aboutsummaryrefslogtreecommitdiff
path: root/gdb/rs6000-tdep.c
blob: 5b6dcad08481b8229a1f95cc1717a2d2abffd049 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
/* Target-dependent code for GDB, the GNU debugger.
   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "symfile.h"
#include "objfiles.h"
#include "xcoffsolib.h"

extern int errno;

/* Breakpoint shadows for the single step instructions will be kept here. */

static struct sstep_breaks
  {
    /* Address, or 0 if this is not in use.  */
    CORE_ADDR address;
    /* Shadow contents.  */
    char data[4];
  }
stepBreaks[2];

/* Hook for determining the TOC address when calling functions in the
   inferior under AIX. The initialization code in rs6000-nat.c sets
   this hook to point to find_toc_address.  */

CORE_ADDR (*find_toc_address_hook) PARAMS ((CORE_ADDR)) = NULL;

/* Static function prototypes */

     static CORE_ADDR branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc,
					   CORE_ADDR safety));

     static void frame_get_saved_regs PARAMS ((struct frame_info * fi,
					 struct rs6000_framedata * fdatap));

     static void pop_dummy_frame PARAMS ((void));

     static CORE_ADDR frame_initial_stack_address PARAMS ((struct frame_info *));

CORE_ADDR
rs6000_skip_prologue (pc)
     CORE_ADDR pc;
{
  struct rs6000_framedata frame;
  pc = skip_prologue (pc, &frame);
  return pc;
}


/* Fill in fi->saved_regs */

struct frame_extra_info
{
  /* Functions calling alloca() change the value of the stack
     pointer. We need to use initial stack pointer (which is saved in
     r31 by gcc) in such cases. If a compiler emits traceback table,
     then we should use the alloca register specified in traceback
     table. FIXME. */
  CORE_ADDR initial_sp;		/* initial stack pointer. */
};

void
rs6000_init_extra_frame_info (fromleaf, fi)
     int fromleaf;
     struct frame_info *fi;
{
  fi->extra_info = (struct frame_extra_info *)
    frame_obstack_alloc (sizeof (struct frame_extra_info));
  fi->extra_info->initial_sp = 0;
  if (fi->next != (CORE_ADDR) 0
      && fi->pc < TEXT_SEGMENT_BASE)
    /* We're in get_prev_frame */
    /* and this is a special signal frame.  */
    /* (fi->pc will be some low address in the kernel, */
    /*  to which the signal handler returns).  */
    fi->signal_handler_caller = 1;
}


void
rs6000_frame_init_saved_regs (fi)
     struct frame_info *fi;
{
  frame_get_saved_regs (fi, NULL);
}

CORE_ADDR
rs6000_frame_args_address (fi)
     struct frame_info *fi;
{
  if (fi->extra_info->initial_sp != 0)
    return fi->extra_info->initial_sp;
  else
    return frame_initial_stack_address (fi);
}


/* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */

static CORE_ADDR
branch_dest (opcode, instr, pc, safety)
     int opcode;
     int instr;
     CORE_ADDR pc;
     CORE_ADDR safety;
{
  CORE_ADDR dest;
  int immediate;
  int absolute;
  int ext_op;

  absolute = (int) ((instr >> 1) & 1);

  switch (opcode)
    {
    case 18:
      immediate = ((instr & ~3) << 6) >> 6;	/* br unconditional */
      if (absolute)
	dest = immediate;
      else
	dest = pc + immediate;
      break;

    case 16:
      immediate = ((instr & ~3) << 16) >> 16;	/* br conditional */
      if (absolute)
	dest = immediate;
      else
	dest = pc + immediate;
      break;

    case 19:
      ext_op = (instr >> 1) & 0x3ff;

      if (ext_op == 16)		/* br conditional register */
	{
	  dest = read_register (LR_REGNUM) & ~3;

	  /* If we are about to return from a signal handler, dest is
	     something like 0x3c90.  The current frame is a signal handler
	     caller frame, upon completion of the sigreturn system call
	     execution will return to the saved PC in the frame.  */
	  if (dest < TEXT_SEGMENT_BASE)
	    {
	      struct frame_info *fi;

	      fi = get_current_frame ();
	      if (fi != NULL)
		dest = read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET,
					    4);
	    }
	}

      else if (ext_op == 528)	/* br cond to count reg */
	{
	  dest = read_register (CTR_REGNUM) & ~3;

	  /* If we are about to execute a system call, dest is something
	     like 0x22fc or 0x3b00.  Upon completion the system call
	     will return to the address in the link register.  */
	  if (dest < TEXT_SEGMENT_BASE)
	    dest = read_register (LR_REGNUM) & ~3;
	}
      else
	return -1;
      break;

    default:
      return -1;
    }
  return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
}


/* Sequence of bytes for breakpoint instruction.  */

#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }

unsigned char *
rs6000_breakpoint_from_pc (bp_addr, bp_size)
     CORE_ADDR *bp_addr;
     int *bp_size;
{
  static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
  static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
  *bp_size = 4;
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    return big_breakpoint;
  else
    return little_breakpoint;
}


/* AIX does not support PT_STEP. Simulate it. */

void
rs6000_software_single_step (signal, insert_breakpoints_p)
     unsigned int signal;
     int insert_breakpoints_p;
{
#define	INSNLEN(OPCODE)	 4

  static char le_breakp[] = LITTLE_BREAKPOINT;
  static char be_breakp[] = BIG_BREAKPOINT;
  char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
  int ii, insn;
  CORE_ADDR loc;
  CORE_ADDR breaks[2];
  int opcode;

  if (insert_breakpoints_p)
    {

      loc = read_pc ();

      insn = read_memory_integer (loc, 4);

      breaks[0] = loc + INSNLEN (insn);
      opcode = insn >> 26;
      breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);

      /* Don't put two breakpoints on the same address. */
      if (breaks[1] == breaks[0])
	breaks[1] = -1;

      stepBreaks[1].address = 0;

      for (ii = 0; ii < 2; ++ii)
	{

	  /* ignore invalid breakpoint. */
	  if (breaks[ii] == -1)
	    continue;

	  read_memory (breaks[ii], stepBreaks[ii].data, 4);

	  write_memory (breaks[ii], breakp, 4);
	  stepBreaks[ii].address = breaks[ii];
	}

    }
  else
    {

      /* remove step breakpoints. */
      for (ii = 0; ii < 2; ++ii)
	if (stepBreaks[ii].address != 0)
	  write_memory
	    (stepBreaks[ii].address, stepBreaks[ii].data, 4);

    }
  errno = 0;			/* FIXME, don't ignore errors! */
  /* What errors?  {read,write}_memory call error().  */
}


/* return pc value after skipping a function prologue and also return
   information about a function frame.

   in struct rs6000_framedata fdata:
   - frameless is TRUE, if function does not have a frame.
   - nosavedpc is TRUE, if function does not save %pc value in its frame.
   - offset is the initial size of this stack frame --- the amount by
   which we decrement the sp to allocate the frame.
   - saved_gpr is the number of the first saved gpr.
   - saved_fpr is the number of the first saved fpr.
   - alloca_reg is the number of the register used for alloca() handling.
   Otherwise -1.
   - gpr_offset is the offset of the first saved gpr from the previous frame.
   - fpr_offset is the offset of the first saved fpr from the previous frame.
   - lr_offset is the offset of the saved lr
   - cr_offset is the offset of the saved cr
 */

#define SIGNED_SHORT(x) 						\
  ((sizeof (short) == 2)						\
   ? ((int)(short)(x))							\
   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))

#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)

CORE_ADDR
skip_prologue (pc, fdata)
     CORE_ADDR pc;
     struct rs6000_framedata *fdata;
{
  CORE_ADDR orig_pc = pc;
  char buf[4];
  unsigned long op;
  long offset = 0;
  int lr_reg = 0;
  int cr_reg = 0;
  int reg;
  int framep = 0;
  int minimal_toc_loaded = 0;
  static struct rs6000_framedata zero_frame;

  *fdata = zero_frame;
  fdata->saved_gpr = -1;
  fdata->saved_fpr = -1;
  fdata->alloca_reg = -1;
  fdata->frameless = 1;
  fdata->nosavedpc = 1;

  if (target_read_memory (pc, buf, 4))
    return pc;			/* Can't access it -- assume no prologue. */

  /* Assume that subsequent fetches can fail with low probability.  */
  pc -= 4;
  for (;;)
    {
      pc += 4;
      op = read_memory_integer (pc, 4);

      if ((op & 0xfc1fffff) == 0x7c0802a6)
	{			/* mflr Rx */
	  lr_reg = (op & 0x03e00000) | 0x90010000;
	  continue;

	}
      else if ((op & 0xfc1fffff) == 0x7c000026)
	{			/* mfcr Rx */
	  cr_reg = (op & 0x03e00000) | 0x90010000;
	  continue;

	}
      else if ((op & 0xfc1f0000) == 0xd8010000)
	{			/* stfd Rx,NUM(r1) */
	  reg = GET_SRC_REG (op);
	  if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
	    {
	      fdata->saved_fpr = reg;
	      fdata->fpr_offset = SIGNED_SHORT (op) + offset;
	    }
	  continue;

	}
      else if (((op & 0xfc1f0000) == 0xbc010000) ||	/* stm Rx, NUM(r1) */
	       ((op & 0xfc1f0000) == 0x90010000 &&	/* st rx,NUM(r1), 
							   rx >= r13 */
		(op & 0x03e00000) >= 0x01a00000))
	{

	  reg = GET_SRC_REG (op);
	  if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
	    {
	      fdata->saved_gpr = reg;
	      fdata->gpr_offset = SIGNED_SHORT (op) + offset;
	    }
	  continue;

	}
      else if ((op & 0xffff0000) == 0x3c000000)
	{			/* addis 0,0,NUM, used
				   for >= 32k frames */
	  fdata->offset = (op & 0x0000ffff) << 16;
	  fdata->frameless = 0;
	  continue;

	}
      else if ((op & 0xffff0000) == 0x60000000)
	{			/* ori 0,0,NUM, 2nd ha
				   lf of >= 32k frames */
	  fdata->offset |= (op & 0x0000ffff);
	  fdata->frameless = 0;
	  continue;

	}
      else if ((op & 0xffff0000) == lr_reg)
	{			/* st Rx,NUM(r1) 
				   where Rx == lr */
	  fdata->lr_offset = SIGNED_SHORT (op) + offset;
	  fdata->nosavedpc = 0;
	  lr_reg = 0;
	  continue;

	}
      else if ((op & 0xffff0000) == cr_reg)
	{			/* st Rx,NUM(r1) 
				   where Rx == cr */
	  fdata->cr_offset = SIGNED_SHORT (op) + offset;
	  cr_reg = 0;
	  continue;

	}
      else if (op == 0x48000005)
	{			/* bl .+4 used in 
				   -mrelocatable */
	  continue;

	}
      else if (op == 0x48000004)
	{			/* b .+4 (xlc) */
	  break;

	}
      else if (((op & 0xffff0000) == 0x801e0000 ||	/* lwz 0,NUM(r30), used
							   in V.4 -mrelocatable */
		op == 0x7fc0f214) &&	/* add r30,r0,r30, used
					   in V.4 -mrelocatable */
	       lr_reg == 0x901e0000)
	{
	  continue;

	}
      else if ((op & 0xffff0000) == 0x3fc00000 ||	/* addis 30,0,foo@ha, used
							   in V.4 -mminimal-toc */
	       (op & 0xffff0000) == 0x3bde0000)
	{			/* addi 30,30,foo@l */
	  continue;

	}
      else if ((op & 0xfc000001) == 0x48000001)
	{			/* bl foo, 
				   to save fprs??? */

	  fdata->frameless = 0;
	  /* Don't skip over the subroutine call if it is not within the first
	     three instructions of the prologue.  */
	  if ((pc - orig_pc) > 8)
	    break;

	  op = read_memory_integer (pc + 4, 4);

	  /* At this point, make sure this is not a trampoline function
	     (a function that simply calls another functions, and nothing else).
	     If the next is not a nop, this branch was part of the function
	     prologue. */

	  if (op == 0x4def7b82 || op == 0)	/* crorc 15, 15, 15 */
	    break;		/* don't skip over 
				   this branch */
	  continue;

	  /* update stack pointer */
	}
      else if ((op & 0xffff0000) == 0x94210000)
	{			/* stu r1,NUM(r1) */
	  fdata->frameless = 0;
	  fdata->offset = SIGNED_SHORT (op);
	  offset = fdata->offset;
	  continue;

	}
      else if (op == 0x7c21016e)
	{			/* stwux 1,1,0 */
	  fdata->frameless = 0;
	  offset = fdata->offset;
	  continue;

	  /* Load up minimal toc pointer */
	}
      else if ((op >> 22) == 0x20f
	       && !minimal_toc_loaded)
	{			/* l r31,... or l r30,... */
	  minimal_toc_loaded = 1;
	  continue;

	  /* move parameters from argument registers to local variable
             registers */
 	}
      else if ((op & 0xfc0007fe) == 0x7c000378 &&	/* mr(.)  Rx,Ry */
               (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
               (((op >> 21) & 31) <= 10) &&
               (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
	{
	  continue;

	  /* store parameters in stack */
	}
      else if ((op & 0xfc1f0000) == 0x90010000 ||	/* st rx,NUM(r1) */
	       (op & 0xfc1f0000) == 0xd8010000 ||	/* stfd Rx,NUM(r1) */
	       (op & 0xfc1f0000) == 0xfc010000)
	{			/* frsp, fp?,NUM(r1) */
	  continue;

	  /* store parameters in stack via frame pointer */
	}
      else if (framep &&
	       ((op & 0xfc1f0000) == 0x901f0000 ||	/* st rx,NUM(r1) */
		(op & 0xfc1f0000) == 0xd81f0000 ||	/* stfd Rx,NUM(r1) */
		(op & 0xfc1f0000) == 0xfc1f0000))
	{			/* frsp, fp?,NUM(r1) */
	  continue;

	  /* Set up frame pointer */
	}
      else if (op == 0x603f0000	/* oril r31, r1, 0x0 */
	       || op == 0x7c3f0b78)
	{			/* mr r31, r1 */
	  fdata->frameless = 0;
	  framep = 1;
	  fdata->alloca_reg = 31;
	  continue;

	  /* Another way to set up the frame pointer.  */
	}
      else if ((op & 0xfc1fffff) == 0x38010000)
	{			/* addi rX, r1, 0x0 */
	  fdata->frameless = 0;
	  framep = 1;
	  fdata->alloca_reg = (op & ~0x38010000) >> 21;
	  continue;

	}
      else
	{
	  break;
	}
    }

#if 0
/* I have problems with skipping over __main() that I need to address
 * sometime. Previously, I used to use misc_function_vector which
 * didn't work as well as I wanted to be.  -MGO */

  /* If the first thing after skipping a prolog is a branch to a function,
     this might be a call to an initializer in main(), introduced by gcc2.
     We'd like to skip over it as well. Fortunately, xlc does some extra
     work before calling a function right after a prologue, thus we can
     single out such gcc2 behaviour. */


  if ((op & 0xfc000001) == 0x48000001)
    {				/* bl foo, an initializer function? */
      op = read_memory_integer (pc + 4, 4);

      if (op == 0x4def7b82)
	{			/* cror 0xf, 0xf, 0xf (nop) */

	  /* check and see if we are in main. If so, skip over this initializer
	     function as well. */

	  tmp = find_pc_misc_function (pc);
	  if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, "main"))
	    return pc + 8;
	}
    }
#endif /* 0 */

  fdata->offset = -fdata->offset;
  return pc;
}


/*************************************************************************
  Support for creating pushing a dummy frame into the stack, and popping
  frames, etc. 
*************************************************************************/

/* The total size of dummy frame is 436, which is;

   32 gpr's           - 128 bytes
   32 fpr's           - 256 bytes
   7  the rest        -  28 bytes
   callee's link area -  24 bytes
   padding            -  12 bytes

   Note that the last 24 bytes for the link area might not be necessary,
   since it will be taken care of by push_arguments(). */

#define DUMMY_FRAME_SIZE 448

#define	DUMMY_FRAME_ADDR_SIZE 10

/* Make sure you initialize these in somewhere, in case gdb gives up what it
   was debugging and starts debugging something else. FIXMEibm */

static int dummy_frame_count = 0;
static int dummy_frame_size = 0;
static CORE_ADDR *dummy_frame_addr = 0;

extern int stop_stack_dummy;

/* push a dummy frame into stack, save all register. Currently we are saving
   only gpr's and fpr's, which is not good enough! FIXMEmgo */

void
push_dummy_frame ()
{
  /* stack pointer.  */
  CORE_ADDR sp;
  /* Same thing, target byte order.  */
  char sp_targ[4];

  /* link register.  */
  CORE_ADDR pc;
  /* Same thing, target byte order.  */
  char pc_targ[4];

  /* Needed to figure out where to save the dummy link area.
     FIXME: There should be an easier way to do this, no?  tiemann 9/9/95.  */
  struct rs6000_framedata fdata;

  int ii;

  target_fetch_registers (-1);

  if (dummy_frame_count >= dummy_frame_size)
    {
      dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
      if (dummy_frame_addr)
	dummy_frame_addr = (CORE_ADDR *) xrealloc
	  (dummy_frame_addr, sizeof (CORE_ADDR) * (dummy_frame_size));
      else
	dummy_frame_addr = (CORE_ADDR *)
	  xmalloc (sizeof (CORE_ADDR) * (dummy_frame_size));
    }

  sp = read_register (SP_REGNUM);
  pc = read_register (PC_REGNUM);
  store_address (pc_targ, 4, pc);

  skip_prologue (get_pc_function_start (pc), &fdata);

  dummy_frame_addr[dummy_frame_count++] = sp;

  /* Be careful! If the stack pointer is not decremented first, then kernel 
     thinks he is free to use the space underneath it. And kernel actually 
     uses that area for IPC purposes when executing ptrace(2) calls. So 
     before writing register values into the new frame, decrement and update
     %sp first in order to secure your frame. */

  /* FIXME: We don't check if the stack really has this much space.
     This is a problem on the ppc simulator (which only grants one page
     (4096 bytes) by default.  */

  write_register (SP_REGNUM, sp - DUMMY_FRAME_SIZE);

  /* gdb relies on the state of current_frame. We'd better update it,
     otherwise things like do_registers_info() wouldn't work properly! */

  flush_cached_frames ();

  /* save program counter in link register's space. */
  write_memory (sp + (fdata.lr_offset ? fdata.lr_offset : DEFAULT_LR_SAVE),
		pc_targ, 4);

  /* save all floating point and general purpose registers here. */

  /* fpr's, f0..f31 */
  for (ii = 0; ii < 32; ++ii)
    write_memory (sp - 8 - (ii * 8), &registers[REGISTER_BYTE (31 - ii + FP0_REGNUM)], 8);

  /* gpr's r0..r31 */
  for (ii = 1; ii <= 32; ++ii)
    write_memory (sp - 256 - (ii * 4), &registers[REGISTER_BYTE (32 - ii)], 4);

  /* so far, 32*2 + 32 words = 384 bytes have been written. 
     7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */

  for (ii = 1; ii <= (LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM + 1); ++ii)
    {
      write_memory (sp - 384 - (ii * 4),
		    &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
    }

  /* Save sp or so called back chain right here. */
  store_address (sp_targ, 4, sp);
  write_memory (sp - DUMMY_FRAME_SIZE, sp_targ, 4);
  sp -= DUMMY_FRAME_SIZE;

  /* And finally, this is the back chain. */
  write_memory (sp + 8, pc_targ, 4);
}


/* Pop a dummy frame.

   In rs6000 when we push a dummy frame, we save all of the registers. This
   is usually done before user calls a function explicitly.

   After a dummy frame is pushed, some instructions are copied into stack,
   and stack pointer is decremented even more.  Since we don't have a frame
   pointer to get back to the parent frame of the dummy, we start having
   trouble poping it.  Therefore, we keep a dummy frame stack, keeping
   addresses of dummy frames as such.  When poping happens and when we
   detect that was a dummy frame, we pop it back to its parent by using
   dummy frame stack (`dummy_frame_addr' array). 

   FIXME:  This whole concept is broken.  You should be able to detect
   a dummy stack frame *on the user's stack itself*.  When you do,
   then you know the format of that stack frame -- including its
   saved SP register!  There should *not* be a separate stack in the
   GDB process that keeps track of these dummy frames!  -- gnu@cygnus.com Aug92
 */

static void
pop_dummy_frame ()
{
  CORE_ADDR sp, pc;
  int ii;
  sp = dummy_frame_addr[--dummy_frame_count];

  /* restore all fpr's. */
  for (ii = 1; ii <= 32; ++ii)
    read_memory (sp - (ii * 8), &registers[REGISTER_BYTE (32 - ii + FP0_REGNUM)], 8);

  /* restore all gpr's */
  for (ii = 1; ii <= 32; ++ii)
    {
      read_memory (sp - 256 - (ii * 4), &registers[REGISTER_BYTE (32 - ii)], 4);
    }

  /* restore the rest of the registers. */
  for (ii = 1; ii <= (LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM + 1); ++ii)
    read_memory (sp - 384 - (ii * 4),
		 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);

  read_memory (sp - (DUMMY_FRAME_SIZE - 8),
	       &registers[REGISTER_BYTE (PC_REGNUM)], 4);

  /* when a dummy frame was being pushed, we had to decrement %sp first, in 
     order to secure astack space. Thus, saved %sp (or %r1) value, is not the
     one we should restore. Change it with the one we need. */

  memcpy (&registers[REGISTER_BYTE (FP_REGNUM)], (char *) &sp, sizeof (int));

  /* Now we can restore all registers. */

  target_store_registers (-1);
  pc = read_pc ();
  flush_cached_frames ();
}


/* pop the innermost frame, go back to the caller. */

void
pop_frame ()
{
  CORE_ADDR pc, lr, sp, prev_sp;	/* %pc, %lr, %sp */
  struct rs6000_framedata fdata;
  struct frame_info *frame = get_current_frame ();
  int addr, ii;

  pc = read_pc ();
  sp = FRAME_FP (frame);

  if (stop_stack_dummy)
    {
      if (USE_GENERIC_DUMMY_FRAMES)
	{
	  generic_pop_dummy_frame ();
	  flush_cached_frames ();
	  return;
	}
      else
	{
	  if (dummy_frame_count)
	    pop_dummy_frame ();
	  return;
	}
    }

  /* Make sure that all registers are valid.  */
  read_register_bytes (0, NULL, REGISTER_BYTES);

  /* figure out previous %pc value. If the function is frameless, it is 
     still in the link register, otherwise walk the frames and retrieve the
     saved %pc value in the previous frame. */

  addr = get_pc_function_start (frame->pc);
  (void) skip_prologue (addr, &fdata);

  if (fdata.frameless)
    prev_sp = sp;
  else
    prev_sp = read_memory_integer (sp, 4);
  if (fdata.lr_offset == 0)
    lr = read_register (LR_REGNUM);
  else
    lr = read_memory_integer (prev_sp + fdata.lr_offset, 4);

  /* reset %pc value. */
  write_register (PC_REGNUM, lr);

  /* reset register values if any was saved earlier. */

  if (fdata.saved_gpr != -1)
    {
      addr = prev_sp + fdata.gpr_offset;
      for (ii = fdata.saved_gpr; ii <= 31; ++ii)
	{
	  read_memory (addr, &registers[REGISTER_BYTE (ii)], 4);
	  addr += 4;
	}
    }

  if (fdata.saved_fpr != -1)
    {
      addr = prev_sp + fdata.fpr_offset;
      for (ii = fdata.saved_fpr; ii <= 31; ++ii)
	{
	  read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
	  addr += 8;
	}
    }

  write_register (SP_REGNUM, prev_sp);
  target_store_registers (-1);
  flush_cached_frames ();
}

/* fixup the call sequence of a dummy function, with the real function address.
   its argumets will be passed by gdb. */

void
rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
     char *dummyname;
     CORE_ADDR pc;
     CORE_ADDR fun;
     int nargs;
     value_ptr *args;
     struct type *type;
     int gcc_p;
{
#define	TOC_ADDR_OFFSET		20
#define	TARGET_ADDR_OFFSET	28

  int ii;
  CORE_ADDR target_addr;

  if (USE_GENERIC_DUMMY_FRAMES)
    {
      if (find_toc_address_hook != NULL)
	{
	  CORE_ADDR tocvalue = (*find_toc_address_hook) (fun);
	  write_register (TOC_REGNUM, tocvalue);
	}
    }
  else
    {
      if (find_toc_address_hook != NULL)
	{
	  CORE_ADDR tocvalue;

	  tocvalue = (*find_toc_address_hook) (fun);
	  ii = *(int *) ((char *) dummyname + TOC_ADDR_OFFSET);
	  ii = (ii & 0xffff0000) | (tocvalue >> 16);
	  *(int *) ((char *) dummyname + TOC_ADDR_OFFSET) = ii;

	  ii = *(int *) ((char *) dummyname + TOC_ADDR_OFFSET + 4);
	  ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
	  *(int *) ((char *) dummyname + TOC_ADDR_OFFSET + 4) = ii;
	}

      target_addr = fun;
      ii = *(int *) ((char *) dummyname + TARGET_ADDR_OFFSET);
      ii = (ii & 0xffff0000) | (target_addr >> 16);
      *(int *) ((char *) dummyname + TARGET_ADDR_OFFSET) = ii;

      ii = *(int *) ((char *) dummyname + TARGET_ADDR_OFFSET + 4);
      ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
      *(int *) ((char *) dummyname + TARGET_ADDR_OFFSET + 4) = ii;
    }
}

/* Pass the arguments in either registers, or in the stack. In RS6000,
   the first eight words of the argument list (that might be less than
   eight parameters if some parameters occupy more than one word) are
   passed in r3..r11 registers.  float and double parameters are
   passed in fpr's, in addition to that. Rest of the parameters if any
   are passed in user stack. There might be cases in which half of the
   parameter is copied into registers, the other half is pushed into
   stack.

   If the function is returning a structure, then the return address is passed
   in r3, then the first 7 words of the parameters can be passed in registers,
   starting from r4. */

CORE_ADDR
rs6000_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     value_ptr *args;
     CORE_ADDR sp;
     int struct_return;
     CORE_ADDR struct_addr;
{
  int ii;
  int len = 0;
  int argno;			/* current argument number */
  int argbytes;			/* current argument byte */
  char tmp_buffer[50];
  int f_argno = 0;		/* current floating point argno */

  value_ptr arg = 0;
  struct type *type;

  CORE_ADDR saved_sp;

  if (!USE_GENERIC_DUMMY_FRAMES)
    {
      if (dummy_frame_count <= 0)
	printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
    }

  /* The first eight words of ther arguments are passed in registers. Copy
     them appropriately.

     If the function is returning a `struct', then the first word (which 
     will be passed in r3) is used for struct return address. In that
     case we should advance one word and start from r4 register to copy 
     parameters. */

  ii = struct_return ? 1 : 0;

/* 
   effectively indirect call... gcc does...

   return_val example( float, int);

   eabi: 
   float in fp0, int in r3
   offset of stack on overflow 8/16
   for varargs, must go by type.
   power open:
   float in r3&r4, int in r5
   offset of stack on overflow different 
   both: 
   return in r3 or f0.  If no float, must study how gcc emulates floats;
   pay attention to arg promotion.  
   User may have to cast\args to handle promotion correctly 
   since gdb won't know if prototype supplied or not.
 */

  for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
    {
      int reg_size = REGISTER_RAW_SIZE (ii + 3);

      arg = args[argno];
      type = check_typedef (VALUE_TYPE (arg));
      len = TYPE_LENGTH (type);

      if (TYPE_CODE (type) == TYPE_CODE_FLT)
	{

	  /* floating point arguments are passed in fpr's, as well as gpr's.
	     There are 13 fpr's reserved for passing parameters. At this point
	     there is no way we would run out of them. */

	  if (len > 8)
	    printf_unfiltered (
				"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);

	  memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
		  VALUE_CONTENTS (arg),
		  len);
	  ++f_argno;
	}

      if (len > reg_size)
	{

	  /* Argument takes more than one register. */
	  while (argbytes < len)
	    {
	      memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
	      memcpy (&registers[REGISTER_BYTE (ii + 3)],
		      ((char *) VALUE_CONTENTS (arg)) + argbytes,
		      (len - argbytes) > reg_size
		        ? reg_size : len - argbytes);
	      ++ii, argbytes += reg_size;

	      if (ii >= 8)
		goto ran_out_of_registers_for_arguments;
	    }
	  argbytes = 0;
	  --ii;
	}
      else
	{			/* Argument can fit in one register. No problem. */
	  int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0;
	  memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
	  memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj, 
	          VALUE_CONTENTS (arg), len);
	}
      ++argno;
    }

ran_out_of_registers_for_arguments:

  if (USE_GENERIC_DUMMY_FRAMES)
    {
      saved_sp = read_sp ();
#ifndef ELF_OBJECT_FORMAT
      /* location for 8 parameters are always reserved. */
      sp -= 4 * 8;

      /* another six words for back chain, TOC register, link register, etc. */
      sp -= 24;

      /* stack pointer must be quadword aligned */
      sp &= -16;
#endif
    }
  else
    {
      /* location for 8 parameters are always reserved. */
      sp -= 4 * 8;

      /* another six words for back chain, TOC register, link register, etc. */
      sp -= 24;

      /* stack pointer must be quadword aligned */
      sp &= -16;
    }

  /* if there are more arguments, allocate space for them in 
     the stack, then push them starting from the ninth one. */

  if ((argno < nargs) || argbytes)
    {
      int space = 0, jj;

      if (argbytes)
	{
	  space += ((len - argbytes + 3) & -4);
	  jj = argno + 1;
	}
      else
	jj = argno;

      for (; jj < nargs; ++jj)
	{
	  value_ptr val = args[jj];
	  space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
	}

      /* add location required for the rest of the parameters */
      space = (space + 15) & -16;
      sp -= space;

      /* This is another instance we need to be concerned about securing our
         stack space. If we write anything underneath %sp (r1), we might conflict
         with the kernel who thinks he is free to use this area. So, update %sp
         first before doing anything else. */

      write_register (SP_REGNUM, sp);

      /* if the last argument copied into the registers didn't fit there 
         completely, push the rest of it into stack. */

      if (argbytes)
	{
	  write_memory (sp + 24 + (ii * 4),
			((char *) VALUE_CONTENTS (arg)) + argbytes,
			len - argbytes);
	  ++argno;
	  ii += ((len - argbytes + 3) & -4) / 4;
	}

      /* push the rest of the arguments into stack. */
      for (; argno < nargs; ++argno)
	{

	  arg = args[argno];
	  type = check_typedef (VALUE_TYPE (arg));
	  len = TYPE_LENGTH (type);


	  /* float types should be passed in fpr's, as well as in the stack. */
	  if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
	    {

	      if (len > 8)
		printf_unfiltered (
				    "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);

	      memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
		      VALUE_CONTENTS (arg),
		      len);
	      ++f_argno;
	    }

	  write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
	  ii += ((len + 3) & -4) / 4;
	}
    }
  else
    /* Secure stack areas first, before doing anything else. */
    write_register (SP_REGNUM, sp);

  if (!USE_GENERIC_DUMMY_FRAMES)
    {
      /* we want to copy 24 bytes of target's frame to dummy's frame,
         then set back chain to point to new frame. */

      saved_sp = dummy_frame_addr[dummy_frame_count - 1];
      read_memory (saved_sp, tmp_buffer, 24);
      write_memory (sp, tmp_buffer, 24);
    }

  /* set back chain properly */
  store_address (tmp_buffer, 4, saved_sp);
  write_memory (sp, tmp_buffer, 4);

  target_store_registers (-1);
  return sp;
}
/* #ifdef ELF_OBJECT_FORMAT */

/* Function: ppc_push_return_address (pc, sp)
   Set up the return address for the inferior function call. */

CORE_ADDR
ppc_push_return_address (pc, sp)
     CORE_ADDR pc;
     CORE_ADDR sp;
{
  write_register (LR_REGNUM, CALL_DUMMY_ADDRESS ());
  return sp;
}

/* #endif */

/* a given return value in `regbuf' with a type `valtype', extract and copy its
   value into `valbuf' */

void
extract_return_value (valtype, regbuf, valbuf)
     struct type *valtype;
     char regbuf[REGISTER_BYTES];
     char *valbuf;
{
  int offset = 0;

  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
    {

      double dd;
      float ff;
      /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
         We need to truncate the return value into float size (4 byte) if
         necessary. */

      if (TYPE_LENGTH (valtype) > 4)	/* this is a double */
	memcpy (valbuf,
		&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
		TYPE_LENGTH (valtype));
      else
	{			/* float */
	  memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
	  ff = (float) dd;
	  memcpy (valbuf, &ff, sizeof (float));
	}
    }
  else
    {
      /* return value is copied starting from r3. */
      if (TARGET_BYTE_ORDER == BIG_ENDIAN
	  && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
	offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);

      memcpy (valbuf,
	      regbuf + REGISTER_BYTE (3) + offset,
	      TYPE_LENGTH (valtype));
    }
}


/* keep structure return address in this variable.
   FIXME:  This is a horrid kludge which should not be allowed to continue
   living.  This only allows a single nested call to a structure-returning
   function.  Come on, guys!  -- gnu@cygnus.com, Aug 92  */

CORE_ADDR rs6000_struct_return_address;


/* Indirect function calls use a piece of trampoline code to do context
   switching, i.e. to set the new TOC table. Skip such code if we are on
   its first instruction (as when we have single-stepped to here). 
   Also skip shared library trampoline code (which is different from
   indirect function call trampolines).
   Result is desired PC to step until, or NULL if we are not in
   trampoline code.  */

CORE_ADDR
skip_trampoline_code (pc)
     CORE_ADDR pc;
{
  register unsigned int ii, op;
  CORE_ADDR solib_target_pc;

  static unsigned trampoline_code[] =
  {
    0x800b0000,			/*     l   r0,0x0(r11)  */
    0x90410014,			/*    st   r2,0x14(r1)  */
    0x7c0903a6,			/* mtctr   r0           */
    0x804b0004,			/*     l   r2,0x4(r11)  */
    0x816b0008,			/*     l  r11,0x8(r11)  */
    0x4e800420,			/*  bctr                */
    0x4e800020,			/*    br                */
    0
  };

  /* If pc is in a shared library trampoline, return its target.  */
  solib_target_pc = find_solib_trampoline_target (pc);
  if (solib_target_pc)
    return solib_target_pc;

  for (ii = 0; trampoline_code[ii]; ++ii)
    {
      op = read_memory_integer (pc + (ii * 4), 4);
      if (op != trampoline_code[ii])
	return 0;
    }
  ii = read_register (11);	/* r11 holds destination addr   */
  pc = read_memory_integer (ii, 4);	/* (r11) value                  */
  return pc;
}

/* Determines whether the function FI has a frame on the stack or not.  */

int
frameless_function_invocation (fi)
     struct frame_info *fi;
{
  CORE_ADDR func_start;
  struct rs6000_framedata fdata;

  /* Don't even think about framelessness except on the innermost frame
     or if the function was interrupted by a signal.  */
  if (fi->next != NULL && !fi->next->signal_handler_caller)
    return 0;

  func_start = get_pc_function_start (fi->pc);

  /* If we failed to find the start of the function, it is a mistake
     to inspect the instructions. */

  if (!func_start)
    {
      /* A frame with a zero PC is usually created by dereferencing a NULL
         function pointer, normally causing an immediate core dump of the
         inferior. Mark function as frameless, as the inferior has no chance
         of setting up a stack frame.  */
      if (fi->pc == 0)
	return 1;
      else
	return 0;
    }

  (void) skip_prologue (func_start, &fdata);
  return fdata.frameless;
}

/* Return the PC saved in a frame */

unsigned long
frame_saved_pc (fi)
     struct frame_info *fi;
{
  CORE_ADDR func_start;
  struct rs6000_framedata fdata;

  if (fi->signal_handler_caller)
    return read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET, 4);

  if (USE_GENERIC_DUMMY_FRAMES)
    {
      if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
	return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
    }

  func_start = get_pc_function_start (fi->pc);

  /* If we failed to find the start of the function, it is a mistake
     to inspect the instructions. */
  if (!func_start)
    return 0;

  (void) skip_prologue (func_start, &fdata);

  if (fdata.lr_offset == 0 && fi->next != NULL)
    {
      if (fi->next->signal_handler_caller)
	return read_memory_integer (fi->next->frame + SIG_FRAME_LR_OFFSET, 4);
      else
	return read_memory_integer (rs6000_frame_chain (fi) + DEFAULT_LR_SAVE,
				    4);
    }

  if (fdata.lr_offset == 0)
    return read_register (LR_REGNUM);

  return read_memory_integer (rs6000_frame_chain (fi) + fdata.lr_offset, 4);
}

/* If saved registers of frame FI are not known yet, read and cache them.
   &FDATAP contains rs6000_framedata; TDATAP can be NULL,
   in which case the framedata are read.  */

static void
frame_get_saved_regs (fi, fdatap)
     struct frame_info *fi;
     struct rs6000_framedata *fdatap;
{
  CORE_ADDR frame_addr;
  struct rs6000_framedata work_fdata;

  if (fi->saved_regs)
    return;

  if (fdatap == NULL)
    {
      fdatap = &work_fdata;
      (void) skip_prologue (get_pc_function_start (fi->pc), fdatap);
    }

  frame_saved_regs_zalloc (fi);

  /* If there were any saved registers, figure out parent's stack
     pointer. */
  /* The following is true only if the frame doesn't have a call to
     alloca(), FIXME. */

  if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
      && fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
    frame_addr = 0;
  else if (fi->prev && fi->prev->frame)
    frame_addr = fi->prev->frame;
  else
    frame_addr = read_memory_integer (fi->frame, 4);

  /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
     All fpr's from saved_fpr to fp31 are saved.  */

  if (fdatap->saved_fpr >= 0)
    {
      int i;
      int fpr_offset = frame_addr + fdatap->fpr_offset;
      for (i = fdatap->saved_fpr; i < 32; i++)
	{
	  fi->saved_regs[FP0_REGNUM + i] = fpr_offset;
	  fpr_offset += 8;
	}
    }

  /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
     All gpr's from saved_gpr to gpr31 are saved.  */

  if (fdatap->saved_gpr >= 0)
    {
      int i;
      int gpr_offset = frame_addr + fdatap->gpr_offset;
      for (i = fdatap->saved_gpr; i < 32; i++)
	{
	  fi->saved_regs[i] = gpr_offset;
	  gpr_offset += 4;
	}
    }

  /* If != 0, fdatap->cr_offset is the offset from the frame that holds
     the CR.  */
  if (fdatap->cr_offset != 0)
    fi->saved_regs[CR_REGNUM] = frame_addr + fdatap->cr_offset;

  /* If != 0, fdatap->lr_offset is the offset from the frame that holds
     the LR.  */
  if (fdatap->lr_offset != 0)
    fi->saved_regs[LR_REGNUM] = frame_addr + fdatap->lr_offset;
}

/* Return the address of a frame. This is the inital %sp value when the frame
   was first allocated. For functions calling alloca(), it might be saved in
   an alloca register. */

static CORE_ADDR
frame_initial_stack_address (fi)
     struct frame_info *fi;
{
  CORE_ADDR tmpaddr;
  struct rs6000_framedata fdata;
  struct frame_info *callee_fi;

  /* if the initial stack pointer (frame address) of this frame is known,
     just return it. */

  if (fi->extra_info->initial_sp)
    return fi->extra_info->initial_sp;

  /* find out if this function is using an alloca register.. */

  (void) skip_prologue (get_pc_function_start (fi->pc), &fdata);

  /* if saved registers of this frame are not known yet, read and cache them. */

  if (!fi->saved_regs)
    frame_get_saved_regs (fi, &fdata);

  /* If no alloca register used, then fi->frame is the value of the %sp for
     this frame, and it is good enough. */

  if (fdata.alloca_reg < 0)
    {
      fi->extra_info->initial_sp = fi->frame;
      return fi->extra_info->initial_sp;
    }

  /* This function has an alloca register. If this is the top-most frame
     (with the lowest address), the value in alloca register is good. */

  if (!fi->next)
    return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);

  /* Otherwise, this is a caller frame. Callee has usually already saved
     registers, but there are exceptions (such as when the callee
     has no parameters). Find the address in which caller's alloca
     register is saved. */

  for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
    {

      if (!callee_fi->saved_regs)
	frame_get_saved_regs (callee_fi, NULL);

      /* this is the address in which alloca register is saved. */

      tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
      if (tmpaddr)
	{
	  fi->extra_info->initial_sp = read_memory_integer (tmpaddr, 4);
	  return fi->extra_info->initial_sp;
	}

      /* Go look into deeper levels of the frame chain to see if any one of
         the callees has saved alloca register. */
    }

  /* If alloca register was not saved, by the callee (or any of its callees)
     then the value in the register is still good. */

  fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
  return fi->extra_info->initial_sp;
}

CORE_ADDR
rs6000_frame_chain (thisframe)
     struct frame_info *thisframe;
{
  CORE_ADDR fp;

  if (USE_GENERIC_DUMMY_FRAMES)
    {
      if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
	return thisframe->frame;	/* dummy frame same as caller's frame */
    }

  if (inside_entry_file (thisframe->pc) ||
      thisframe->pc == entry_point_address ())
    return 0;

  if (thisframe->signal_handler_caller)
    fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
  else if (thisframe->next != NULL
	   && thisframe->next->signal_handler_caller
	   && frameless_function_invocation (thisframe))
    /* A frameless function interrupted by a signal did not change the
       frame pointer.  */
    fp = FRAME_FP (thisframe);
  else
    fp = read_memory_integer ((thisframe)->frame, 4);

  if (USE_GENERIC_DUMMY_FRAMES)
    {
      CORE_ADDR fpp, lr;

      lr = read_register (LR_REGNUM);
      if (lr == entry_point_address ())
	if (fp != 0 && (fpp = read_memory_integer (fp, 4)) != 0)
	  if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
	    return fpp;
    }

  return fp;
}

/* Return nonzero if ADDR (a function pointer) is in the data space and
   is therefore a special function pointer.  */

int
is_magic_function_pointer (addr)
     CORE_ADDR addr;
{
  struct obj_section *s;

  s = find_pc_section (addr);
  if (s && s->the_bfd_section->flags & SEC_CODE)
    return 0;
  else
    return 1;
}

#ifdef GDB_TARGET_POWERPC
int
gdb_print_insn_powerpc (memaddr, info)
     bfd_vma memaddr;
     disassemble_info *info;
{
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    return print_insn_big_powerpc (memaddr, info);
  else
    return print_insn_little_powerpc (memaddr, info);
}
#endif


/* Handling the various PowerPC/RS6000 variants.  */


/* The arrays here called register_names_MUMBLE hold names that 
   the rs6000_register_name function returns.

   For each family of PPC variants, I've tried to isolate out the
   common registers and put them up front, so that as long as you get
   the general family right, GDB will correctly identify the registers
   common to that family.  The common register sets are:

   For the 60x family: hid0 hid1 iabr dabr pir

   For the 505 and 860 family: eie eid nri

   For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
   tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
   pbu1 pbl2 pbu2

   Most of these register groups aren't anything formal.  I arrived at
   them by looking at the registers that occurred in more than one
   processor.  */

/* UISA register names common across all architectures, including POWER.  */

#define COMMON_UISA_REG_NAMES \
  /*  0 */ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",  \
  /*  8 */ "r8", "r9", "r10","r11","r12","r13","r14","r15", \
  /* 16 */ "r16","r17","r18","r19","r20","r21","r22","r23", \
  /* 24 */ "r24","r25","r26","r27","r28","r29","r30","r31", \
  /* 32 */ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",  \
  /* 40 */ "f8", "f9", "f10","f11","f12","f13","f14","f15", \
  /* 48 */ "f16","f17","f18","f19","f20","f21","f22","f23", \
  /* 56 */ "f24","f25","f26","f27","f28","f29","f30","f31", \
  /* 64 */ "pc", "ps"

/* UISA-level SPR names for PowerPC.  */
#define PPC_UISA_SPR_NAMES \
  /* 66 */ "cr",  "lr", "ctr", "xer", ""

/* Segment register names, for PowerPC.  */
#define PPC_SEGMENT_REG_NAMES \
  /* 71 */ "sr0", "sr1", "sr2",  "sr3",  "sr4",  "sr5",  "sr6",  "sr7", \
  /* 79 */ "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"

/* OEA SPR names for 32-bit PowerPC implementations.
   The blank space is for "asr", which is only present on 64-bit
   implementations.  */
#define PPC_32_OEA_SPR_NAMES \
  /*  87 */ "pvr", \
  /*  88 */ "ibat0u", "ibat0l", "ibat1u", "ibat1l", \
  /*  92 */ "ibat2u", "ibat2l", "ibat3u", "ibat3l", \
  /*  96 */ "dbat0u", "dbat0l", "dbat1u", "dbat1l", \
  /* 100 */ "dbat2u", "dbat2l", "dbat3u", "dbat3l", \
  /* 104 */ "sdr1", "", "dar", "dsisr", "sprg0", "sprg1", "sprg2", "sprg3",\
  /* 112 */ "srr0", "srr1", "tbl", "tbu", "dec", "dabr", "ear"

/* For the RS6000, we only cover user-level SPR's.  */
char *register_names_rs6000[] =
{
  COMMON_UISA_REG_NAMES,
  /* 66 */ "cnd", "lr", "cnt", "xer", "mq"
};

/* a UISA-only view of the PowerPC.  */
char *register_names_uisa[] =
{
  COMMON_UISA_REG_NAMES,
  PPC_UISA_SPR_NAMES
};

char *register_names_403[] =
{
  COMMON_UISA_REG_NAMES,
  PPC_UISA_SPR_NAMES,
  PPC_SEGMENT_REG_NAMES,
  PPC_32_OEA_SPR_NAMES,
  /* 119 */ "icdbdr", "esr", "dear", "evpr", "cdbcr", "tsr", "tcr", "pit",
  /* 127 */ "tbhi", "tblo", "srr2", "srr3", "dbsr", "dbcr", "iac1", "iac2",
  /* 135 */ "dac1", "dac2", "dccr", "iccr", "pbl1", "pbu1", "pbl2", "pbu2"
};

char *register_names_403GC[] =
{
  COMMON_UISA_REG_NAMES,
  PPC_UISA_SPR_NAMES,
  PPC_SEGMENT_REG_NAMES,
  PPC_32_OEA_SPR_NAMES,
  /* 119 */ "icdbdr", "esr", "dear", "evpr", "cdbcr", "tsr", "tcr", "pit",
  /* 127 */ "tbhi", "tblo", "srr2", "srr3", "dbsr", "dbcr", "iac1", "iac2",
  /* 135 */ "dac1", "dac2", "dccr", "iccr", "pbl1", "pbu1", "pbl2", "pbu2",
  /* 143 */ "zpr", "pid", "sgr", "dcwr", "tbhu", "tblu"
};

char *register_names_505[] =
{
  COMMON_UISA_REG_NAMES,
  PPC_UISA_SPR_NAMES,
  PPC_SEGMENT_REG_NAMES,
  PPC_32_OEA_SPR_NAMES,
  /* 119 */ "eie", "eid", "nri"
};

char *register_names_860[] =
{
  COMMON_UISA_REG_NAMES,
  PPC_UISA_SPR_NAMES,
  PPC_SEGMENT_REG_NAMES,
  PPC_32_OEA_SPR_NAMES,
  /* 119 */ "eie", "eid", "nri", "cmpa", "cmpb", "cmpc", "cmpd", "icr",
  /* 127 */ "der", "counta", "countb", "cmpe", "cmpf", "cmpg", "cmph",
  /* 134 */ "lctrl1", "lctrl2", "ictrl", "bar", "ic_cst", "ic_adr", "ic_dat",
  /* 141 */ "dc_cst", "dc_adr", "dc_dat", "dpdr", "dpir", "immr", "mi_ctr",
  /* 148 */ "mi_ap", "mi_epn", "mi_twc", "mi_rpn", "md_ctr", "m_casid",
  /* 154 */ "md_ap", "md_epn", "md_twb", "md_twc", "md_rpn", "m_tw",
  /* 160 */ "mi_dbcam", "mi_dbram0", "mi_dbram1", "md_dbcam", "md_dbram0",
  /* 165 */ "md_dbram1"
};

/* Note that the 601 has different register numbers for reading and
   writing RTCU and RTCL.  However, how one reads and writes a
   register is the stub's problem.  */
char *register_names_601[] =
{
  COMMON_UISA_REG_NAMES,
  PPC_UISA_SPR_NAMES,
  PPC_SEGMENT_REG_NAMES,
  PPC_32_OEA_SPR_NAMES,
  /* 119 */ "hid0", "hid1", "iabr", "dabr", "pir", "mq", "rtcu",
  /* 126 */ "rtcl"
};

char *register_names_602[] =
{
  COMMON_UISA_REG_NAMES,
  PPC_UISA_SPR_NAMES,
  PPC_SEGMENT_REG_NAMES,
  PPC_32_OEA_SPR_NAMES,
  /* 119 */ "hid0", "hid1", "iabr", "", "", "tcr", "ibr", "esassr", "sebr",
  /* 128 */ "ser", "sp", "lt"
};

char *register_names_603[] =
{
  COMMON_UISA_REG_NAMES,
  PPC_UISA_SPR_NAMES,
  PPC_SEGMENT_REG_NAMES,
  PPC_32_OEA_SPR_NAMES,
  /* 119 */ "hid0", "hid1", "iabr", "", "", "dmiss", "dcmp", "hash1",
  /* 127 */ "hash2", "imiss", "icmp", "rpa"
};

char *register_names_604[] =
{
  COMMON_UISA_REG_NAMES,
  PPC_UISA_SPR_NAMES,
  PPC_SEGMENT_REG_NAMES,
  PPC_32_OEA_SPR_NAMES,
  /* 119 */ "hid0", "hid1", "iabr", "dabr", "pir", "mmcr0", "pmc1", "pmc2",
  /* 127 */ "sia", "sda"
};

char *register_names_750[] =
{
  COMMON_UISA_REG_NAMES,
  PPC_UISA_SPR_NAMES,
  PPC_SEGMENT_REG_NAMES,
  PPC_32_OEA_SPR_NAMES,
  /* 119 */ "hid0", "hid1", "iabr", "dabr", "", "ummcr0", "upmc1", "upmc2",
  /* 127 */ "usia", "ummcr1", "upmc3", "upmc4", "mmcr0", "pmc1", "pmc2",
  /* 134 */ "sia", "mmcr1", "pmc3", "pmc4", "l2cr", "ictc", "thrm1", "thrm2",
  /* 142 */ "thrm3"
};


/* Information about a particular processor variant.  */
struct variant
  {
    /* Name of this variant.  */
    char *name;

    /* English description of the variant.  */
    char *description;

    /* Table of register names; registers[R] is the name of the register
       number R.  */
    int num_registers;
    char **registers;
  };

#define num_registers(list) (sizeof (list) / sizeof((list)[0]))


/* Information in this table comes from the following web sites:
   IBM:       http://www.chips.ibm.com:80/products/embedded/
   Motorola:  http://www.mot.com/SPS/PowerPC/

   I'm sure I've got some of the variant descriptions not quite right.
   Please report any inaccuracies you find to GDB's maintainer.

   If you add entries to this table, please be sure to allow the new
   value as an argument to the --with-cpu flag, in configure.in.  */

static struct variant
  variants[] =
{
  {"ppc-uisa", "PowerPC UISA - a PPC processor as viewed by user-level code",
   num_registers (register_names_uisa), register_names_uisa},
  {"rs6000", "IBM RS6000 (\"POWER\") architecture, user-level view",
   num_registers (register_names_rs6000), register_names_rs6000},
  {"403", "IBM PowerPC 403",
   num_registers (register_names_403), register_names_403},
  {"403GC", "IBM PowerPC 403GC",
   num_registers (register_names_403GC), register_names_403GC},
  {"505", "Motorola PowerPC 505",
   num_registers (register_names_505), register_names_505},
  {"860", "Motorola PowerPC 860 or 850",
   num_registers (register_names_860), register_names_860},
  {"601", "Motorola PowerPC 601",
   num_registers (register_names_601), register_names_601},
  {"602", "Motorola PowerPC 602",
   num_registers (register_names_602), register_names_602},
  {"603", "Motorola/IBM PowerPC 603 or 603e",
   num_registers (register_names_603), register_names_603},
  {"604", "Motorola PowerPC 604 or 604e",
   num_registers (register_names_604), register_names_604},
  {"750", "Motorola/IBM PowerPC 750 or 740",
   num_registers (register_names_750), register_names_750},
  {0, 0, 0, 0}
};


static struct variant *current_variant;

char *
rs6000_register_name (int i)
{
  if (i < 0 || i >= NUM_REGS)
    error ("GDB bug: rs6000-tdep.c (rs6000_register_name): strange register number");

  return ((i < current_variant->num_registers)
	  ? current_variant->registers[i]
	  : "");
}


static void
install_variant (struct variant *v)
{
  current_variant = v;
}


/* Look up the variant named NAME in the `variants' table.  Return a
   pointer to the struct variant, or null if we couldn't find it.  */
static struct variant *
find_variant_by_name (char *name)
{
  int i;

  for (i = 0; variants[i].name; i++)
    if (!strcmp (name, variants[i].name))
      return &variants[i];

  return 0;
}


/* Install the PPC/RS6000 variant named NAME in the `variants' table.
   Return zero if we installed it successfully, or a non-zero value if
   we couldn't do it.

   This might be useful to code outside this file, which doesn't want
   to depend on the exact indices of the entries in the `variants'
   table.  Just make it non-static if you want that.  */
static int
install_variant_by_name (char *name)
{
  struct variant *v = find_variant_by_name (name);

  if (v)
    {
      install_variant (v);
      return 0;
    }
  else
    return 1;
}


static void
list_variants ()
{
  int i;

  printf_filtered ("GDB knows about the following PowerPC and RS6000 variants:\n");

  for (i = 0; variants[i].name; i++)
    printf_filtered ("  %-8s  %s\n",
		     variants[i].name, variants[i].description);
}


static void
show_current_variant ()
{
  printf_filtered ("PowerPC / RS6000 processor variant is set to `%s'.\n",
		   current_variant->name);
}


static void
set_processor (char *arg, int from_tty)
{
  if (!arg || arg[0] == '\0')
    {
      list_variants ();
      return;
    }

  if (install_variant_by_name (arg))
    {
      error_begin ();
      fprintf_filtered (gdb_stderr,
	"`%s' is not a recognized PowerPC / RS6000 variant name.\n\n", arg);
      list_variants ();
      return_to_top_level (RETURN_ERROR);
    }

  show_current_variant ();
}

static void
show_processor (char *arg, int from_tty)
{
  show_current_variant ();
}




/* Initialization code.  */

void
_initialize_rs6000_tdep ()
{
  /* FIXME, this should not be decided via ifdef. */
#ifdef GDB_TARGET_POWERPC
  tm_print_insn = gdb_print_insn_powerpc;
#else
  tm_print_insn = print_insn_rs6000;
#endif

  /* I don't think we should use the set/show command arrangement
     here, because the way that's implemented makes it hard to do the
     error checking we want in a reasonable way.  So we just add them
     as two separate commands.  */
  add_cmd ("processor", class_support, set_processor,
	   "`set processor NAME' sets the PowerPC/RS6000 variant to NAME.\n\
If you set this, GDB will know about the special-purpose registers that are\n\
available on the given variant.\n\
Type `set processor' alone for a list of recognized variant names.",
	   &setlist);
  add_cmd ("processor", class_support, show_processor,
	   "Show the variant of the PowerPC or RS6000 processor in use.\n\
Use `set processor' to change this.",
	   &showlist);

  /* Set the current PPC processor variant.  */
  {
    int status = 1;

#ifdef TARGET_CPU_DEFAULT
    status = install_variant_by_name (TARGET_CPU_DEFAULT);
#endif

    if (status)
      {
#ifdef GDB_TARGET_POWERPC
	install_variant_by_name ("ppc-uisa");
#else
	install_variant_by_name ("rs6000");
#endif
      }
  }
}