aboutsummaryrefslogtreecommitdiff
path: root/gdb/rs6000-tdep.c
blob: e90222fbdc8b3c27217c9e71121cae3c68ce9ea4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
/* Target-dependent code for GDB, the GNU debugger.
   Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include <stdio.h>

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"

#include <sys/param.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <fcntl.h>

#include <sys/ptrace.h>
#include <sys/reg.h>

#include <a.out.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/core.h>

extern int errno;
extern int attach_flag;

/* Nonzero if we just simulated a single step break. */
int one_stepped;

/* Breakpoint shadows for the single step instructions will be kept here. */

static struct sstep_breaks {
	int address;
	int data;
} stepBreaks[2];


/*
 * Calculate the destination of a branch/jump.  Return -1 if not a branch.
 */
static int
branch_dest (opcode, instr, pc, safety)
 int opcode, instr, pc, safety;
{
  register long offset;
  unsigned dest;
  int immediate;
  int absolute;
  int ext_op;

  absolute = (int) ((instr >> 1) & 1);

  switch (opcode) {
     case 18	:
	immediate = ((instr & ~3) << 6) >> 6;	/* br unconditionl */

     case 16	:  
	if (opcode != 18)		        /* br conditional */
	  immediate = ((instr & ~3) << 16) >> 16;
	if (absolute)
	  dest = immediate;	
	else
	  dest = pc + immediate;
	break;

      case 19	:
	ext_op = (instr>>1) & 0x3ff;

	if (ext_op == 16)			/* br conditional register */
	  dest = read_register (LR_REGNUM) & ~3;

	else if (ext_op == 528)			/* br cond to count reg */
	  dest = read_register (CTR_REGNUM) & ~3;

	else return -1; 
	break;
	
       default: return -1;
  }
  return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
}



/* AIX does not support PT_STEP. Simulate it. */

int
single_step (signal)
int signal;
{
#define	INSNLEN(OPCODE)	 4

  static char breakp[] = BREAKPOINT;
  int ii, insn, ret, loc;
  int breaks[2], opcode;

  if (!one_stepped) {
    extern CORE_ADDR text_start;
    loc = read_pc ();

    ret = read_memory (loc, &insn, sizeof (int));
    if (ret)
      printf ("Error in single_step()!!\n");

    breaks[0] = loc + INSNLEN(insn);
    opcode = insn >> 26;
    breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);

    /* Don't put two breakpoints on the same address. */
    if (breaks[1] == breaks[0])
      breaks[1] = -1;

    stepBreaks[1].address = -1;

    for (ii=0; ii < 2; ++ii) {

      /* ignore invalid breakpoint. */
      if ( breaks[ii] == -1)
        continue;

      read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int));

      ret = write_memory (breaks[ii], breakp, sizeof(int));
      stepBreaks[ii].address = breaks[ii];
    }  

    one_stepped = 1;
    ptrace (PT_CONTINUE, inferior_pid, 1, signal, 0);
  }
  else {

    /* remove step breakpoints. */
    for (ii=0; ii < 2; ++ii)
      if (stepBreaks[ii].address != -1)
        write_memory 
           (stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int));

    one_stepped = 0;
  }
  errno = 0;
  return 1;
}


/* return pc value after skipping a function prologue. */

skip_prologue (pc)
int pc;
{
  unsigned int tmp;
  unsigned int op;

  if (target_read_memory (pc, (char *)&op, sizeof (op)))
    return pc;			/* Can't access it -- assume no prologue. */
  SWAP_TARGET_AND_HOST (&op, sizeof (op));

  /* Assume that subsequent fetches can fail with low probability.  */

  if (op == 0x7c0802a6) {		/* mflr r0 */
    pc += 4;
    op = read_memory_integer (pc, 4);
  }

  if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
    pc += 4;
    op = read_memory_integer (pc, 4);
  }

  if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
    pc += 4;
    op = read_memory_integer (pc, 4);
  }

#if 0
  if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
    pc += 4;				 /* store floating register double */
    op = read_memory_integer (pc, 4);
  }
#endif

  if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
    pc += 4;
    op = read_memory_integer (pc, 4);
  }

  while (((tmp = op >> 16) == 0x9001) || /* st   r0, NUM(r1) */
	 (tmp == 0x9421) ||		/* stu  r1, NUM(r1) */
	 (op == 0x93e1fffc)) 		/* st   r31,-4(r1) */
  {
    pc += 4;
    op = read_memory_integer (pc, 4);
  }

  while ((tmp = (op >> 22)) == 0x20f) {	/* l	r31, ... or */
    pc += 4;				/* l	r30, ...    */
    op = read_memory_integer (pc, 4);
  }

   /* store parameters into stack */
  while(
	(op & 0xfc1f0000) == 0xd8010000 || 	/* stfd Rx,NUM(r1) */
	(op & 0xfc1f0000) == 0x90010000 ||	/* st r?, NUM(r1)  */
	(op & 0xfc000000) == 0xfc000000 ||	/* frsp, fp?, .. */
	(op & 0xd0000000) == 0xd0000000)	/* stfs, fp?, .. */
    {
      pc += 4;					/* store fpr double */
      op = read_memory_integer (pc, 4);
    }

  if (op == 0x603f0000) {			/* oril r31, r1, 0x0 */
    pc += 4;					/* this happens if r31 is used as */
    op = read_memory_integer (pc, 4);		/* frame ptr. (gcc does that)	  */

    tmp = 0;
    while ((op >> 16) == (0x907f + tmp)) {	/* st r3, NUM(r31) */
      pc += 4;					/* st r4, NUM(r31), ... */
      op = read_memory_integer (pc, 4);
      tmp += 0x20;
    }
  }
  return pc;
}


/* text start and end addresses in virtual memory. */

CORE_ADDR text_start;
CORE_ADDR text_end;


/*************************************************************************
  Support for creating pushind a dummy frame into the stack, and popping
  frames, etc. 
*************************************************************************/

/* The total size of dummy frame is 436, which is;

	32 gpr's	- 128 bytes
	32 fpr's	- 256   "
	7  the rest	- 28    "
	and 24 extra bytes for the callee's link area. The last 24 bytes
	for the link area might not be necessary, since it will be taken
	care of by push_arguments(). */

#define DUMMY_FRAME_SIZE 436

#define	DUMMY_FRAME_ADDR_SIZE 10

/* Make sure you initialize these in somewhere, in case gdb gives up what it
   was debugging and starts debugging something else. FIXMEibm */

static int dummy_frame_count = 0;
static int dummy_frame_size = 0;
static CORE_ADDR *dummy_frame_addr = 0;

extern int stop_stack_dummy;

/* push a dummy frame into stack, save all register. Currently we are saving
   only gpr's and fpr's, which is not good enough! FIXMEmgo */
   
push_dummy_frame ()
{
  int sp, pc;				/* stack pointer and link register */
  int ii;

  if (dummy_frame_count >= dummy_frame_size) {
    dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
    if (dummy_frame_addr)
      dummy_frame_addr = (CORE_ADDR*) xrealloc 
        (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
    else
      dummy_frame_addr = (CORE_ADDR*) 
	xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
  }
  
  sp = read_register(SP_REGNUM);
  pc = read_register(PC_REGNUM);  

  dummy_frame_addr [dummy_frame_count++] = sp;

  /* Be careful! If the stack pointer is not decremented first, then kernel 
     thinks he is free to use the sapce underneath it. And kernel actually 
     uses that area for IPC purposes when executing ptrace(2) calls. So 
     before writing register values into the new frame, decrement and update
     %sp first in order to secure your frame. */

  write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);

  /* gdb relies on the state of current_frame. We'd better update it,
     otherwise things like do_registers_info() wouldn't work properly! */

  flush_cached_frames ();
  set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));

  /* save program counter in link register's space. */
  write_memory (sp+8, &pc, 4);

  /* save full floating point registers here. They will be from F14..F31
     for know. I am not sure if we need to save everything here! */

  /* fpr's, f0..f31 */
  for (ii = 0; ii < 32; ++ii)
    write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);

  /* gpr's r0..r31 */
  for (ii=1; ii <=32; ++ii)
    write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);

  /* so far, 32*2 + 32 words = 384 bytes have been written. 
     7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */

  for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
    write_memory (sp-384-(ii*4), 
	       &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
  }

  /* Save sp or so called back chain right here. */
  write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
  sp -= DUMMY_FRAME_SIZE;

  /* And finally, this is the back chain. */
  write_memory (sp+8, &pc, 4);
}


/* Pop a dummy frame.

   In rs6000 when we push a dummy frame, we save all of the registers. This
   is usually done before user calls a function explicitly.

   After a dummy frame is pushed, some instructions are copied into stack,
   and stack pointer is decremented even more.  Since we don't have a frame
   pointer to get back to the parent frame of the dummy, we start having
   trouble poping it.  Therefore, we keep a dummy frame stack, keeping
   addresses of dummy frames as such.  When poping happens and when we
   detect that was a dummy frame, we pop it back to its parent by using
   dummy frame stack (`dummy_frame_addr' array). 
 */
   
pop_dummy_frame ()
{
  CORE_ADDR sp, pc;
  int ii;
  sp = dummy_frame_addr [--dummy_frame_count];

  /* restore all fpr's. */
  for (ii = 1; ii <= 32; ++ii)
    read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);

  /* restore all gpr's */
  for (ii=1; ii <= 32; ++ii) {
    read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
  }

  /* restore the rest of the registers. */
  for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
    read_memory (sp-384-(ii*4),
    		&registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);

  read_memory (sp-(DUMMY_FRAME_SIZE-8), 
  				&registers [REGISTER_BYTE(PC_REGNUM)], 4);

  /* when a dummy frame was being pushed, we had to decrement %sp first, in 
     order to secure astack space. Thus, saved %sp (or %r1) value, is not the
     one we should restore. Change it with the one we need. */

  *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;

  /* Now we can restore all registers. */

  store_inferior_registers (-1);
  pc = read_pc ();
  flush_cached_frames ();
  set_current_frame (create_new_frame (sp, pc));
}


/* pop the innermost frame, go back to the caller. */

pop_frame ()
{
  int pc, lr, sp, prev_sp;		/* %pc, %lr, %sp */
  FRAME fr = get_current_frame ();
  int offset = 0;
  int frameless = 0;			/* TRUE if function is frameless */
  int addr, ii;
  int saved_gpr, saved_fpr;		/* # of saved gpr's and fpr's */

  pc = read_pc ();
  sp = FRAME_FP (fr);

  if (stop_stack_dummy && dummy_frame_count) {
    pop_dummy_frame ();
    return;
  }

  /* figure out previous %pc value. If the function is frameless, it is 
     still in the link register, otherwise walk the frames and retrieve the
     saved %pc value in the previous frame. */

  addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
  function_frame_info (addr, &frameless, &offset, &saved_gpr, &saved_fpr);

  read_memory (sp, &prev_sp, 4);
  if (frameless)
    lr = read_register (LR_REGNUM);
  else
    read_memory (prev_sp+8, &lr, 4);

  /* reset %pc value. */
  write_register (PC_REGNUM, lr);

  /* reset register values if any was saved earlier. */
  addr = prev_sp - offset;

  if (saved_gpr != -1)
    for (ii=saved_gpr; ii <= 31; ++ii) {
      read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
      addr += sizeof (int);
    }

  if (saved_fpr != -1)
    for (ii=saved_fpr; ii <= 31; ++ii) {
      read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
      addr += 8;
  }

  write_register (SP_REGNUM, prev_sp);
  store_inferior_registers (-1);
  flush_cached_frames ();
  set_current_frame (create_new_frame (prev_sp, lr));
}


/* fixup the call sequence of a dummy function, with the real function address.
   its argumets will be passed by gdb. */

fix_call_dummy(dummyname, pc, fun, nargs, type)
  char *dummyname;
  int pc;
  int fun;
  int nargs;					/* not used */
  int type;					/* not used */

{
#define	TOC_ADDR_OFFSET		20
#define	TARGET_ADDR_OFFSET	28

  int ii;
  unsigned long target_addr;
  unsigned long tocvalue;

  target_addr = fun;
  tocvalue = find_toc_address (target_addr);

  ii  = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
  ii = (ii & 0xffff0000) | (tocvalue >> 16);
  *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;

  ii  = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
  ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
  *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;

  ii  = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
  ii = (ii & 0xffff0000) | (target_addr >> 16);
  *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;

  ii  = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
  ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
  *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
}



/* return information about a function frame.
    - frameless is TRUE, if function does not save %pc value in its frame.
    - offset is the number of bytes used in the frame to save registers.
    - saved_gpr is the number of the first saved gpr.
    - saved_fpr is the number of the first saved fpr.
 */
function_frame_info (pc, frameless, offset, saved_gpr, saved_fpr)
  int pc;
  int *frameless, *offset, *saved_gpr, *saved_fpr;
{
  unsigned int tmp;
  register unsigned int op;

  *offset = 0;
  *saved_gpr = *saved_fpr = -1;

  if (!inferior_pid)
    return;

  op  = read_memory_integer (pc, 4);
  if (op == 0x7c0802a6) {		/* mflr r0 */
    pc += 4;
    op = read_memory_integer (pc, 4);
    *frameless = 0;
  }
  else				/* else, this is a frameless invocation */
    *frameless = 1;


  if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
    pc += 4;
    op = read_memory_integer (pc, 4);
  }

  if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
    pc += 4;
    op = read_memory_integer (pc, 4);
  }

  if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
    pc += 4;				 /* store floating register double */
    op = read_memory_integer (pc, 4);
  }

  if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
    int tmp2;
    *saved_gpr = (op >> 21) & 0x1f;
    tmp2 = op & 0xffff;
    if (tmp2 > 0x7fff)
      tmp2 = 0xffff0000 | tmp2;

    if (tmp2 < 0) {
      tmp2 = tmp2 * -1;
      *saved_fpr = (tmp2 - ((32 - *saved_gpr) * 4)) / 8;
      if ( *saved_fpr > 0)
        *saved_fpr = 32 - *saved_fpr;
      else
        *saved_fpr = -1;
    }
    *offset = tmp2;
  }
}


/* Pass the arguments in either registers, or in the stack. In RS6000, the first
   eight words of the argument list (that might be less than eight parameters if
   some parameters occupy more than one word) are passed in r3..r11 registers.
   float and double parameters are passed in fpr's, in addition to that. Rest of
   the parameters if any are passed in user stack. There might be cases in which
   half of the parameter is copied into registers, the other half is pushed into
   stack.

   If the function is returning a structure, then the return address is passed
   in r3, then the first 7 words of the parametes can be passed in registers,
   starting from r4. */

CORE_ADDR
push_arguments (nargs, args, sp, struct_return, struct_addr)
  int nargs;
  value *args;
  CORE_ADDR sp;
  int struct_return;
  CORE_ADDR struct_addr;
{
  int ii, len;
  int argno;					/* current argument number */
  int argbytes;					/* current argument byte */
  char tmp_buffer [50];
  value arg;
  int f_argno = 0;				/* current floating point argno */

  CORE_ADDR saved_sp, pc;

  if ( dummy_frame_count <= 0)
    printf ("FATAL ERROR -push_arguments()! frame not found!!\n");

  /* The first eight words of ther arguments are passed in registers. Copy
     them appropriately.

     If the function is returning a `struct', then the first word (which 
     will be passed in r3) is used for struct return address. In that
     case we should advance one word and start from r4 register to copy 
     parameters. */

  ii =  struct_return ? 1 : 0;

  for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {

    arg = value_arg_coerce (args[argno]);
    len = TYPE_LENGTH (VALUE_TYPE (arg));

    if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {

      /* floating point arguments are passed in fpr's, as well as gpr's.
         There are 13 fpr's reserved for passing parameters. At this point
         there is no way we would run out of them. */

      if (len > 8)
        printf (
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);

      bcopy (VALUE_CONTENTS (arg), 
         &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
      ++f_argno;
    }

    if (len > 4) {

      /* Argument takes more than one register. */
      while (argbytes < len) {

	*(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
	bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes, 
			&registers[REGISTER_BYTE(ii+3)], 
			(len - argbytes) > 4 ? 4 : len - argbytes);
	++ii, argbytes += 4;

	if (ii >= 8)
	  goto ran_out_of_registers_for_arguments;
      }
      argbytes = 0;
      --ii;
    }
    else {        /* Argument can fit in one register. No problem. */
      *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
      bcopy (VALUE_CONTENTS (arg), &registers[REGISTER_BYTE(ii+3)], len);
    }
    ++argno;
  }

ran_out_of_registers_for_arguments:

  /* location for 8 parameters are always reserved. */
  sp -= 4 * 8;

  /* another six words for back chain, TOC register, link register, etc. */
  sp -= 24;

  /* if there are more arguments, allocate space for them in 
     the stack, then push them starting from the ninth one. */

  if ((argno < nargs) || argbytes) {
    int space = 0, jj;
    value val;

    if (argbytes) {
      space += ((len - argbytes + 3) & -4);
      jj = argno + 1;
    }
    else
      jj = argno;

    for (; jj < nargs; ++jj) {
      val = value_arg_coerce (args[jj]);
      space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
    }

    /* add location required for the rest of the parameters */
    space = (space + 7) & -8;
    sp -= space;

    /* This is another instance we need to be concerned about securing our
	stack space. If we write anything underneath %sp (r1), we might conflict
	with the kernel who thinks he is free to use this area. So, update %sp
	first before doing anything else. */

    write_register (SP_REGNUM, sp);

#if 0
    pc = read_pc ();
    flush_cached_frames ();
    set_current_frame (create_new_frame (sp, pc));
#endif

    /* if the last argument copied into the registers didn't fit there 
       completely, push the rest of it into stack. */

    if (argbytes) {
      write_memory (
        sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
      ++argno;
      ii += ((len - argbytes + 3) & -4) / 4;
    }

    /* push the rest of the arguments into stack. */
    for (; argno < nargs; ++argno) {

      arg = value_arg_coerce (args[argno]);
      len = TYPE_LENGTH (VALUE_TYPE (arg));


      /* float types should be passed in fpr's, as well as in the stack. */
      if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {

        if (len > 8)
          printf (
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);

        bcopy (VALUE_CONTENTS (arg), 
           &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
        ++f_argno;
      }

      write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
      ii += ((len + 3) & -4) / 4;
    }
  }
  else {

    /* Secure stack areas first, before doing anything else. */
    write_register (SP_REGNUM, sp);

#if 0
    pc = read_pc ();
    flush_cached_frames ();
    set_current_frame (create_new_frame (sp, pc));
#endif
  }

  saved_sp = dummy_frame_addr [dummy_frame_count - 1];
  read_memory (saved_sp, tmp_buffer, 24);
  write_memory (sp, tmp_buffer, 24);

    write_memory (sp, &saved_sp, 4);	/* set back chain properly */

  store_inferior_registers (-1);
  return sp;
}

/* a given return value in `regbuf' with a type `valtype', extract and copy its
   value into `valbuf' */

extract_return_value (valtype, regbuf, valbuf)
  struct type *valtype;
  char regbuf[REGISTER_BYTES];
  char *valbuf;
{

  if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {

    double dd; float ff;
    /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
       We need to truncate the return value into float size (4 byte) if
       necessary. */

    if (TYPE_LENGTH (valtype) > 4) 		/* this is a double */
      bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf, 
						TYPE_LENGTH (valtype));
    else {		/* float */
      bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
      ff = (float)dd;
      bcopy (&ff, valbuf, sizeof(float));
    }
  }
  else
    /* return value is copied starting from r3. */
    bcopy (&regbuf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
}


/* keep keep structure return address in this variable. */

CORE_ADDR rs6000_struct_return_address;


/* Throw away this debugging code. FIXMEmgo. */
print_frame(fram)
int fram;
{
  int ii, val;
  for (ii=0; ii<40; ++ii) {
    if ((ii % 4) == 0)
      printf ("\n");
    val = read_memory_integer (fram + ii * 4, 4);
    printf ("0x%08x\t", val);
  }
  printf ("\n");
}



/* Indirect function calls use a piece of trampoline code do co context switching,
   i.e. to set the new TOC table. Skip such code if exists. */

skip_trampoline_code (pc)
int pc;
{
  register unsigned int ii, op;

  static unsigned trampoline_code[] = {
	0x800b0000,			/*     l   r0,0x0(r11)	*/
	0x90410014,			/*    st   r2,0x14(r1)	*/
	0x7c0903a6,			/* mtctr   r0		*/
	0x804b0004,			/*     l   r2,0x4(r11)	*/
	0x816b0008,			/*     l  r11,0x8(r11)	*/
	0x4e800420,			/*  bctr		*/
	0x4e800020,			/*    br		*/
	0
  };

  for (ii=0; trampoline_code[ii]; ++ii) {
    op  = read_memory_integer (pc + (ii*4), 4);
    if (op != trampoline_code [ii])
      return NULL;
  }
  ii = read_register (11);		/* r11 holds destination addr	*/
  pc = read_memory_integer (ii, 4);	/* (r11) value			*/
  return pc;
}