aboutsummaryrefslogtreecommitdiff
path: root/gdb/rs6000-xdep.c
blob: 7f14dfa90939b6f91047aa74a85737befa293b92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/* IBM RS/6000 host-dependent code for GDB, the GNU debugger.
   Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include <stdio.h>
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"

#include <sys/param.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <fcntl.h>

#include <sys/ptrace.h>
#include <sys/reg.h>

#include <a.out.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/core.h>
#include <sys/ldr.h>
#include <sys/utsname.h>

extern int errno;
extern int attach_flag;

/* Conversion from gdb-to-system special purpose register numbers.. */

static int special_regs[] = {
  IAR,				/* PC_REGNUM	*/
  MSR,				/* PS_REGNUM	*/
  CR,				/* CR_REGNUM	*/
  LR,				/* LR_REGNUM	*/
  CTR,				/* CTR_REGNUM	*/
  XER,				/* XER_REGNUM   */
  MQ				/* MQ_REGNUM	*/
};


/* Nonzero if we just simulated a single step break. */
extern int one_stepped;

extern char register_valid[];


void
fetch_inferior_registers (regno)
  int regno;
{
  int ii;
  extern char registers[];

  if (regno < 0) {			/* for all registers */

    /* read 32 general purpose registers. */

    for (ii=0; ii < 32; ++ii)
      *(int*)&registers[REGISTER_BYTE (ii)] = 
	ptrace (PT_READ_GPR, inferior_pid, ii, 0, 0);

    /* read general purpose floating point registers. */

    for (ii=0; ii < 32; ++ii)
      ptrace (PT_READ_FPR, inferior_pid, 
	(int*)&registers [REGISTER_BYTE (FP0_REGNUM+ii)], FPR0+ii, 0);

    /* read special registers. */
    for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii)
      *(int*)&registers[REGISTER_BYTE (FIRST_SP_REGNUM+ii)] = 
	ptrace (PT_READ_GPR, inferior_pid, special_regs[ii], 0, 0);

    registers_fetched ();
    return;
  }

  /* else an individual register is addressed. */

  else if (regno < FP0_REGNUM) {		/* a GPR */
    *(int*)&registers[REGISTER_BYTE (regno)] =
	ptrace (PT_READ_GPR, inferior_pid, regno, 0, 0);
  }
  else if (regno <= FPLAST_REGNUM) {		/* a FPR */
    ptrace (PT_READ_FPR, inferior_pid,
	(int*)&registers [REGISTER_BYTE (regno)], (regno-FP0_REGNUM+FPR0), 0);
  }
  else if (regno <= LAST_SP_REGNUM) {		/* a special register */
    *(int*)&registers[REGISTER_BYTE (regno)] =
	ptrace (PT_READ_GPR, inferior_pid,
		special_regs[regno-FIRST_SP_REGNUM], 0, 0);
  }
  else
    fprintf (stderr, "gdb error: register no %d not implemented.\n", regno);

  register_valid [regno] = 1;
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

void
store_inferior_registers (regno)
     int regno;
{
  extern char registers[];

  errno = 0;

  if (regno == -1) {			/* for all registers..	*/
      int ii;

       /* execute one dummy instruction (which is a breakpoint) in inferior
          process. So give kernel a chance to do internal house keeping.
	  Otherwise the following ptrace(2) calls will mess up user stack
	  since kernel will get confused about the bottom of the stack (%sp) */

       exec_one_dummy_insn ();

      /* write general purpose registers first! */
      for ( ii=GPR0; ii<=GPR31; ++ii) {
	ptrace (PT_WRITE_GPR, inferior_pid, ii,
		*(int*)&registers[REGISTER_BYTE (ii)], 0);
	if ( errno ) { 
	  perror ("ptrace write_gpr"); errno = 0;
	}
      }

      /* write floating point registers now. */
      for ( ii=0; ii < 32; ++ii) {
	ptrace (PT_WRITE_FPR, inferior_pid, 
		  (int*)&registers[REGISTER_BYTE (FP0_REGNUM+ii)], FPR0+ii, 0);
        if ( errno ) {
	  perror ("ptrace write_fpr"); errno = 0;
        }
      }

      /* write special registers. */
      for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii) {
        ptrace (PT_WRITE_GPR, inferior_pid, special_regs[ii],
		 *(int*)&registers[REGISTER_BYTE (FIRST_SP_REGNUM+ii)], 0);
	if ( errno ) {
	  perror ("ptrace write_gpr"); errno = 0;
	}
      }
  }

  /* else, a specific register number is given... */

  else if (regno < FP0_REGNUM) {		/* a GPR */

    ptrace (PT_WRITE_GPR, inferior_pid, regno,
		*(int*)&registers[REGISTER_BYTE (regno)], 0);
  }

  else if (regno <= FPLAST_REGNUM) {		/* a FPR */
    ptrace (PT_WRITE_FPR, inferior_pid, 
	(int*)&registers[REGISTER_BYTE (regno)], regno-FP0_REGNUM+FPR0, 0);
  }

  else if (regno <= LAST_SP_REGNUM) {		/* a special register */

    ptrace (PT_WRITE_GPR, inferior_pid, special_regs [regno-FIRST_SP_REGNUM],
		*(int*)&registers[REGISTER_BYTE (regno)], 0);
  }

  else
    fprintf (stderr, "Gdb error: register no %d not implemented.\n", regno);

  if ( errno ) {
    perror ("ptrace write");  errno = 0;
  }
}

void
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
     char *core_reg_sect;
     unsigned core_reg_size;
     int which;
     unsigned int reg_addr;	/* Unused in this version */
{
  /* fetch GPRs and special registers from the first register section
     in core bfd. */
  if (which == 0) {

    /* copy GPRs first. */
    bcopy (core_reg_sect, registers, 32 * 4);

    /* gdb's internal register template and bfd's register section layout
       should share a common include file. FIXMEmgo */
    /* then comes special registes. They are supposed to be in the same
       order in gdb template and bfd `.reg' section. */
    core_reg_sect += (32 * 4);
    bcopy (core_reg_sect, &registers [REGISTER_BYTE (FIRST_SP_REGNUM)],
    			(LAST_SP_REGNUM - FIRST_SP_REGNUM + 1) * 4);
  }

  /* fetch floating point registers from register section 2 in core bfd. */
  else if (which == 2)
    bcopy (core_reg_sect, &registers [REGISTER_BYTE (FP0_REGNUM)], 32 * 8);

  else
    fprintf (stderr, "Gdb error: unknown parameter to fetch_core_registers().\n");
}


frameless_function_invocation (fi)
struct frame_info *fi;
{
  CORE_ADDR func_start;
  int frameless, dummy;

  func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;

  /* If we failed to find the start of the function, it is a mistake
     to inspect the instructions. */

  if (!func_start)
    return 0;

  function_frame_info (func_start, &frameless, &dummy, &dummy, &dummy);
  return frameless;
}


/* aixcoff_relocate_symtab -	hook for symbol table relocation.
   also reads shared libraries.. */

aixcoff_relocate_symtab (pid)
unsigned int pid;
{
#define	MAX_LOAD_SEGS 64		/* maximum number of load segments */

    struct ld_info *ldi;
    int temp;

    ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));

    /* According to my humble theory, aixcoff has some timing problems and
       when the user stack grows, kernel doesn't update stack info in time
       and ptrace calls step on user stack. That is why we sleep here a little,
       and give kernel to update its internals. */

    usleep (36000);

    errno = 0;
    ptrace(PT_LDINFO, pid, ldi, MAX_LOAD_SEGS * sizeof(*ldi), ldi);
    if (errno) {
      perror_with_name ("ptrace ldinfo");
      return 0;
    }

    vmap_ldinfo(ldi);

   do {
     add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
    } while (ldi->ldinfo_next
	     && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));

#if 0
  /* Now that we've jumbled things around, re-sort them.  */
  sort_minimal_symbols ();
#endif

  /* relocate the exec and core sections as well. */
  vmap_exec ();
}


/* Keep an array of load segment information and their TOC table addresses.
   This info will be useful when calling a shared library function by hand. */
   
typedef struct {
  unsigned long textorg, dataorg, toc_offset;
} LoadInfo;

#define	LOADINFOLEN	10

static	LoadInfo *loadInfo = NULL;
static	int	loadInfoLen = 0;
static	int	loadInfoTocIndex = 0;
int	aix_loadInfoTextIndex = 0;


xcoff_init_loadinfo ()
{
  loadInfoTocIndex = 0;
  aix_loadInfoTextIndex = 0;

  if (loadInfoLen == 0) {
    loadInfo = (void*) xmalloc (sizeof (LoadInfo) * LOADINFOLEN);
    loadInfoLen = LOADINFOLEN;
  }
}


free_loadinfo ()
{
  if (loadInfo)
    free (loadInfo);
  loadInfo = NULL;
  loadInfoLen = 0;
  loadInfoTocIndex = 0;
  aix_loadInfoTextIndex = 0;
}


xcoff_add_toc_to_loadinfo (unsigned long tocaddr)
{
  while (loadInfoTocIndex >= loadInfoLen) {
    loadInfoLen += LOADINFOLEN;
    loadInfo = (void*) xrealloc (loadInfo, sizeof(LoadInfo) * loadInfoLen);
  }
  loadInfo [loadInfoTocIndex++].toc_offset = tocaddr;
}


add_text_to_loadinfo (unsigned long textaddr, unsigned long dataaddr)
{
  while (aix_loadInfoTextIndex >= loadInfoLen) {
    loadInfoLen += LOADINFOLEN;
    loadInfo = (void*) xrealloc (loadInfo, sizeof(LoadInfo) * loadInfoLen);
  }
  loadInfo [aix_loadInfoTextIndex].textorg = textaddr;
  loadInfo [aix_loadInfoTextIndex].dataorg = dataaddr;
  ++aix_loadInfoTextIndex;
}


unsigned long
find_toc_address (unsigned long pc)
{
  int ii, toc_entry, tocbase = 0;

  for (ii=0; ii < aix_loadInfoTextIndex; ++ii)
    if (pc > loadInfo [ii].textorg && loadInfo [ii].textorg > tocbase) {
      toc_entry = ii;
      tocbase =  loadInfo [ii].textorg;
    }

  return loadInfo [toc_entry].dataorg + loadInfo [toc_entry].toc_offset;
}


/* execute one dummy breakpoint instruction. This way we give kernel
   a chance to do some housekeeping and update inferior's internal data,
   including u_area. */

exec_one_dummy_insn ()
{
#define	DUMMY_INSN_ADDR	(TEXT_SEGMENT_BASE)+0x200

  unsigned long shadow;
  unsigned int status, pid;

  /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We assume that
     this address will never be executed again by the real code. */

  target_insert_breakpoint (DUMMY_INSN_ADDR, &shadow);

  errno = 0;
  ptrace (PT_CONTINUE, inferior_pid, DUMMY_INSN_ADDR, 0, 0);
  if (errno)
    perror ("pt_continue");

  do {
    pid = wait (&status);
  } while (pid != inferior_pid);
    
  target_remove_breakpoint (DUMMY_INSN_ADDR, &shadow);
}


/* Return the number of initial trap signals we need to ignore once the inferior
   process starts running. This will be `2' for aix-3.1, `3' for aix-3.2 */

int
aix_starting_inferior_traps ()
{
  struct utsname unamebuf;

  if (uname (&unamebuf) == -1)
    fatal ("uname(3) failed.");

  /* Assume the future versions will behave like 3.2 and return '3' for
     anything other than 3.1x. The extra trap in 3.2 is the "trap after the
     program is loaded" signal. */
  
  if (unamebuf.version[0] == '3' && unamebuf.release[0] == '1')
    return 2;
  else
    return 3;
}