how = DWARF2_FRAME_REG_FN;
      reg->loc.fn = s390_dwarf2_prev_register;
    }
}


/* Dummy function calls.  */

/* Unwrap any single-field structs in TYPE and return the effective
   "inner" type.  E.g., yield "float" for all these cases:

     float x;
     struct { float x };
     struct { struct { float x; } x; };
     struct { struct { struct { float x; } x; } x; };

   However, if an inner type is smaller than MIN_SIZE, abort the
   unwrapping.  */

static struct type *
s390_effective_inner_type (struct type *type, unsigned int min_size)
{
  while (TYPE_CODE (type) == TYPE_CODE_STRUCT
	 && TYPE_NFIELDS (type) == 1)
    {
      struct type *inner = check_typedef (TYPE_FIELD_TYPE (type, 0));

      if (TYPE_LENGTH (inner) < min_size)
	break;
      type = inner;
    }

  return type;
}

/* Return non-zero if TYPE should be passed like "float" or
   "double".  */

static int
s390_function_arg_float (struct type *type)
{
  /* Note that long double as well as complex types are intentionally
     excluded. */
  if (TYPE_LENGTH (type) > 8)
    return 0;

  /* A struct containing just a float or double is passed like a float
     or double.  */
  type = s390_effective_inner_type (type, 0);

  return (TYPE_CODE (type) == TYPE_CODE_FLT
	  || TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
}

/* Return non-zero if TYPE should be passed like a vector.  */

static int
s390_function_arg_vector (struct type *type)
{
  if (TYPE_LENGTH (type) > 16)
    return 0;

  /* Structs containing just a vector are passed like a vector.  */
  type = s390_effective_inner_type (type, TYPE_LENGTH (type));

  return TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type);
}

/* Determine whether N is a power of two.  */

static int
is_power_of_two (unsigned int n)
{
  return n && ((n & (n - 1)) == 0);
}

/* For an argument whose type is TYPE and which is not passed like a
   float or vector, return non-zero if it should be passed like "int"
   or "long long".  */

static int
s390_function_arg_integer (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  if (TYPE_LENGTH (type) > 8)
    return 0;

  if (code == TYPE_CODE_INT
      || code == TYPE_CODE_ENUM
      || code == TYPE_CODE_RANGE
      || code == TYPE_CODE_CHAR
      || code == TYPE_CODE_BOOL
      || code == TYPE_CODE_PTR
      || code == TYPE_CODE_REF)
    return 1;

  return ((code == TYPE_CODE_UNION || code == TYPE_CODE_STRUCT)
	  && is_power_of_two (TYPE_LENGTH (type)));
}

/* Argument passing state: Internal data structure passed to helper
   routines of s390_push_dummy_call.  */

struct s390_arg_state
  {
    /* Register cache, or NULL, if we are in "preparation mode".  */
    struct regcache *regcache;
    /* Next available general/floating-point/vector register for
       argument passing.  */
    int gr, fr, vr;
    /* Current pointer to copy area (grows downwards).  */
    CORE_ADDR copy;
    /* Current pointer to parameter area (grows upwards).  */
    CORE_ADDR argp;
  };

/* Prepare one argument ARG for a dummy call and update the argument
   passing state AS accordingly.  If the regcache field in AS is set,
   operate in "write mode" and write ARG into the inferior.  Otherwise
   run "preparation mode" and skip all updates to the inferior.  */

static void
s390_handle_arg (struct s390_arg_state *as, struct value *arg,
		 struct gdbarch_tdep *tdep, int word_size,
		 enum bfd_endian byte_order, int is_unnamed)
{
  struct type *type = check_typedef (value_type (arg));
  unsigned int length = TYPE_LENGTH (type);
  int write_mode = as->regcache != NULL;

  if (s390_function_arg_float (type))
    {
      /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass
	 arguments.  The GNU/Linux for zSeries ABI uses 0, 2, 4, and
	 6.  */
      if (as->fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
	{
	  /* When we store a single-precision value in an FP register,
	     it occupies the leftmost bits.  */
	  if (write_mode)
	    regcache_cooked_write_part (as->regcache,
					S390_F0_REGNUM + as->fr,
					0, length,
					value_contents (arg));
	  as->fr += 2;
	}
      else
	{
	  /* When we store a single-precision value in a stack slot,
	     it occupies the rightmost bits.  */
	  as->argp = align_up (as->argp + length, word_size);
	  if (write_mode)
	    write_memory (as->argp - length, value_contents (arg),
			  length);
	}
    }
  else if (tdep->vector_abi == S390_VECTOR_ABI_128
	   && s390_function_arg_vector (type))
    {
      static const char use_vr[] = {24, 26, 28, 30, 25, 27, 29, 31};

      if (!is_unnamed && as->vr < ARRAY_SIZE (use_vr))
	{
	  int regnum = S390_V24_REGNUM + use_vr[as->vr] - 24;

	  if (write_mode)
	    regcache_cooked_write_part (as->regcache, regnum,
					0, length,
					value_contents (arg));
	  as->vr++;
	}
      else
	{
	  if (write_mode)
	    write_memory (as->argp, value_contents (arg), length);
	  as->argp = align_up (as->argp + length, word_size);
	}
    }
  else if (s390_function_arg_integer (type) && length <= word_size)
    {
      ULONGEST val;

      if (write_mode)
	{
	  /* Place value in least significant bits of the register or
	     memory word and sign- or zero-extend to full word size.
	     This also applies to a struct or union.  */
	  val = TYPE_UNSIGNED (type)
	    ? extract_unsigned_integer (value_contents (arg),
					length, byte_order)
	    : extract_signed_integer (value_contents (arg),
				      length, byte_order);
	}

      if (as->gr <= 6)
	{
	  if (write_mode)
	    regcache_cooked_write_unsigned (as->regcache,
					    S390_R0_REGNUM + as->gr,
					    val);
	  as->gr++;
	}
      else
	{
	  if (write_mode)
	    write_memory_unsigned_integer (as->argp, word_size,
					   byte_order, val);
	  as->argp += word_size;
	}
    }
  else if (s390_function_arg_integer (type) && length == 8)
    {
      if (as->gr <= 5)
	{
	  if (write_mode)
	    {
	      regcache_cooked_write (as->regcache,
				     S390_R0_REGNUM + as->gr,
				     value_contents (arg));
	      regcache_cooked_write (as->regcache,
				     S390_R0_REGNUM + as->gr + 1,
				     value_contents (arg) + word_size);
	    }
	  as->gr += 2;
	}
      else
	{
	  /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
	     in it, then don't go back and use it again later.  */
	  as->gr = 7;

	  if (write_mode)
	    write_memory (as->argp, value_contents (arg), length);
	  as->argp += length;
	}
    }
  else
    {
      /* This argument type is never passed in registers.  Place the
	 value in the copy area and pass a pointer to it.  Use 8-byte
	 alignment as a conservative assumption.  */
      as->copy = align_down (as->copy - length, 8);
      if (write_mode)
	write_memory (as->copy, value_contents (arg), length);

      if (as->gr <= 6)
	{
	  if (write_mode)
	    regcache_cooked_write_unsigned (as->regcache,
					    S390_R0_REGNUM + as->gr,
					    as->copy);
	  as->gr++;
	}
      else
	{
	  if (write_mode)
	    write_memory_unsigned_integer (as->argp, word_size,
					   byte_order, as->copy);
	  as->argp += word_size;
	}
    }
}

/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
   place to be passed to a function, as specified by the "GNU/Linux
   for S/390 ELF Application Binary Interface Supplement".

   SP is the current stack pointer.  We must put arguments, links,
   padding, etc. whereever they belong, and return the new stack
   pointer value.

   If STRUCT_RETURN is non-zero, then the function we're calling is
   going to return a structure by value; STRUCT_ADDR is the address of
   a block we've allocated for it on the stack.

   Our caller has taken care of any type promotions needed to satisfy
   prototypes or the old K&R argument-passing rules.  */

static CORE_ADDR
s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		      struct regcache *regcache, CORE_ADDR bp_addr,
		      int nargs, struct value **args, CORE_ADDR sp,
		      int struct_return, CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int i;
  struct s390_arg_state arg_state, arg_prep;
  CORE_ADDR param_area_start, new_sp;
  struct type *ftype = check_typedef (value_type (function));

  if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
    ftype = check_typedef (TYPE_TARGET_TYPE (ftype));

  arg_prep.copy = sp;
  arg_prep.gr = struct_return ? 3 : 2;
  arg_prep.fr = 0;
  arg_prep.vr = 0;
  arg_prep.argp = 0;
  arg_prep.regcache = NULL;

  /* Initialize arg_state for "preparation mode".  */
  arg_state = arg_prep;

  /* Update arg_state.copy with the start of the reference-to-copy area
     and arg_state.argp with the size of the parameter area.  */
  for (i = 0; i < nargs; i++)
    s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
		     TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));

  param_area_start = align_down (arg_state.copy - arg_state.argp, 8);

  /* Allocate the standard frame areas: the register save area, the
     word reserved for the compiler, and the back chain pointer.  */
  new_sp = param_area_start - (16 * word_size + 32);

  /* Now we have the final stack pointer.  Make sure we didn't
     underflow; on 31-bit, this would result in addresses with the
     high bit set, which causes confusion elsewhere.  Note that if we
     error out here, stack and registers remain untouched.  */
  if (gdbarch_addr_bits_remove (gdbarch, new_sp) != new_sp)
    error (_("Stack overflow"));

  /* Pass the structure return address in general register 2.  */
  if (struct_return)
    regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, struct_addr);

  /* Initialize arg_state for "write mode".  */
  arg_state = arg_prep;
  arg_state.argp = param_area_start;
  arg_state.regcache = regcache;

  /* Write all parameters.  */
  for (i = 0; i < nargs; i++)
    s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
		     TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));

  /* Store return PSWA.  In 31-bit mode, keep addressing mode bit.  */
  if (word_size == 4)
    {
      ULONGEST pswa;
      regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa);
      bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000);
    }
  regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);

  /* Store updated stack pointer.  */
  regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, new_sp);

  /* We need to return the 'stack part' of the frame ID,
     which is actually the top of the register save area.  */
  return param_area_start;
}

/* Assuming THIS_FRAME is a dummy, return the frame ID of that
   dummy frame.  The frame ID's base needs to match the TOS value
   returned by push_dummy_call, and the PC match the dummy frame's
   breakpoint.  */
static struct frame_id
s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
  sp = gdbarch_addr_bits_remove (gdbarch, sp);

  return frame_id_build (sp + 16*word_size + 32,
			 get_frame_pc (this_frame));
}

static CORE_ADDR
s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  /* Both the 32- and 64-bit ABI's say that the stack pointer should
     always be aligned on an eight-byte boundary.  */
  return (addr & -8);
}


/* Helper for s390_return_value: Set or retrieve a function return
   value if it resides in a register.  */

static void
s390_register_return_value (struct gdbarch *gdbarch, struct type *type,
			    struct regcache *regcache,
			    gdb_byte *out, const gdb_byte *in)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  int length = TYPE_LENGTH (type);
  int code = TYPE_CODE (type);

  if (code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
    {
      /* Float-like value: left-aligned in f0.  */
      if (in != NULL)
	regcache_cooked_write_part (regcache, S390_F0_REGNUM,
				    0, length, in);
      else
	regcache_cooked_read_part (regcache, S390_F0_REGNUM,
				   0, length, out);
    }
  else if (code == TYPE_CODE_ARRAY)
    {
      /* Vector: left-aligned in v24.  */
      if (in != NULL)
	regcache_cooked_write_part (regcache, S390_V24_REGNUM,
				    0, length, in);
      else
	regcache_cooked_read_part (regcache, S390_V24_REGNUM,
				   0, length, out);
    }
  else if (length <= word_size)
    {
      /* Integer: zero- or sign-extended in r2.  */
      if (out != NULL)
	regcache_cooked_read_part (regcache, S390_R2_REGNUM,
				   word_size - length, length, out);
      else if (TYPE_UNSIGNED (type))
	regcache_cooked_write_unsigned
	  (regcache, S390_R2_REGNUM,
	   extract_unsigned_integer (in, length, byte_order));
      else
	regcache_cooked_write_signed
	  (regcache, S390_R2_REGNUM,
	   extract_signed_integer (in, length, byte_order));
    }
  else if (length == 2 * word_size)
    {
      /* Double word: in r2 and r3.  */
      if (in != NULL)
	{
	  regcache_cooked_write (regcache, S390_R2_REGNUM, in);
	  regcache_cooked_write (regcache, S390_R3_REGNUM,
				 in + word_size);
	}
      else
	{
	  regcache_cooked_read (regcache, S390_R2_REGNUM, out);
	  regcache_cooked_read (regcache, S390_R3_REGNUM,
				out + word_size);
	}
    }
  else
    internal_error (__FILE__, __LINE__, _("invalid return type"));
}


/* Implement the 'return_value' gdbarch method.  */

static enum return_value_convention
s390_return_value (struct gdbarch *gdbarch, struct value *function,
		   struct type *type, struct regcache *regcache,
		   gdb_byte *out, const gdb_byte *in)
{
  enum return_value_convention rvc;

  type = check_typedef (type);

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_COMPLEX:
      rvc = RETURN_VALUE_STRUCT_CONVENTION;
      break;
    case TYPE_CODE_ARRAY:
      rvc = (gdbarch_tdep (gdbarch)->vector_abi == S390_VECTOR_ABI_128
	     && TYPE_LENGTH (type) <= 16 && TYPE_VECTOR (type))
	? RETURN_VALUE_REGISTER_CONVENTION
	: RETURN_VALUE_STRUCT_CONVENTION;
      break;
    default:
      rvc = TYPE_LENGTH (type) <= 8
	? RETURN_VALUE_REGISTER_CONVENTION
	: RETURN_VALUE_STRUCT_CONVENTION;
    }

  if (in != NULL || out != NULL)
    {
      if (rvc == RETURN_VALUE_REGISTER_CONVENTION)
	s390_register_return_value (gdbarch, type, regcache, out, in);
      else if (in != NULL)
	error (_("Cannot set function return value."));
      else
	error (_("Function return value unknown."));
    }

  return rvc;
}


/* Breakpoints.  */

static const gdb_byte *
s390_breakpoint_from_pc (struct gdbarch *gdbarch,
			 CORE_ADDR *pcptr, int *lenptr)
{
  static const gdb_byte breakpoint[] = { 0x0, 0x1 };

  *lenptr = sizeof (breakpoint);
  return breakpoint;
}


/* Address handling.  */

static CORE_ADDR
s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return addr & 0x7fffffff;
}

static int
s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
{
  if (byte_size == 4)
    return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
  else
    return 0;
}

static const char *
s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
{
  if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
    return "mode32";
  else
    return NULL;
}

static int
s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
				       const char *name,
				       int *type_flags_ptr)
{
  if (strcmp (name, "mode32") == 0)
    {
      *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
      return 1;
    }
  else
    return 0;
}

/* Implement gdbarch_gcc_target_options.  GCC does not know "-m32" or
   "-mcmodel=large".  */

static char *
s390_gcc_target_options (struct gdbarch *gdbarch)
{
  return xstrdup (gdbarch_ptr_bit (gdbarch) == 64 ? "-m64" : "-m31");
}

/* Implement gdbarch_gnu_triplet_regexp.  Target triplets are "s390-*"
   for 31-bit and "s390x-*" for 64-bit, while the BFD arch name is
   always "s390".  Note that an s390x compiler supports "-m31" as
   well.  */

static const char *
s390_gnu_triplet_regexp (struct gdbarch *gdbarch)
{
  return "s390x?";
}

/* Implementation of `gdbarch_stap_is_single_operand', as defined in
   gdbarch.h.  */

static int
s390_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
{
  return ((isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement
							  or indirection.  */
	  || *s == '%' /* Register access.  */
	  || isdigit (*s)); /* Literal number.  */
}

/* Set up gdbarch struct.  */

static struct gdbarch *
s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  const struct target_desc *tdesc = info.target_desc;
  struct tdesc_arch_data *tdesc_data = NULL;
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int tdep_abi;
  enum s390_vector_abi_kind vector_abi;
  int have_upper = 0;
  int have_linux_v1 = 0;
  int have_linux_v2 = 0;
  int have_tdb = 0;
  int have_vx = 0;
  int first_pseudo_reg, last_pseudo_reg;
  static const char *const stap_register_prefixes[] = { "%", NULL };
  static const char *const stap_register_indirection_prefixes[] = { "(",
								    NULL };
  static const char *const stap_register_indirection_suffixes[] = { ")",
								    NULL };

  /* Default ABI and register size.  */
  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_s390_31:
      tdep_abi = ABI_LINUX_S390;
      break;

    case bfd_mach_s390_64:
      tdep_abi = ABI_LINUX_ZSERIES;
      break;

    default:
      return NULL;
    }

  /* Use default target description if none provided by the target.  */
  if (!tdesc_has_registers (tdesc))
    {
      if (tdep_abi == ABI_LINUX_S390)
	tdesc = tdesc_s390_linux32;
      else
	tdesc = tdesc_s390x_linux64;
    }

  /* Check any target description for validity.  */
  if (tdesc_has_registers (tdesc))
    {
      static const char *const gprs[] = {
	"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
      };
      static const char *const fprs[] = {
	"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
	"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
      };
      static const char *const acrs[] = {
	"acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
	"acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
      };
      static const char *const gprs_lower[] = {
	"r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
	"r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
      };
      static const char *const gprs_upper[] = {
	"r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
	"r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
      };
      static const char *const tdb_regs[] = {
	"tdb0", "tac", "tct", "atia",
	"tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
	"tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"
      };
      static const char *const vxrs_low[] = {
	"v0l", "v1l", "v2l", "v3l", "v4l", "v5l", "v6l", "v7l", "v8l",
	"v9l", "v10l", "v11l", "v12l", "v13l", "v14l", "v15l",
      };
      static const char *const vxrs_high[] = {
	"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24",
	"v25", "v26", "v27", "v28", "v29", "v30", "v31",
      };
      const struct tdesc_feature *feature;
      int i, valid_p = 1;

      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
      if (feature == NULL)
	return NULL;

      tdesc_data = tdesc_data_alloc ();

      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  S390_PSWM_REGNUM, "pswm");
      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  S390_PSWA_REGNUM, "pswa");

      if (tdesc_unnumbered_register (feature, "r0"))
	{
	  for (i = 0; i < 16; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						S390_R0_REGNUM + i, gprs[i]);
	}
      else
	{
	  have_upper = 1;

	  for (i = 0; i < 16; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						S390_R0_REGNUM + i,
						gprs_lower[i]);
	  for (i = 0; i < 16; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						S390_R0_UPPER_REGNUM + i,
						gprs_upper[i]);
	}

      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
      if (feature == NULL)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      valid_p &= tdesc_numbered_register (feature, tdesc_data,
					  S390_FPC_REGNUM, "fpc");
      for (i = 0; i < 16; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data,
					    S390_F0_REGNUM + i, fprs[i]);

      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
      if (feature == NULL)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}

      for (i = 0; i < 16; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data,
					    S390_A0_REGNUM + i, acrs[i]);

      /* Optional GNU/Linux-specific "registers".  */
      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux");
      if (feature)
	{
	  tdesc_numbered_register (feature, tdesc_data,
				   S390_ORIG_R2_REGNUM, "orig_r2");

	  if (tdesc_numbered_register (feature, tdesc_data,
				       S390_LAST_BREAK_REGNUM, "last_break"))
	    have_linux_v1 = 1;

	  if (tdesc_numbered_register (feature, tdesc_data,
				       S390_SYSTEM_CALL_REGNUM, "system_call"))
	    have_linux_v2 = 1;

	  if (have_linux_v2 > have_linux_v1)
	    valid_p = 0;
	}

      /* Transaction diagnostic block.  */
      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.tdb");
      if (feature)
	{
	  for (i = 0; i < ARRAY_SIZE (tdb_regs); i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						S390_TDB_DWORD0_REGNUM + i,
						tdb_regs[i]);
	  have_tdb = 1;
	}

      /* Vector registers.  */
      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.vx");
      if (feature)
	{
	  for (i = 0; i < 16; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						S390_V0_LOWER_REGNUM + i,
						vxrs_low[i]);
	  for (i = 0; i < 16; i++)
	    valid_p &= tdesc_numbered_register (feature, tdesc_data,
						S390_V16_REGNUM + i,
						vxrs_high[i]);
	  have_vx = 1;
	}

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}
    }

  /* Determine vector ABI.  */
  vector_abi = S390_VECTOR_ABI_NONE;
#ifdef HAVE_ELF
  if (have_vx
      && info.abfd != NULL
      && info.abfd->format == bfd_object
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
      && bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
				   Tag_GNU_S390_ABI_Vector) == 2)
    vector_abi = S390_VECTOR_ABI_128;
#endif

  /* Find a candidate among extant architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      tdep = gdbarch_tdep (arches->gdbarch);
      if (!tdep)
	continue;
      if (tdep->abi != tdep_abi)
	continue;
      if (tdep->vector_abi != vector_abi)
	continue;
      if ((tdep->gpr_full_regnum != -1) != have_upper)
	continue;
      if (tdesc_data != NULL)
	tdesc_data_cleanup (tdesc_data);
      return arches->gdbarch;
    }

  /* Otherwise create a new gdbarch for the specified machine type.  */
  tdep = XCNEW (struct gdbarch_tdep);
  tdep->abi = tdep_abi;
  tdep->vector_abi = vector_abi;
  tdep->have_linux_v1 = have_linux_v1;
  tdep->have_linux_v2 = have_linux_v2;
  tdep->have_tdb = have_tdb;
  gdbarch = gdbarch_alloc (&info, tdep);

  set_gdbarch_believe_pcc_promotion (gdbarch, 0);
  set_gdbarch_char_signed (gdbarch, 0);

  /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
     We can safely let them default to 128-bit, since the debug info
     will give the size of type actually used in each case.  */
  set_gdbarch_long_double_bit (gdbarch, 128);
  set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);

  /* Amount PC must be decremented by after a breakpoint.  This is
     often the number of bytes returned by gdbarch_breakpoint_from_pc but not
     always.  */
  set_gdbarch_decr_pc_after_break (gdbarch, 2);
  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
  set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
  set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);

  set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
  set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
  set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
  set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
  set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
  set_gdbarch_iterate_over_regset_sections (gdbarch,
					    s390_iterate_over_regset_sections);
  set_gdbarch_cannot_store_register (gdbarch, s390_cannot_store_register);
  set_gdbarch_write_pc (gdbarch, s390_write_pc);
  set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
  set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
  set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
  set_tdesc_pseudo_register_reggroup_p (gdbarch,
					s390_pseudo_register_reggroup_p);
  tdesc_use_registers (gdbarch, tdesc, tdesc_data);
  set_gdbarch_register_name (gdbarch, s390_register_name);

  /* Assign pseudo register numbers.  */
  first_pseudo_reg = gdbarch_num_regs (gdbarch);
  last_pseudo_reg = first_pseudo_reg;
  tdep->gpr_full_regnum = -1;
  if (have_upper)
    {
      tdep->gpr_full_regnum = last_pseudo_reg;
      last_pseudo_reg += 16;
    }
  tdep->v0_full_regnum = -1;
  if (have_vx)
    {
      tdep->v0_full_regnum = last_pseudo_reg;
      last_pseudo_reg += 16;
    }
  tdep->pc_regnum = last_pseudo_reg++;
  tdep->cc_regnum = last_pseudo_reg++;
  set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
  set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);

  /* Inferior function calls.  */
  set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
  set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
  set_gdbarch_frame_align (gdbarch, s390_frame_align);
  set_gdbarch_return_value (gdbarch, s390_return_value);

  /* Syscall handling.  */
  set_gdbarch_get_syscall_number (gdbarch, s390_linux_get_syscall_number);

  /* Frame handling.  */
  dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
  dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
  dwarf2_append_unwinders (gdbarch);
  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
  frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
  frame_base_set_default (gdbarch, &s390_frame_base);
  set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);

  /* Displaced stepping.  */
  set_gdbarch_displaced_step_copy_insn (gdbarch,
					simple_displaced_step_copy_insn);
  set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
  set_gdbarch_displaced_step_free_closure (gdbarch,
					   simple_displaced_step_free_closure);
  set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
  set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);

  /* Note that GNU/Linux is the only OS supported on this
     platform.  */
  linux_init_abi (info, gdbarch);

  switch (tdep->abi)
    {
    case ABI_LINUX_S390:
      set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
      set_solib_svr4_fetch_link_map_offsets
	(gdbarch, svr4_ilp32_fetch_link_map_offsets);

      set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_S390);
      break;

    case ABI_LINUX_ZSERIES:
      set_gdbarch_long_bit (gdbarch, 64);
      set_gdbarch_long_long_bit (gdbarch, 64);
      set_gdbarch_ptr_bit (gdbarch, 64);
      set_solib_svr4_fetch_link_map_offsets
	(gdbarch, svr4_lp64_fetch_link_map_offsets);
      set_gdbarch_address_class_type_flags (gdbarch,
					    s390_address_class_type_flags);
      set_gdbarch_address_class_type_flags_to_name (gdbarch,
						    s390_address_class_type_flags_to_name);
      set_gdbarch_address_class_name_to_type_flags (gdbarch,
						    s390_address_class_name_to_type_flags);
      set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_S390X);
      break;
    }

  set_gdbarch_print_insn (gdbarch, print_insn_s390);

  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);

  /* Enable TLS support.  */
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
					     svr4_fetch_objfile_link_map);

  set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);

  /* SystemTap functions.  */
  set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
  set_gdbarch_stap_register_indirection_prefixes (gdbarch,
					  stap_register_indirection_prefixes);
  set_gdbarch_stap_register_indirection_suffixes (gdbarch,
					  stap_register_indirection_suffixes);
  set_gdbarch_stap_is_single_operand (gdbarch, s390_stap_is_single_operand);
  set_gdbarch_gcc_target_options (gdbarch, s390_gcc_target_options);
  set_gdbarch_gnu_triplet_regexp (gdbarch, s390_gnu_triplet_regexp);

  return gdbarch;
}


extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */

void
_initialize_s390_tdep (void)
{
  /* Hook us into the gdbarch mechanism.  */
  register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);

  /* Initialize the GNU/Linux target descriptions.  */
  initialize_tdesc_s390_linux32 ();
  initialize_tdesc_s390_linux32v1 ();
  initialize_tdesc_s390_linux32v2 ();
  initialize_tdesc_s390_linux64 ();
  initialize_tdesc_s390_linux64v1 ();
  initialize_tdesc_s390_linux64v2 ();
  initialize_tdesc_s390_te_linux64 ();
  initialize_tdesc_s390_vx_linux64 ();
  initialize_tdesc_s390_tevx_linux64 ();
  initialize_tdesc_s390x_linux64 ();
  initialize_tdesc_s390x_linux64v1 ();
  initialize_tdesc_s390x_linux64v2 ();
  initialize_tdesc_s390x_te_linux64 ();
  initialize_tdesc_s390x_vx_linux64 ();
  initialize_tdesc_s390x_tevx_linux64 ();
}