aboutsummaryrefslogtreecommitdiff
path: root/gdb/rs6000-tdep.c
blob: 54842cd780dae245461f1e556d973a851e7e1578 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
/* Target-dependent code for GDB, the GNU debugger.

   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
   Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "objfiles.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regset.h"
#include "doublest.h"
#include "value.h"
#include "parser-defs.h"
#include "osabi.h"
#include "infcall.h"
#include "sim-regno.h"
#include "gdb/sim-ppc.h"
#include "reggroups.h"

#include "libbfd.h"		/* for bfd_default_set_arch_mach */
#include "coff/internal.h"	/* for libcoff.h */
#include "libcoff.h"		/* for xcoff_data */
#include "coff/xcoff.h"
#include "libxcoff.h"

#include "elf-bfd.h"

#include "solib-svr4.h"
#include "ppc-tdep.h"

#include "gdb_assert.h"
#include "dis-asm.h"

#include "trad-frame.h"
#include "frame-unwind.h"
#include "frame-base.h"

/* If the kernel has to deliver a signal, it pushes a sigcontext
   structure on the stack and then calls the signal handler, passing
   the address of the sigcontext in an argument register. Usually
   the signal handler doesn't save this register, so we have to
   access the sigcontext structure via an offset from the signal handler
   frame.
   The following constants were determined by experimentation on AIX 3.2.  */
#define SIG_FRAME_PC_OFFSET 96
#define SIG_FRAME_LR_OFFSET 108
#define SIG_FRAME_FP_OFFSET 284

/* To be used by skip_prologue. */

struct rs6000_framedata
  {
    int offset;			/* total size of frame --- the distance
				   by which we decrement sp to allocate
				   the frame */
    int saved_gpr;		/* smallest # of saved gpr */
    int saved_fpr;		/* smallest # of saved fpr */
    int saved_vr;               /* smallest # of saved vr */
    int saved_ev;               /* smallest # of saved ev */
    int alloca_reg;		/* alloca register number (frame ptr) */
    char frameless;		/* true if frameless functions. */
    char nosavedpc;		/* true if pc not saved. */
    int gpr_offset;		/* offset of saved gprs from prev sp */
    int fpr_offset;		/* offset of saved fprs from prev sp */
    int vr_offset;              /* offset of saved vrs from prev sp */
    int ev_offset;              /* offset of saved evs from prev sp */
    int lr_offset;		/* offset of saved lr */
    int cr_offset;		/* offset of saved cr */
    int vrsave_offset;          /* offset of saved vrsave register */
  };

/* Description of a single register. */

struct reg
  {
    char *name;			/* name of register */
    unsigned char sz32;		/* size on 32-bit arch, 0 if nonextant */
    unsigned char sz64;		/* size on 64-bit arch, 0 if nonextant */
    unsigned char fpr;		/* whether register is floating-point */
    unsigned char pseudo;       /* whether register is pseudo */
    int spr_num;                /* PowerPC SPR number, or -1 if not an SPR.
                                   This is an ISA SPR number, not a GDB
                                   register number.  */
  };

/* Breakpoint shadows for the single step instructions will be kept here. */

static struct sstep_breaks
  {
    /* Address, or 0 if this is not in use.  */
    CORE_ADDR address;
    /* Shadow contents.  */
    char data[4];
  }
stepBreaks[2];

/* Hook for determining the TOC address when calling functions in the
   inferior under AIX. The initialization code in rs6000-nat.c sets
   this hook to point to find_toc_address.  */

CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;

/* Hook to set the current architecture when starting a child process. 
   rs6000-nat.c sets this. */

void (*rs6000_set_host_arch_hook) (int) = NULL;

/* Static function prototypes */

static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
			      CORE_ADDR safety);
static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
                                struct rs6000_framedata *);

/* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
int
altivec_register_p (int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
    return 0;
  else
    return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
}


/* Return true if REGNO is an SPE register, false otherwise.  */
int
spe_register_p (int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  
  /* Is it a reference to EV0 -- EV31, and do we have those?  */
  if (tdep->ppc_ev0_regnum >= 0
      && tdep->ppc_ev31_regnum >= 0
      && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
    return 1;

  /* Is it a reference to one of the raw upper GPR halves?  */
  if (tdep->ppc_ev0_upper_regnum >= 0
      && tdep->ppc_ev0_upper_regnum <= regno
      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    return 1;

  /* Is it a reference to the 64-bit accumulator, and do we have that?  */
  if (tdep->ppc_acc_regnum >= 0
      && tdep->ppc_acc_regnum == regno)
    return 1;

  /* Is it a reference to the SPE floating-point status and control register,
     and do we have that?  */
  if (tdep->ppc_spefscr_regnum >= 0
      && tdep->ppc_spefscr_regnum == regno)
    return 1;

  return 0;
}


/* Return non-zero if the architecture described by GDBARCH has
   floating-point registers (f0 --- f31 and fpscr).  */
int
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  return (tdep->ppc_fp0_regnum >= 0
          && tdep->ppc_fpscr_regnum >= 0);
}


/* Check that TABLE[GDB_REGNO] is not already initialized, and then
   set it to SIM_REGNO.

   This is a helper function for init_sim_regno_table, constructing
   the table mapping GDB register numbers to sim register numbers; we
   initialize every element in that table to -1 before we start
   filling it in.  */
static void
set_sim_regno (int *table, int gdb_regno, int sim_regno)
{
  /* Make sure we don't try to assign any given GDB register a sim
     register number more than once.  */
  gdb_assert (table[gdb_regno] == -1);
  table[gdb_regno] = sim_regno;
}


/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
   numbers to simulator register numbers, based on the values placed
   in the ARCH->tdep->ppc_foo_regnum members.  */
static void
init_sim_regno_table (struct gdbarch *arch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
  const struct reg *regs = tdep->regs;
  int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
  int i;

  /* Presume that all registers not explicitly mentioned below are
     unavailable from the sim.  */
  for (i = 0; i < total_regs; i++)
    sim_regno[i] = -1;

  /* General-purpose registers.  */
  for (i = 0; i < ppc_num_gprs; i++)
    set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
  
  /* Floating-point registers.  */
  if (tdep->ppc_fp0_regnum >= 0)
    for (i = 0; i < ppc_num_fprs; i++)
      set_sim_regno (sim_regno,
                     tdep->ppc_fp0_regnum + i,
                     sim_ppc_f0_regnum + i);
  if (tdep->ppc_fpscr_regnum >= 0)
    set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);

  set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
  set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
  set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);

  /* Segment registers.  */
  if (tdep->ppc_sr0_regnum >= 0)
    for (i = 0; i < ppc_num_srs; i++)
      set_sim_regno (sim_regno,
                     tdep->ppc_sr0_regnum + i,
                     sim_ppc_sr0_regnum + i);

  /* Altivec registers.  */
  if (tdep->ppc_vr0_regnum >= 0)
    {
      for (i = 0; i < ppc_num_vrs; i++)
        set_sim_regno (sim_regno,
                       tdep->ppc_vr0_regnum + i,
                       sim_ppc_vr0_regnum + i);

      /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
         we can treat this more like the other cases.  */
      set_sim_regno (sim_regno,
                     tdep->ppc_vr0_regnum + ppc_num_vrs,
                     sim_ppc_vscr_regnum);
    }
  /* vsave is a special-purpose register, so the code below handles it.  */

  /* SPE APU (E500) registers.  */
  if (tdep->ppc_ev0_regnum >= 0)
    for (i = 0; i < ppc_num_gprs; i++)
      set_sim_regno (sim_regno,
                     tdep->ppc_ev0_regnum + i,
                     sim_ppc_ev0_regnum + i);
  if (tdep->ppc_ev0_upper_regnum >= 0)
    for (i = 0; i < ppc_num_gprs; i++)
      set_sim_regno (sim_regno,
                     tdep->ppc_ev0_upper_regnum + i,
                     sim_ppc_rh0_regnum + i);
  if (tdep->ppc_acc_regnum >= 0)
    set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
  /* spefscr is a special-purpose register, so the code below handles it.  */

  /* Now handle all special-purpose registers.  Verify that they
     haven't mistakenly been assigned numbers by any of the above
     code).  */
  for (i = 0; i < total_regs; i++)
    if (regs[i].spr_num >= 0)
      set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);

  /* Drop the initialized array into place.  */
  tdep->sim_regno = sim_regno;
}


/* Given a GDB register number REG, return the corresponding SIM
   register number.  */
static int
rs6000_register_sim_regno (int reg)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  int sim_regno;

  gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
  sim_regno = tdep->sim_regno[reg];

  if (sim_regno >= 0)
    return sim_regno;
  else
    return LEGACY_SIM_REGNO_IGNORE;
}



/* Register set support functions.  */

static void
ppc_supply_reg (struct regcache *regcache, int regnum, 
		const char *regs, size_t offset)
{
  if (regnum != -1 && offset != -1)
    regcache_raw_supply (regcache, regnum, regs + offset);
}

static void
ppc_collect_reg (const struct regcache *regcache, int regnum,
		 char *regs, size_t offset)
{
  if (regnum != -1 && offset != -1)
    regcache_raw_collect (regcache, regnum, regs + offset);
}
    
/* Supply register REGNUM in the general-purpose register set REGSET
   from the buffer specified by GREGS and LEN to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

void
ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
		    int regnum, const void *gregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const struct ppc_reg_offsets *offsets = regset->descr;
  size_t offset;
  int i;

  for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
       i < tdep->ppc_gp0_regnum + ppc_num_gprs;
       i++, offset += 4)
    {
      if (regnum == -1 || regnum == i)
	ppc_supply_reg (regcache, i, gregs, offset);
    }

  if (regnum == -1 || regnum == PC_REGNUM)
    ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
  if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
    ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
		    gregs, offsets->ps_offset);
  if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
    ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
		    gregs, offsets->cr_offset);
  if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
    ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
		    gregs, offsets->lr_offset);
  if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
    ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
		    gregs, offsets->ctr_offset);
  if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
    ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
		    gregs, offsets->cr_offset);
  if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
    ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
}

/* Supply register REGNUM in the floating-point register set REGSET
   from the buffer specified by FPREGS and LEN to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

void
ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
		     int regnum, const void *fpregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const struct ppc_reg_offsets *offsets = regset->descr;
  size_t offset;
  int i;

  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  offset = offsets->f0_offset;
  for (i = tdep->ppc_fp0_regnum;
       i < tdep->ppc_fp0_regnum + ppc_num_fprs;
       i++, offset += 4)
    {
      if (regnum == -1 || regnum == i)
	ppc_supply_reg (regcache, i, fpregs, offset);
    }

  if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
    ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
		    fpregs, offsets->fpscr_offset);
}

/* Collect register REGNUM in the general-purpose register set
   REGSET. from register cache REGCACHE into the buffer specified by
   GREGS and LEN.  If REGNUM is -1, do this for all registers in
   REGSET.  */

void
ppc_collect_gregset (const struct regset *regset,
		     const struct regcache *regcache,
		     int regnum, void *gregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const struct ppc_reg_offsets *offsets = regset->descr;
  size_t offset;
  int i;

  offset = offsets->r0_offset;
  for (i = tdep->ppc_gp0_regnum;
       i < tdep->ppc_gp0_regnum + ppc_num_gprs;
       i++, offset += 4)
    {
      if (regnum == -1 || regnum == i)
	ppc_collect_reg (regcache, i, gregs, offset);
    }

  if (regnum == -1 || regnum == PC_REGNUM)
    ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
  if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
    ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
		     gregs, offsets->ps_offset);
  if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
    ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
		     gregs, offsets->cr_offset);
  if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
    ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
		     gregs, offsets->lr_offset);
  if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
    ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
		     gregs, offsets->ctr_offset);
  if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
    ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
		     gregs, offsets->xer_offset);
  if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
    ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
		     gregs, offsets->mq_offset);
}

/* Collect register REGNUM in the floating-point register set
   REGSET. from register cache REGCACHE into the buffer specified by
   FPREGS and LEN.  If REGNUM is -1, do this for all registers in
   REGSET.  */

void
ppc_collect_fpregset (const struct regset *regset,
		      const struct regcache *regcache,
		      int regnum, void *fpregs, size_t len)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const struct ppc_reg_offsets *offsets = regset->descr;
  size_t offset;
  int i;

  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  offset = offsets->f0_offset;
  for (i = tdep->ppc_fp0_regnum;
       i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
       i++, offset += 4)
    {
      if (regnum == -1 || regnum == i)
	ppc_collect_reg (regcache, regnum, fpregs, offset);
    }

  if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
    ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
		     fpregs, offsets->fpscr_offset);
}


/* Read a LEN-byte address from debugged memory address MEMADDR. */

static CORE_ADDR
read_memory_addr (CORE_ADDR memaddr, int len)
{
  return read_memory_unsigned_integer (memaddr, len);
}

static CORE_ADDR
rs6000_skip_prologue (CORE_ADDR pc)
{
  struct rs6000_framedata frame;
  pc = skip_prologue (pc, 0, &frame);
  return pc;
}


/* Fill in fi->saved_regs */

struct frame_extra_info
{
  /* Functions calling alloca() change the value of the stack
     pointer. We need to use initial stack pointer (which is saved in
     r31 by gcc) in such cases. If a compiler emits traceback table,
     then we should use the alloca register specified in traceback
     table. FIXME. */
  CORE_ADDR initial_sp;		/* initial stack pointer. */
};

/* Get the ith function argument for the current function.  */
static CORE_ADDR
rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, 
			       struct type *type)
{
  CORE_ADDR addr;
  get_frame_register (frame, 3 + argi, &addr);
  return addr;
}

/* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */

static CORE_ADDR
branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
{
  CORE_ADDR dest;
  int immediate;
  int absolute;
  int ext_op;

  absolute = (int) ((instr >> 1) & 1);

  switch (opcode)
    {
    case 18:
      immediate = ((instr & ~3) << 6) >> 6;	/* br unconditional */
      if (absolute)
	dest = immediate;
      else
	dest = pc + immediate;
      break;

    case 16:
      immediate = ((instr & ~3) << 16) >> 16;	/* br conditional */
      if (absolute)
	dest = immediate;
      else
	dest = pc + immediate;
      break;

    case 19:
      ext_op = (instr >> 1) & 0x3ff;

      if (ext_op == 16)		/* br conditional register */
	{
          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;

	  /* If we are about to return from a signal handler, dest is
	     something like 0x3c90.  The current frame is a signal handler
	     caller frame, upon completion of the sigreturn system call
	     execution will return to the saved PC in the frame.  */
	  if (dest < TEXT_SEGMENT_BASE)
	    {
	      struct frame_info *fi;

	      fi = get_current_frame ();
	      if (fi != NULL)
		dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
					 gdbarch_tdep (current_gdbarch)->wordsize);
	    }
	}

      else if (ext_op == 528)	/* br cond to count reg */
	{
          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;

	  /* If we are about to execute a system call, dest is something
	     like 0x22fc or 0x3b00.  Upon completion the system call
	     will return to the address in the link register.  */
	  if (dest < TEXT_SEGMENT_BASE)
            dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
	}
      else
	return -1;
      break;

    default:
      return -1;
    }
  return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
}


/* Sequence of bytes for breakpoint instruction.  */

const static unsigned char *
rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
{
  static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
  static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
  *bp_size = 4;
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    return big_breakpoint;
  else
    return little_breakpoint;
}


/* AIX does not support PT_STEP. Simulate it. */

void
rs6000_software_single_step (enum target_signal signal,
			     int insert_breakpoints_p)
{
  CORE_ADDR dummy;
  int breakp_sz;
  const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
  int ii, insn;
  CORE_ADDR loc;
  CORE_ADDR breaks[2];
  int opcode;

  if (insert_breakpoints_p)
    {

      loc = read_pc ();

      insn = read_memory_integer (loc, 4);

      breaks[0] = loc + breakp_sz;
      opcode = insn >> 26;
      breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);

      /* Don't put two breakpoints on the same address. */
      if (breaks[1] == breaks[0])
	breaks[1] = -1;

      stepBreaks[1].address = 0;

      for (ii = 0; ii < 2; ++ii)
	{

	  /* ignore invalid breakpoint. */
	  if (breaks[ii] == -1)
	    continue;
	  target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
	  stepBreaks[ii].address = breaks[ii];
	}

    }
  else
    {

      /* remove step breakpoints. */
      for (ii = 0; ii < 2; ++ii)
	if (stepBreaks[ii].address != 0)
	  target_remove_breakpoint (stepBreaks[ii].address,
				    stepBreaks[ii].data);
    }
  errno = 0;			/* FIXME, don't ignore errors! */
  /* What errors?  {read,write}_memory call error().  */
}


/* return pc value after skipping a function prologue and also return
   information about a function frame.

   in struct rs6000_framedata fdata:
   - frameless is TRUE, if function does not have a frame.
   - nosavedpc is TRUE, if function does not save %pc value in its frame.
   - offset is the initial size of this stack frame --- the amount by
   which we decrement the sp to allocate the frame.
   - saved_gpr is the number of the first saved gpr.
   - saved_fpr is the number of the first saved fpr.
   - saved_vr is the number of the first saved vr.
   - saved_ev is the number of the first saved ev.
   - alloca_reg is the number of the register used for alloca() handling.
   Otherwise -1.
   - gpr_offset is the offset of the first saved gpr from the previous frame.
   - fpr_offset is the offset of the first saved fpr from the previous frame.
   - vr_offset is the offset of the first saved vr from the previous frame.
   - ev_offset is the offset of the first saved ev from the previous frame.
   - lr_offset is the offset of the saved lr
   - cr_offset is the offset of the saved cr
   - vrsave_offset is the offset of the saved vrsave register
 */

#define SIGNED_SHORT(x) 						\
  ((sizeof (short) == 2)						\
   ? ((int)(short)(x))							\
   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))

#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)

/* Limit the number of skipped non-prologue instructions, as the examining
   of the prologue is expensive.  */
static int max_skip_non_prologue_insns = 10;

/* Given PC representing the starting address of a function, and
   LIM_PC which is the (sloppy) limit to which to scan when looking
   for a prologue, attempt to further refine this limit by using
   the line data in the symbol table.  If successful, a better guess
   on where the prologue ends is returned, otherwise the previous
   value of lim_pc is returned.  */

/* FIXME: cagney/2004-02-14: This function and logic have largely been
   superseded by skip_prologue_using_sal.  */

static CORE_ADDR
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
{
  struct symtab_and_line prologue_sal;

  prologue_sal = find_pc_line (pc, 0);
  if (prologue_sal.line != 0)
    {
      int i;
      CORE_ADDR addr = prologue_sal.end;

      /* Handle the case in which compiler's optimizer/scheduler
         has moved instructions into the prologue.  We scan ahead
	 in the function looking for address ranges whose corresponding
	 line number is less than or equal to the first one that we
	 found for the function.  (It can be less than when the
	 scheduler puts a body instruction before the first prologue
	 instruction.)  */
      for (i = 2 * max_skip_non_prologue_insns; 
           i > 0 && (lim_pc == 0 || addr < lim_pc);
	   i--)
        {
	  struct symtab_and_line sal;

	  sal = find_pc_line (addr, 0);
	  if (sal.line == 0)
	    break;
	  if (sal.line <= prologue_sal.line 
	      && sal.symtab == prologue_sal.symtab)
	    {
	      prologue_sal = sal;
	    }
	  addr = sal.end;
	}

      if (lim_pc == 0 || prologue_sal.end < lim_pc)
	lim_pc = prologue_sal.end;
    }
  return lim_pc;
}

/* Return nonzero if the given instruction OP can be part of the prologue
   of a function and saves a parameter on the stack.  FRAMEP should be
   set if one of the previous instructions in the function has set the
   Frame Pointer.  */

static int
store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
{
  /* Move parameters from argument registers to temporary register.  */
  if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
    {
      /* Rx must be scratch register r0.  */
      const int rx_regno = (op >> 16) & 31;
      /* Ry: Only r3 - r10 are used for parameter passing.  */
      const int ry_regno = GET_SRC_REG (op);

      if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
        {
          *r0_contains_arg = 1;
          return 1;
        }
      else
        return 0;
    }

  /* Save a General Purpose Register on stack.  */

  if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
      (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
    {
      /* Rx: Only r3 - r10 are used for parameter passing.  */
      const int rx_regno = GET_SRC_REG (op);

      return (rx_regno >= 3 && rx_regno <= 10);
    }
           
  /* Save a General Purpose Register on stack via the Frame Pointer.  */

  if (framep &&
      ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
       (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
       (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
    {
      /* Rx: Usually, only r3 - r10 are used for parameter passing.
         However, the compiler sometimes uses r0 to hold an argument.  */
      const int rx_regno = GET_SRC_REG (op);

      return ((rx_regno >= 3 && rx_regno <= 10)
              || (rx_regno == 0 && *r0_contains_arg));
    }

  if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
    {
      /* Only f2 - f8 are used for parameter passing.  */
      const int src_regno = GET_SRC_REG (op);

      return (src_regno >= 2 && src_regno <= 8);
    }

  if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
    {
      /* Only f2 - f8 are used for parameter passing.  */
      const int src_regno = GET_SRC_REG (op);

      return (src_regno >= 2 && src_regno <= 8);
    }

  /* Not an insn that saves a parameter on stack.  */
  return 0;
}

static CORE_ADDR
skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
{
  CORE_ADDR orig_pc = pc;
  CORE_ADDR last_prologue_pc = pc;
  CORE_ADDR li_found_pc = 0;
  char buf[4];
  unsigned long op;
  long offset = 0;
  long vr_saved_offset = 0;
  int lr_reg = -1;
  int cr_reg = -1;
  int vr_reg = -1;
  int ev_reg = -1;
  long ev_offset = 0;
  int vrsave_reg = -1;
  int reg;
  int framep = 0;
  int minimal_toc_loaded = 0;
  int prev_insn_was_prologue_insn = 1;
  int num_skip_non_prologue_insns = 0;
  int r0_contains_arg = 0;
  const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  
  /* Attempt to find the end of the prologue when no limit is specified.
     Note that refine_prologue_limit() has been written so that it may
     be used to "refine" the limits of non-zero PC values too, but this
     is only safe if we 1) trust the line information provided by the
     compiler and 2) iterate enough to actually find the end of the
     prologue.  
     
     It may become a good idea at some point (for both performance and
     accuracy) to unconditionally call refine_prologue_limit().  But,
     until we can make a clear determination that this is beneficial,
     we'll play it safe and only use it to obtain a limit when none
     has been specified.  */
  if (lim_pc == 0)
    lim_pc = refine_prologue_limit (pc, lim_pc);

  memset (fdata, 0, sizeof (struct rs6000_framedata));
  fdata->saved_gpr = -1;
  fdata->saved_fpr = -1;
  fdata->saved_vr = -1;
  fdata->saved_ev = -1;
  fdata->alloca_reg = -1;
  fdata->frameless = 1;
  fdata->nosavedpc = 1;

  for (;; pc += 4)
    {
      /* Sometimes it isn't clear if an instruction is a prologue
         instruction or not.  When we encounter one of these ambiguous
	 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
	 Otherwise, we'll assume that it really is a prologue instruction. */
      if (prev_insn_was_prologue_insn)
	last_prologue_pc = pc;

      /* Stop scanning if we've hit the limit.  */
      if (lim_pc != 0 && pc >= lim_pc)
	break;

      prev_insn_was_prologue_insn = 1;

      /* Fetch the instruction and convert it to an integer.  */
      if (target_read_memory (pc, buf, 4))
	break;
      op = extract_signed_integer (buf, 4);

      if ((op & 0xfc1fffff) == 0x7c0802a6)
	{			/* mflr Rx */
	  /* Since shared library / PIC code, which needs to get its
	     address at runtime, can appear to save more than one link
	     register vis:

	     *INDENT-OFF*
	     stwu r1,-304(r1)
	     mflr r3
	     bl 0xff570d0 (blrl)
	     stw r30,296(r1)
	     mflr r30
	     stw r31,300(r1)
	     stw r3,308(r1);
	     ...
	     *INDENT-ON*

	     remember just the first one, but skip over additional
	     ones.  */
	  if (lr_reg < 0)
	    lr_reg = (op & 0x03e00000);
          if (lr_reg == 0)
            r0_contains_arg = 0;
	  continue;
	}
      else if ((op & 0xfc1fffff) == 0x7c000026)
	{			/* mfcr Rx */
	  cr_reg = (op & 0x03e00000);
          if (cr_reg == 0)
            r0_contains_arg = 0;
	  continue;

	}
      else if ((op & 0xfc1f0000) == 0xd8010000)
	{			/* stfd Rx,NUM(r1) */
	  reg = GET_SRC_REG (op);
	  if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
	    {
	      fdata->saved_fpr = reg;
	      fdata->fpr_offset = SIGNED_SHORT (op) + offset;
	    }
	  continue;

	}
      else if (((op & 0xfc1f0000) == 0xbc010000) ||	/* stm Rx, NUM(r1) */
	       (((op & 0xfc1f0000) == 0x90010000 ||	/* st rx,NUM(r1) */
		 (op & 0xfc1f0003) == 0xf8010000) &&	/* std rx,NUM(r1) */
		(op & 0x03e00000) >= 0x01a00000))	/* rx >= r13 */
	{

	  reg = GET_SRC_REG (op);
	  if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
	    {
	      fdata->saved_gpr = reg;
	      if ((op & 0xfc1f0003) == 0xf8010000)
		op &= ~3UL;
	      fdata->gpr_offset = SIGNED_SHORT (op) + offset;
	    }
	  continue;

	}
      else if ((op & 0xffff0000) == 0x60000000)
        {
	  /* nop */
	  /* Allow nops in the prologue, but do not consider them to
	     be part of the prologue unless followed by other prologue
	     instructions. */
	  prev_insn_was_prologue_insn = 0;
	  continue;

	}
      else if ((op & 0xffff0000) == 0x3c000000)
	{			/* addis 0,0,NUM, used
				   for >= 32k frames */
	  fdata->offset = (op & 0x0000ffff) << 16;
	  fdata->frameless = 0;
          r0_contains_arg = 0;
	  continue;

	}
      else if ((op & 0xffff0000) == 0x60000000)
	{			/* ori 0,0,NUM, 2nd ha
				   lf of >= 32k frames */
	  fdata->offset |= (op & 0x0000ffff);
	  fdata->frameless = 0;
          r0_contains_arg = 0;
	  continue;

	}
      else if (lr_reg >= 0 &&
	       /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
	       (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
		/* stw Rx, NUM(r1) */
		((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
		/* stwu Rx, NUM(r1) */
		((op & 0xffff0000) == (lr_reg | 0x94010000))))
	{	/* where Rx == lr */
	  fdata->lr_offset = offset;
	  fdata->nosavedpc = 0;
	  /* Invalidate lr_reg, but don't set it to -1.
	     That would mean that it had never been set.  */
	  lr_reg = -2;
	  if ((op & 0xfc000003) == 0xf8000000 ||	/* std */
	      (op & 0xfc000000) == 0x90000000)		/* stw */
	    {
	      /* Does not update r1, so add displacement to lr_offset.  */
	      fdata->lr_offset += SIGNED_SHORT (op);
	    }
	  continue;

	}
      else if (cr_reg >= 0 &&
	       /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
	       (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
		/* stw Rx, NUM(r1) */
		((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
		/* stwu Rx, NUM(r1) */
		((op & 0xffff0000) == (cr_reg | 0x94010000))))
	{	/* where Rx == cr */
	  fdata->cr_offset = offset;
	  /* Invalidate cr_reg, but don't set it to -1.
	     That would mean that it had never been set.  */
	  cr_reg = -2;
	  if ((op & 0xfc000003) == 0xf8000000 ||
	      (op & 0xfc000000) == 0x90000000)
	    {
	      /* Does not update r1, so add displacement to cr_offset.  */
	      fdata->cr_offset += SIGNED_SHORT (op);
	    }
	  continue;

	}
      else if (op == 0x48000005)
	{			/* bl .+4 used in 
				   -mrelocatable */
	  continue;

	}
      else if (op == 0x48000004)
	{			/* b .+4 (xlc) */
	  break;

	}
      else if ((op & 0xffff0000) == 0x3fc00000 ||  /* addis 30,0,foo@ha, used
						      in V.4 -mminimal-toc */
	       (op & 0xffff0000) == 0x3bde0000)
	{			/* addi 30,30,foo@l */
	  continue;

	}
      else if ((op & 0xfc000001) == 0x48000001)
	{			/* bl foo, 
				   to save fprs??? */

	  fdata->frameless = 0;
	  /* Don't skip over the subroutine call if it is not within
	     the first three instructions of the prologue.  */
	  if ((pc - orig_pc) > 8)
	    break;

	  op = read_memory_integer (pc + 4, 4);

	  /* At this point, make sure this is not a trampoline
	     function (a function that simply calls another functions,
	     and nothing else).  If the next is not a nop, this branch
	     was part of the function prologue. */

	  if (op == 0x4def7b82 || op == 0)	/* crorc 15, 15, 15 */
	    break;		/* don't skip over 
				   this branch */
	  continue;

	}
      /* update stack pointer */
      else if ((op & 0xfc1f0000) == 0x94010000)
	{		/* stu rX,NUM(r1) ||  stwu rX,NUM(r1) */
	  fdata->frameless = 0;
	  fdata->offset = SIGNED_SHORT (op);
	  offset = fdata->offset;
	  continue;
	}
      else if ((op & 0xfc1f016a) == 0x7c01016e)
	{			/* stwux rX,r1,rY */
	  /* no way to figure out what r1 is going to be */
	  fdata->frameless = 0;
	  offset = fdata->offset;
	  continue;
	}
      else if ((op & 0xfc1f0003) == 0xf8010001)
	{			/* stdu rX,NUM(r1) */
	  fdata->frameless = 0;
	  fdata->offset = SIGNED_SHORT (op & ~3UL);
	  offset = fdata->offset;
	  continue;
	}
      else if ((op & 0xfc1f016a) == 0x7c01016a)
	{			/* stdux rX,r1,rY */
	  /* no way to figure out what r1 is going to be */
	  fdata->frameless = 0;
	  offset = fdata->offset;
	  continue;
	}
      /* Load up minimal toc pointer */
      else if (((op >> 22) == 0x20f	||	/* l r31,... or l r30,... */
	       (op >> 22) == 0x3af)		/* ld r31,... or ld r30,... */
	       && !minimal_toc_loaded)
	{
	  minimal_toc_loaded = 1;
	  continue;

	  /* move parameters from argument registers to local variable
             registers */
 	}
      else if ((op & 0xfc0007fe) == 0x7c000378 &&	/* mr(.)  Rx,Ry */
               (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
               (((op >> 21) & 31) <= 10) &&
               ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
	{
	  continue;

	  /* store parameters in stack */
	}
      /* Move parameters from argument registers to temporary register.  */
      else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
        {
	  continue;

	  /* Set up frame pointer */
	}
      else if (op == 0x603f0000	/* oril r31, r1, 0x0 */
	       || op == 0x7c3f0b78)
	{			/* mr r31, r1 */
	  fdata->frameless = 0;
	  framep = 1;
	  fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
	  continue;

	  /* Another way to set up the frame pointer.  */
	}
      else if ((op & 0xfc1fffff) == 0x38010000)
	{			/* addi rX, r1, 0x0 */
	  fdata->frameless = 0;
	  framep = 1;
	  fdata->alloca_reg = (tdep->ppc_gp0_regnum
			       + ((op & ~0x38010000) >> 21));
	  continue;
	}
      /* AltiVec related instructions.  */
      /* Store the vrsave register (spr 256) in another register for
	 later manipulation, or load a register into the vrsave
	 register.  2 instructions are used: mfvrsave and
	 mtvrsave.  They are shorthand notation for mfspr Rn, SPR256
	 and mtspr SPR256, Rn.  */
      /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
	 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110  */
      else if ((op & 0xfc1fffff) == 0x7c0042a6)    /* mfvrsave Rn */
	{
          vrsave_reg = GET_SRC_REG (op);
	  continue;
	}
      else if ((op & 0xfc1fffff) == 0x7c0043a6)     /* mtvrsave Rn */
        {
          continue;
        }
      /* Store the register where vrsave was saved to onto the stack:
         rS is the register where vrsave was stored in a previous
	 instruction.  */
      /* 100100 sssss 00001 dddddddd dddddddd */
      else if ((op & 0xfc1f0000) == 0x90010000)     /* stw rS, d(r1) */
        {
          if (vrsave_reg == GET_SRC_REG (op))
	    {
	      fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
	      vrsave_reg = -1;
	    }
          continue;
        }
      /* Compute the new value of vrsave, by modifying the register
         where vrsave was saved to.  */
      else if (((op & 0xfc000000) == 0x64000000)    /* oris Ra, Rs, UIMM */
	       || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
	{
	  continue;
	}
      /* li r0, SIMM (short for addi r0, 0, SIMM).  This is the first
	 in a pair of insns to save the vector registers on the
	 stack.  */
      /* 001110 00000 00000 iiii iiii iiii iiii  */
      /* 001110 01110 00000 iiii iiii iiii iiii  */
      else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
               || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
	{
          if ((op & 0xffff0000) == 0x38000000)
            r0_contains_arg = 0;
	  li_found_pc = pc;
	  vr_saved_offset = SIGNED_SHORT (op);

          /* This insn by itself is not part of the prologue, unless
             if part of the pair of insns mentioned above. So do not
             record this insn as part of the prologue yet.  */
          prev_insn_was_prologue_insn = 0;
	}
      /* Store vector register S at (r31+r0) aligned to 16 bytes.  */      
      /* 011111 sssss 11111 00000 00111001110 */
      else if ((op & 0xfc1fffff) == 0x7c1f01ce)   /* stvx Vs, R31, R0 */
        {
	  if (pc == (li_found_pc + 4))
	    {
	      vr_reg = GET_SRC_REG (op);
	      /* If this is the first vector reg to be saved, or if
		 it has a lower number than others previously seen,
		 reupdate the frame info.  */
	      if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
		{
		  fdata->saved_vr = vr_reg;
		  fdata->vr_offset = vr_saved_offset + offset;
		}
	      vr_saved_offset = -1;
	      vr_reg = -1;
	      li_found_pc = 0;
	    }
	}
      /* End AltiVec related instructions.  */

      /* Start BookE related instructions.  */
      /* Store gen register S at (r31+uimm).
         Any register less than r13 is volatile, so we don't care.  */
      /* 000100 sssss 11111 iiiii 01100100001 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xfc1f07ff) == 0x101f0321)    /* evstdd Rs,uimm(R31) */
	{
          if ((op & 0x03e00000) >= 0x01a00000)	/* Rs >= r13 */
	    {
              unsigned int imm;
	      ev_reg = GET_SRC_REG (op);
              imm = (op >> 11) & 0x1f;
	      ev_offset = imm * 8;
	      /* If this is the first vector reg to be saved, or if
		 it has a lower number than others previously seen,
		 reupdate the frame info.  */
	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
		{
		  fdata->saved_ev = ev_reg;
		  fdata->ev_offset = ev_offset + offset;
		}
	    }
          continue;
        }
      /* Store gen register rS at (r1+rB).  */
      /* 000100 sssss 00001 bbbbb 01100100000 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xffe007ff) == 0x13e00320)     /* evstddx RS,R1,Rb */
	{
          if (pc == (li_found_pc + 4))
            {
              ev_reg = GET_SRC_REG (op);
	      /* If this is the first vector reg to be saved, or if
                 it has a lower number than others previously seen,
                 reupdate the frame info.  */
              /* We know the contents of rB from the previous instruction.  */
	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
		{
                  fdata->saved_ev = ev_reg;
                  fdata->ev_offset = vr_saved_offset + offset;
		}
	      vr_saved_offset = -1;
	      ev_reg = -1;
	      li_found_pc = 0;
            }
          continue;
        }
      /* Store gen register r31 at (rA+uimm).  */
      /* 000100 11111 aaaaa iiiii 01100100001 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xffe007ff) == 0x13e00321)   /* evstdd R31,Ra,UIMM */
        {
          /* Wwe know that the source register is 31 already, but
             it can't hurt to compute it.  */
	  ev_reg = GET_SRC_REG (op);
          ev_offset = ((op >> 11) & 0x1f) * 8;
	  /* If this is the first vector reg to be saved, or if
	     it has a lower number than others previously seen,
	     reupdate the frame info.  */
	  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
	    {
	      fdata->saved_ev = ev_reg;
	      fdata->ev_offset = ev_offset + offset;
	    }

	  continue;
      	}
      /* Store gen register S at (r31+r0).
         Store param on stack when offset from SP bigger than 4 bytes.  */
      /* 000100 sssss 11111 00000 01100100000 */
      else if (arch_info->mach == bfd_mach_ppc_e500
	       && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
	{
          if (pc == (li_found_pc + 4))
            {
              if ((op & 0x03e00000) >= 0x01a00000)
		{
		  ev_reg = GET_SRC_REG (op);
		  /* If this is the first vector reg to be saved, or if
		     it has a lower number than others previously seen,
		     reupdate the frame info.  */
                  /* We know the contents of r0 from the previous
                     instruction.  */
		  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
		    {
		      fdata->saved_ev = ev_reg;
		      fdata->ev_offset = vr_saved_offset + offset;
		    }
		  ev_reg = -1;
		}
	      vr_saved_offset = -1;
	      li_found_pc = 0;
	      continue;
            }
	}
      /* End BookE related instructions.  */

      else
	{
	  /* Not a recognized prologue instruction.
	     Handle optimizer code motions into the prologue by continuing
	     the search if we have no valid frame yet or if the return
	     address is not yet saved in the frame.  */
	  if (fdata->frameless == 0
	      && (lr_reg == -1 || fdata->nosavedpc == 0))
	    break;

	  if (op == 0x4e800020		/* blr */
	      || op == 0x4e800420)	/* bctr */
	    /* Do not scan past epilogue in frameless functions or
	       trampolines.  */
	    break;
	  if ((op & 0xf4000000) == 0x40000000) /* bxx */
	    /* Never skip branches.  */
	    break;

	  if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
	    /* Do not scan too many insns, scanning insns is expensive with
	       remote targets.  */
	    break;

	  /* Continue scanning.  */
	  prev_insn_was_prologue_insn = 0;
	  continue;
	}
    }

#if 0
/* I have problems with skipping over __main() that I need to address
 * sometime. Previously, I used to use misc_function_vector which
 * didn't work as well as I wanted to be.  -MGO */

  /* If the first thing after skipping a prolog is a branch to a function,
     this might be a call to an initializer in main(), introduced by gcc2.
     We'd like to skip over it as well.  Fortunately, xlc does some extra
     work before calling a function right after a prologue, thus we can
     single out such gcc2 behaviour.  */


  if ((op & 0xfc000001) == 0x48000001)
    {				/* bl foo, an initializer function? */
      op = read_memory_integer (pc + 4, 4);

      if (op == 0x4def7b82)
	{			/* cror 0xf, 0xf, 0xf (nop) */

	  /* Check and see if we are in main.  If so, skip over this
	     initializer function as well.  */

	  tmp = find_pc_misc_function (pc);
	  if (tmp >= 0
	      && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
	    return pc + 8;
	}
    }
#endif /* 0 */

  fdata->offset = -fdata->offset;
  return last_prologue_pc;
}


/*************************************************************************
  Support for creating pushing a dummy frame into the stack, and popping
  frames, etc. 
*************************************************************************/


/* All the ABI's require 16 byte alignment.  */
static CORE_ADDR
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return (addr & -16);
}

/* Pass the arguments in either registers, or in the stack. In RS/6000,
   the first eight words of the argument list (that might be less than
   eight parameters if some parameters occupy more than one word) are
   passed in r3..r10 registers.  float and double parameters are
   passed in fpr's, in addition to that.  Rest of the parameters if any
   are passed in user stack.  There might be cases in which half of the
   parameter is copied into registers, the other half is pushed into
   stack.

   Stack must be aligned on 64-bit boundaries when synthesizing
   function calls.

   If the function is returning a structure, then the return address is passed
   in r3, then the first 7 words of the parameters can be passed in registers,
   starting from r4.  */

static CORE_ADDR
rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			struct regcache *regcache, CORE_ADDR bp_addr,
			int nargs, struct value **args, CORE_ADDR sp,
			int struct_return, CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  int ii;
  int len = 0;
  int argno;			/* current argument number */
  int argbytes;			/* current argument byte */
  char tmp_buffer[50];
  int f_argno = 0;		/* current floating point argno */
  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
  CORE_ADDR func_addr = find_function_addr (function, NULL);

  struct value *arg = 0;
  struct type *type;

  CORE_ADDR saved_sp;

  /* The calling convention this function implements assumes the
     processor has floating-point registers.  We shouldn't be using it
     on PPC variants that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (current_gdbarch));

  /* The first eight words of ther arguments are passed in registers.
     Copy them appropriately.  */
  ii = 0;

  /* If the function is returning a `struct', then the first word
     (which will be passed in r3) is used for struct return address.
     In that case we should advance one word and start from r4
     register to copy parameters.  */
  if (struct_return)
    {
      regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
				   struct_addr);
      ii++;
    }

/* 
   effectively indirect call... gcc does...

   return_val example( float, int);

   eabi: 
   float in fp0, int in r3
   offset of stack on overflow 8/16
   for varargs, must go by type.
   power open:
   float in r3&r4, int in r5
   offset of stack on overflow different 
   both: 
   return in r3 or f0.  If no float, must study how gcc emulates floats;
   pay attention to arg promotion.  
   User may have to cast\args to handle promotion correctly 
   since gdb won't know if prototype supplied or not.
 */

  for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
    {
      int reg_size = register_size (current_gdbarch, ii + 3);

      arg = args[argno];
      type = check_typedef (value_type (arg));
      len = TYPE_LENGTH (type);

      if (TYPE_CODE (type) == TYPE_CODE_FLT)
	{

	  /* Floating point arguments are passed in fpr's, as well as gpr's.
	     There are 13 fpr's reserved for passing parameters. At this point
	     there is no way we would run out of them.  */

	  gdb_assert (len <= 8);

	  regcache_cooked_write (regcache,
	                         tdep->ppc_fp0_regnum + 1 + f_argno,
	                         VALUE_CONTENTS (arg));
	  ++f_argno;
	}

      if (len > reg_size)
	{

	  /* Argument takes more than one register.  */
	  while (argbytes < len)
	    {
	      char word[MAX_REGISTER_SIZE];
	      memset (word, 0, reg_size);
	      memcpy (word,
		      ((char *) VALUE_CONTENTS (arg)) + argbytes,
		      (len - argbytes) > reg_size
		        ? reg_size : len - argbytes);
	      regcache_cooked_write (regcache,
	                            tdep->ppc_gp0_regnum + 3 + ii,
				    word);
	      ++ii, argbytes += reg_size;

	      if (ii >= 8)
		goto ran_out_of_registers_for_arguments;
	    }
	  argbytes = 0;
	  --ii;
	}
      else
	{
	  /* Argument can fit in one register.  No problem.  */
	  int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
	  char word[MAX_REGISTER_SIZE];

	  memset (word, 0, reg_size);
	  memcpy (word, VALUE_CONTENTS (arg), len);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
	}
      ++argno;
    }

ran_out_of_registers_for_arguments:

  saved_sp = read_sp ();

  /* Location for 8 parameters are always reserved.  */
  sp -= wordsize * 8;

  /* Another six words for back chain, TOC register, link register, etc.  */
  sp -= wordsize * 6;

  /* Stack pointer must be quadword aligned.  */
  sp &= -16;

  /* If there are more arguments, allocate space for them in 
     the stack, then push them starting from the ninth one.  */

  if ((argno < nargs) || argbytes)
    {
      int space = 0, jj;

      if (argbytes)
	{
	  space += ((len - argbytes + 3) & -4);
	  jj = argno + 1;
	}
      else
	jj = argno;

      for (; jj < nargs; ++jj)
	{
	  struct value *val = args[jj];
	  space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
	}

      /* Add location required for the rest of the parameters.  */
      space = (space + 15) & -16;
      sp -= space;

      /* This is another instance we need to be concerned about
         securing our stack space. If we write anything underneath %sp
         (r1), we might conflict with the kernel who thinks he is free
         to use this area.  So, update %sp first before doing anything
         else.  */

      regcache_raw_write_signed (regcache, SP_REGNUM, sp);

      /* If the last argument copied into the registers didn't fit there 
         completely, push the rest of it into stack.  */

      if (argbytes)
	{
	  write_memory (sp + 24 + (ii * 4),
			((char *) VALUE_CONTENTS (arg)) + argbytes,
			len - argbytes);
	  ++argno;
	  ii += ((len - argbytes + 3) & -4) / 4;
	}

      /* Push the rest of the arguments into stack.  */
      for (; argno < nargs; ++argno)
	{

	  arg = args[argno];
	  type = check_typedef (value_type (arg));
	  len = TYPE_LENGTH (type);


	  /* Float types should be passed in fpr's, as well as in the
             stack.  */
	  if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
	    {

	      gdb_assert (len <= 8);

	      regcache_cooked_write (regcache,
				     tdep->ppc_fp0_regnum + 1 + f_argno,
				     VALUE_CONTENTS (arg));
	      ++f_argno;
	    }

	  write_memory (sp + 24 + (ii * 4),
                        (char *) VALUE_CONTENTS (arg),
                        len);
	  ii += ((len + 3) & -4) / 4;
	}
    }

  /* Set the stack pointer.  According to the ABI, the SP is meant to
     be set _before_ the corresponding stack space is used.  On AIX,
     this even applies when the target has been completely stopped!
     Not doing this can lead to conflicts with the kernel which thinks
     that it still has control over this not-yet-allocated stack
     region.  */
  regcache_raw_write_signed (regcache, SP_REGNUM, sp);

  /* Set back chain properly.  */
  store_unsigned_integer (tmp_buffer, 4, saved_sp);
  write_memory (sp, tmp_buffer, 4);

  /* Point the inferior function call's return address at the dummy's
     breakpoint.  */
  regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);

  /* Set the TOC register, get the value from the objfile reader
     which, in turn, gets it from the VMAP table.  */
  if (rs6000_find_toc_address_hook != NULL)
    {
      CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
      regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
    }

  target_store_registers (-1);
  return sp;
}

/* PowerOpen always puts structures in memory.  Vectors, which were
   added later, do get returned in a register though.  */

static int     
rs6000_use_struct_convention (int gcc_p, struct type *value_type)
{  
  if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
      && TYPE_VECTOR (value_type))
    return 0;                            
  return 1;
}

static void
rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
{
  int offset = 0;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  /* The calling convention this function implements assumes the
     processor has floating-point registers.  We shouldn't be using it
     on PPC variants that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (current_gdbarch));

  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
    {

      /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
         We need to truncate the return value into float size (4 byte) if
         necessary.  */

      convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
                                      (tdep->ppc_fp0_regnum + 1)],
                              builtin_type_double,
                              valbuf,
                              valtype);
    }
  else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
           && TYPE_LENGTH (valtype) == 16
           && TYPE_VECTOR (valtype))
    {
      memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
	      TYPE_LENGTH (valtype));
    }
  else
    {
      /* return value is copied starting from r3. */
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
	  && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
	offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);

      memcpy (valbuf,
	      regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
	      TYPE_LENGTH (valtype));
    }
}

/* Return whether handle_inferior_event() should proceed through code
   starting at PC in function NAME when stepping.

   The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
   handle memory references that are too distant to fit in instructions
   generated by the compiler.  For example, if 'foo' in the following
   instruction:

     lwz r9,foo(r2)

   is greater than 32767, the linker might replace the lwz with a branch to
   somewhere in @FIX1 that does the load in 2 instructions and then branches
   back to where execution should continue.

   GDB should silently step over @FIX code, just like AIX dbx does.
   Unfortunately, the linker uses the "b" instruction for the branches,
   meaning that the link register doesn't get set.  Therefore, GDB's usual
   step_over_function() mechanism won't work.

   Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
   in handle_inferior_event() to skip past @FIX code.  */

int
rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
{
  return name && !strncmp (name, "@FIX", 4);
}

/* Skip code that the user doesn't want to see when stepping:

   1. Indirect function calls use a piece of trampoline code to do context
   switching, i.e. to set the new TOC table.  Skip such code if we are on
   its first instruction (as when we have single-stepped to here).

   2. Skip shared library trampoline code (which is different from
   indirect function call trampolines).

   3. Skip bigtoc fixup code.

   Result is desired PC to step until, or NULL if we are not in
   code that should be skipped.  */

CORE_ADDR
rs6000_skip_trampoline_code (CORE_ADDR pc)
{
  unsigned int ii, op;
  int rel;
  CORE_ADDR solib_target_pc;
  struct minimal_symbol *msymbol;

  static unsigned trampoline_code[] =
  {
    0x800b0000,			/*     l   r0,0x0(r11)  */
    0x90410014,			/*    st   r2,0x14(r1)  */
    0x7c0903a6,			/* mtctr   r0           */
    0x804b0004,			/*     l   r2,0x4(r11)  */
    0x816b0008,			/*     l  r11,0x8(r11)  */
    0x4e800420,			/*  bctr                */
    0x4e800020,			/*    br                */
    0
  };

  /* Check for bigtoc fixup code.  */
  msymbol = lookup_minimal_symbol_by_pc (pc);
  if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
    {
      /* Double-check that the third instruction from PC is relative "b".  */
      op = read_memory_integer (pc + 8, 4);
      if ((op & 0xfc000003) == 0x48000000)
	{
	  /* Extract bits 6-29 as a signed 24-bit relative word address and
	     add it to the containing PC.  */
	  rel = ((int)(op << 6) >> 6);
	  return pc + 8 + rel;
	}
    }

  /* If pc is in a shared library trampoline, return its target.  */
  solib_target_pc = find_solib_trampoline_target (pc);
  if (solib_target_pc)
    return solib_target_pc;

  for (ii = 0; trampoline_code[ii]; ++ii)
    {
      op = read_memory_integer (pc + (ii * 4), 4);
      if (op != trampoline_code[ii])
	return 0;
    }
  ii = read_register (11);	/* r11 holds destination addr   */
  pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
  return pc;
}

/* Return the size of register REG when words are WORDSIZE bytes long.  If REG
   isn't available with that word size, return 0.  */

static int
regsize (const struct reg *reg, int wordsize)
{
  return wordsize == 8 ? reg->sz64 : reg->sz32;
}

/* Return the name of register number N, or null if no such register exists
   in the current architecture.  */

static const char *
rs6000_register_name (int n)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  const struct reg *reg = tdep->regs + n;

  if (!regsize (reg, tdep->wordsize))
    return NULL;
  return reg->name;
}

/* Return the GDB type object for the "standard" data type
   of data in register N.  */

static struct type *
rs6000_register_type (struct gdbarch *gdbarch, int n)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const struct reg *reg = tdep->regs + n;

  if (reg->fpr)
    return builtin_type_double;
  else
    {
      int size = regsize (reg, tdep->wordsize);
      switch (size)
	{
	case 0:
	  return builtin_type_int0;
	case 4:
	  return builtin_type_uint32;
	case 8:
	  if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
	    return builtin_type_vec64;
	  else
	    return builtin_type_uint64;
	  break;
	case 16:
	  return builtin_type_vec128;
	  break;
	default:
	  internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
			  n, size);
	}
    }
}

/* The register format for RS/6000 floating point registers is always
   double, we need a conversion if the memory format is float.  */

static int
rs6000_convert_register_p (int regnum, struct type *type)
{
  const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
  
  return (reg->fpr
          && TYPE_CODE (type) == TYPE_CODE_FLT
          && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
}

static void
rs6000_register_to_value (struct frame_info *frame,
                          int regnum,
                          struct type *type,
                          void *to)
{
  const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
  char from[MAX_REGISTER_SIZE];
  
  gdb_assert (reg->fpr);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);

  get_frame_register (frame, regnum, from);
  convert_typed_floating (from, builtin_type_double, to, type);
}

static void
rs6000_value_to_register (struct frame_info *frame,
                          int regnum,
                          struct type *type,
                          const void *from)
{
  const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
  char to[MAX_REGISTER_SIZE];

  gdb_assert (reg->fpr);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);

  convert_typed_floating (from, type, to, builtin_type_double);
  put_frame_register (frame, regnum, to);
}

/* Move SPE vector register values between a 64-bit buffer and the two
   32-bit raw register halves in a regcache.  This function handles
   both splitting a 64-bit value into two 32-bit halves, and joining
   two halves into a whole 64-bit value, depending on the function
   passed as the MOVE argument.

   EV_REG must be the number of an SPE evN vector register --- a
   pseudoregister.  REGCACHE must be a regcache, and BUFFER must be a
   64-bit buffer.

   Call MOVE once for each 32-bit half of that register, passing
   REGCACHE, the number of the raw register corresponding to that
   half, and the address of the appropriate half of BUFFER.

   For example, passing 'regcache_raw_read' as the MOVE function will
   fill BUFFER with the full 64-bit contents of EV_REG.  Or, passing
   'regcache_raw_supply' will supply the contents of BUFFER to the
   appropriate pair of raw registers in REGCACHE.

   You may need to cast away some 'const' qualifiers when passing
   MOVE, since this function can't tell at compile-time which of
   REGCACHE or BUFFER is acting as the source of the data.  If C had
   co-variant type qualifiers, ...  */
static void
e500_move_ev_register (void (*move) (struct regcache *regcache,
                                     int regnum, void *buf),
                       struct regcache *regcache, int ev_reg,
                       void *buffer)
{
  struct gdbarch *arch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch); 
  int reg_index;
  char *byte_buffer = buffer;

  gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
              && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);

  reg_index = ev_reg - tdep->ppc_ev0_regnum;

  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
    }
  else
    {
      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
    }
}

static void
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int reg_nr, void *buffer)
{
  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 

  gdb_assert (regcache_arch == gdbarch);
 
  if (tdep->ppc_ev0_regnum <= reg_nr
      && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
    e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
  else
    internal_error (__FILE__, __LINE__,
                    "e500_pseudo_register_read: "
                    "called on unexpected register '%s' (%d)",
                    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
}

static void
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const void *buffer)
{
  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 

  gdb_assert (regcache_arch == gdbarch);
 
  if (tdep->ppc_ev0_regnum <= reg_nr
      && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
    e500_move_ev_register ((void (*) (struct regcache *, int, void *))
                           regcache_raw_write,
                           regcache, reg_nr, (void *) buffer);
  else
    internal_error (__FILE__, __LINE__,
                    "e500_pseudo_register_read: "
                    "called on unexpected register '%s' (%d)",
                    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
}

/* The E500 needs a custom reggroup function: it has anonymous raw
   registers, and default_register_reggroup_p assumes that anonymous
   registers are not members of any reggroup.  */
static int
e500_register_reggroup_p (struct gdbarch *gdbarch,
                          int regnum,
                          struct reggroup *group)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* The save and restore register groups need to include the
     upper-half registers, even though they're anonymous.  */
  if ((group == save_reggroup
       || group == restore_reggroup)
      && (tdep->ppc_ev0_upper_regnum <= regnum
          && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
    return 1;

  /* In all other regards, the default reggroup definition is fine.  */
  return default_register_reggroup_p (gdbarch, regnum, group);
}

/* Convert a DBX STABS register number to a GDB register number.  */
static int
rs6000_stab_reg_to_regnum (int num)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  if (0 <= num && num <= 31)
    return tdep->ppc_gp0_regnum + num;
  else if (32 <= num && num <= 63)
    /* FIXME: jimb/2004-05-05: What should we do when the debug info
       specifies registers the architecture doesn't have?  Our
       callers don't check the value we return.  */
    return tdep->ppc_fp0_regnum + (num - 32);
  else if (77 <= num && num <= 108)
    return tdep->ppc_vr0_regnum + (num - 77);
  else if (1200 <= num && num < 1200 + 32)
    return tdep->ppc_ev0_regnum + (num - 1200);
  else
    switch (num)
      {
      case 64: 
        return tdep->ppc_mq_regnum;
      case 65:
        return tdep->ppc_lr_regnum;
      case 66: 
        return tdep->ppc_ctr_regnum;
      case 76: 
        return tdep->ppc_xer_regnum;
      case 109:
        return tdep->ppc_vrsave_regnum;
      case 110:
        return tdep->ppc_vrsave_regnum - 1; /* vscr */
      case 111:
        return tdep->ppc_acc_regnum;
      case 112:
        return tdep->ppc_spefscr_regnum;
      default: 
        return num;
      }
}


/* Convert a Dwarf 2 register number to a GDB register number.  */
static int
rs6000_dwarf2_reg_to_regnum (int num)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  if (0 <= num && num <= 31)
    return tdep->ppc_gp0_regnum + num;
  else if (32 <= num && num <= 63)
    /* FIXME: jimb/2004-05-05: What should we do when the debug info
       specifies registers the architecture doesn't have?  Our
       callers don't check the value we return.  */
    return tdep->ppc_fp0_regnum + (num - 32);
  else if (1124 <= num && num < 1124 + 32)
    return tdep->ppc_vr0_regnum + (num - 1124);
  else if (1200 <= num && num < 1200 + 32)
    return tdep->ppc_ev0_regnum + (num - 1200);
  else
    switch (num)
      {
      case 67:
        return tdep->ppc_vrsave_regnum - 1; /* vscr */
      case 99:
        return tdep->ppc_acc_regnum;
      case 100:
        return tdep->ppc_mq_regnum;
      case 101:
        return tdep->ppc_xer_regnum;
      case 108:
        return tdep->ppc_lr_regnum;
      case 109:
        return tdep->ppc_ctr_regnum;
      case 356:
        return tdep->ppc_vrsave_regnum;
      case 612:
        return tdep->ppc_spefscr_regnum;
      default:
        return num;
      }
}


static void
rs6000_store_return_value (struct type *type,
                           struct regcache *regcache,
                           const void *valbuf)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int regnum = -1;

  /* The calling convention this function implements assumes the
     processor has floating-point registers.  We shouldn't be using it
     on PPC variants that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    /* Floating point values are returned starting from FPR1 and up.
       Say a double_double_double type could be returned in
       FPR1/FPR2/FPR3 triple.  */
    regnum = tdep->ppc_fp0_regnum + 1;
  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      if (TYPE_LENGTH (type) == 16
          && TYPE_VECTOR (type))
        regnum = tdep->ppc_vr0_regnum + 2;
      else
        internal_error (__FILE__, __LINE__,
                        "rs6000_store_return_value: "
                        "unexpected array return type");
    }
  else
    /* Everything else is returned in GPR3 and up.  */
    regnum = tdep->ppc_gp0_regnum + 3;

  {
    size_t bytes_written = 0;

    while (bytes_written < TYPE_LENGTH (type))
      {
        /* How much of this value can we write to this register?  */
        size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
                                     register_size (gdbarch, regnum));
        regcache_cooked_write_part (regcache, regnum,
                                    0, bytes_to_write,
                                    (char *) valbuf + bytes_written);
        regnum++;
        bytes_written += bytes_to_write;
      }
  }
}


/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   as a CORE_ADDR (or an expression that can be used as one).  */

static CORE_ADDR
rs6000_extract_struct_value_address (struct regcache *regcache)
{
  /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
     function call GDB knows the address of the struct return value
     and hence, should not need to call this function.  Unfortunately,
     the current call_function_by_hand() code only saves the most
     recent struct address leading to occasional calls.  The code
     should instead maintain a stack of such addresses (in the dummy
     frame object).  */
  /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
     really got no idea where the return value is being stored.  While
     r3, on function entry, contained the address it will have since
     been reused (scratch) and hence wouldn't be valid */
  return 0;
}

/* Hook called when a new child process is started.  */

void
rs6000_create_inferior (int pid)
{
  if (rs6000_set_host_arch_hook)
    rs6000_set_host_arch_hook (pid);
}

/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).

   Usually a function pointer's representation is simply the address
   of the function. On the RS/6000 however, a function pointer is
   represented by a pointer to a TOC entry. This TOC entry contains
   three words, the first word is the address of the function, the
   second word is the TOC pointer (r2), and the third word is the
   static chain value.  Throughout GDB it is currently assumed that a
   function pointer contains the address of the function, which is not
   easy to fix.  In addition, the conversion of a function address to
   a function pointer would require allocation of a TOC entry in the
   inferior's memory space, with all its drawbacks.  To be able to
   call C++ virtual methods in the inferior (which are called via
   function pointers), find_function_addr uses this function to get the
   function address from a function pointer.  */

/* Return real function address if ADDR (a function pointer) is in the data
   space and is therefore a special function pointer.  */

static CORE_ADDR
rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
				   CORE_ADDR addr,
				   struct target_ops *targ)
{
  struct obj_section *s;

  s = find_pc_section (addr);
  if (s && s->the_bfd_section->flags & SEC_CODE)
    return addr;

  /* ADDR is in the data space, so it's a special function pointer. */
  return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
}


/* Handling the various POWER/PowerPC variants.  */


/* The arrays here called registers_MUMBLE hold information about available
   registers.

   For each family of PPC variants, I've tried to isolate out the
   common registers and put them up front, so that as long as you get
   the general family right, GDB will correctly identify the registers
   common to that family.  The common register sets are:

   For the 60x family: hid0 hid1 iabr dabr pir

   For the 505 and 860 family: eie eid nri

   For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
   tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
   pbu1 pbl2 pbu2

   Most of these register groups aren't anything formal.  I arrived at
   them by looking at the registers that occurred in more than one
   processor.
   
   Note: kevinb/2002-04-30: Support for the fpscr register was added
   during April, 2002.  Slot 70 is being used for PowerPC and slot 71
   for Power.  For PowerPC, slot 70 was unused and was already in the
   PPC_UISA_SPRS which is ideally where fpscr should go.  For Power,
   slot 70 was being used for "mq", so the next available slot (71)
   was chosen.  It would have been nice to be able to make the
   register numbers the same across processor cores, but this wasn't
   possible without either 1) renumbering some registers for some
   processors or 2) assigning fpscr to a really high slot that's
   larger than any current register number.  Doing (1) is bad because
   existing stubs would break.  Doing (2) is undesirable because it
   would introduce a really large gap between fpscr and the rest of
   the registers for most processors.  */

/* Convenience macros for populating register arrays.  */

/* Within another macro, convert S to a string.  */

#define STR(s)	#s

/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
   and 64 bits on 64-bit systems.  */
#define R(name)		{ STR(name), 4, 8, 0, 0, -1 }

/* Return a struct reg defining register NAME that's 32 bits on all
   systems.  */
#define R4(name)	{ STR(name), 4, 4, 0, 0, -1 }

/* Return a struct reg defining register NAME that's 64 bits on all
   systems.  */
#define R8(name)	{ STR(name), 8, 8, 0, 0, -1 }

/* Return a struct reg defining register NAME that's 128 bits on all
   systems.  */
#define R16(name)       { STR(name), 16, 16, 0, 0, -1 }

/* Return a struct reg defining floating-point register NAME.  */
#define F(name)		{ STR(name), 8, 8, 1, 0, -1 }

/* Return a struct reg defining a pseudo register NAME that is 64 bits
   long on all systems.  */
#define P8(name)	{ STR(name), 8, 8, 0, 1, -1 }

/* Return a struct reg defining register NAME that's 32 bits on 32-bit
   systems and that doesn't exist on 64-bit systems.  */
#define R32(name)	{ STR(name), 4, 0, 0, 0, -1 }

/* Return a struct reg defining register NAME that's 64 bits on 64-bit
   systems and that doesn't exist on 32-bit systems.  */
#define R64(name)	{ STR(name), 0, 8, 0, 0, -1 }

/* Return a struct reg placeholder for a register that doesn't exist.  */
#define R0		{ 0, 0, 0, 0, 0, -1 }

/* Return a struct reg defining an anonymous raw register that's 32
   bits on all systems.  */
#define A4              { 0, 4, 4, 0, 0, -1 }

/* Return a struct reg defining an SPR named NAME that is 32 bits on
   32-bit systems and 64 bits on 64-bit systems.  */
#define S(name)         { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
  
/* Return a struct reg defining an SPR named NAME that is 32 bits on
   all systems.  */
#define S4(name)        { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
  
/* Return a struct reg defining an SPR named NAME that is 32 bits on
   all systems, and whose SPR number is NUMBER.  */
#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
  
/* Return a struct reg defining an SPR named NAME that's 64 bits on
   64-bit systems and that doesn't exist on 32-bit systems.  */
#define S64(name)       { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
  
/* UISA registers common across all architectures, including POWER.  */

#define COMMON_UISA_REGS \
  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
  /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7),  \
  /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
  /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
  /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
  /* 64 */ R(pc), R(ps)

/* UISA-level SPRs for PowerPC.  */
#define PPC_UISA_SPRS \
  /* 66 */ R4(cr),  S(lr), S(ctr), S4(xer), R4(fpscr)

/* UISA-level SPRs for PowerPC without floating point support.  */
#define PPC_UISA_NOFP_SPRS \
  /* 66 */ R4(cr),  S(lr), S(ctr), S4(xer), R0

/* Segment registers, for PowerPC.  */
#define PPC_SEGMENT_REGS \
  /* 71 */ R32(sr0),  R32(sr1),  R32(sr2),  R32(sr3),  \
  /* 75 */ R32(sr4),  R32(sr5),  R32(sr6),  R32(sr7),  \
  /* 79 */ R32(sr8),  R32(sr9),  R32(sr10), R32(sr11), \
  /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)

/* OEA SPRs for PowerPC.  */
#define PPC_OEA_SPRS \
  /*  87 */ S4(pvr), \
  /*  88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
  /*  92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
  /*  96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
  /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
  /* 104 */ S(sdr1),   S64(asr),  S(dar),    S4(dsisr), \
  /* 108 */ S(sprg0),  S(sprg1),  S(sprg2),  S(sprg3),  \
  /* 112 */ S(srr0),   S(srr1),   S(tbl),    S(tbu),    \
  /* 116 */ S4(dec),   S(dabr),   S4(ear)

/* AltiVec registers.  */
#define PPC_ALTIVEC_REGS \
  /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7),  \
  /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
  /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
  /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
  /*151*/R4(vscr), R4(vrsave)


/* On machines supporting the SPE APU, the general-purpose registers
   are 64 bits long.  There are SIMD vector instructions to treat them
   as pairs of floats, but the rest of the instruction set treats them
   as 32-bit registers, and only operates on their lower halves.

   In the GDB regcache, we treat their high and low halves as separate
   registers.  The low halves we present as the general-purpose
   registers, and then we have pseudo-registers that stitch together
   the upper and lower halves and present them as pseudo-registers.  */

/* SPE GPR lower halves --- raw registers.  */
#define PPC_SPE_GP_REGS \
  /*  0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7),  \
  /*  8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
  /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
  /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)

/* SPE GPR upper halves --- anonymous raw registers.  */
#define PPC_SPE_UPPER_GP_REGS                   \
  /*  0 */ A4, A4, A4, A4, A4, A4, A4, A4,      \
  /*  8 */ A4, A4, A4, A4, A4, A4, A4, A4,      \
  /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4,      \
  /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4

/* SPE GPR vector registers --- pseudo registers based on underlying
   gprs and the anonymous upper half raw registers.  */
#define PPC_EV_PSEUDO_REGS \
/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)

/* IBM POWER (pre-PowerPC) architecture, user-level view.  We only cover
   user-level SPR's.  */
static const struct reg registers_power[] =
{
  COMMON_UISA_REGS,
  /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
  /* 71 */ R4(fpscr)
};

/* PowerPC UISA - a PPC processor as viewed by user-level code.  A UISA-only
   view of the PowerPC.  */
static const struct reg registers_powerpc[] =
{
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_ALTIVEC_REGS
};

/* IBM PowerPC 403.

   Some notes about the "tcr" special-purpose register:
   - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
     403's programmable interval timer, fixed interval timer, and
     watchdog timer.
   - On the 602, SPR 984 is named "tcr", and it controls the 602's
     watchdog timer, and nothing else.

   Some of the fields are similar between the two, but they're not
   compatible with each other.  Since the two variants have different
   registers, with different numbers, but the same name, we can't
   splice the register name to get the SPR number.  */
static const struct reg registers_403[] =
{
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  /* 119 */ S(icdbdr), S(esr),  S(dear), S(evpr),
  /* 123 */ S(cdbcr),  S(tsr),  SN4(tcr, ppc_spr_403_tcr), S(pit),
  /* 127 */ S(tbhi),   S(tblo), S(srr2), S(srr3),
  /* 131 */ S(dbsr),   S(dbcr), S(iac1), S(iac2),
  /* 135 */ S(dac1),   S(dac2), S(dccr), S(iccr),
  /* 139 */ S(pbl1),   S(pbu1), S(pbl2), S(pbu2)
};

/* IBM PowerPC 403GC.
   See the comments about 'tcr' for the 403, above.  */
static const struct reg registers_403GC[] =
{
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  /* 119 */ S(icdbdr), S(esr),  S(dear), S(evpr),
  /* 123 */ S(cdbcr),  S(tsr),  SN4(tcr, ppc_spr_403_tcr), S(pit),
  /* 127 */ S(tbhi),   S(tblo), S(srr2), S(srr3),
  /* 131 */ S(dbsr),   S(dbcr), S(iac1), S(iac2),
  /* 135 */ S(dac1),   S(dac2), S(dccr), S(iccr),
  /* 139 */ S(pbl1),   S(pbu1), S(pbl2), S(pbu2),
  /* 143 */ S(zpr),    S(pid),  S(sgr),  S(dcwr),
  /* 147 */ S(tbhu),   S(tblu)
};

/* Motorola PowerPC 505.  */
static const struct reg registers_505[] =
{
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  /* 119 */ S(eie), S(eid), S(nri)
};

/* Motorola PowerPC 860 or 850.  */
static const struct reg registers_860[] =
{
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
  /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
  /* 127 */ S(der), S(counta), S(countb), S(cmpe),
  /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
  /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
  /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
  /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
  /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
  /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
  /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
  /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
  /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
};

/* Motorola PowerPC 601.  Note that the 601 has different register numbers
   for reading and writing RTCU and RTCL.  However, how one reads and writes a
   register is the stub's problem.  */
static const struct reg registers_601[] =
{
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
  /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
};

/* Motorola PowerPC 602.
   See the notes under the 403 about 'tcr'.  */
static const struct reg registers_602[] =
{
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  /* 119 */ S(hid0), S(hid1), S(iabr), R0,
  /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
  /* 127 */ S(sebr), S(ser), S(sp), S(lt)
};

/* Motorola/IBM PowerPC 603 or 603e.  */
static const struct reg registers_603[] =
{
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  /* 119 */ S(hid0), S(hid1), S(iabr), R0,
  /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
  /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
};

/* Motorola PowerPC 604 or 604e.  */
static const struct reg registers_604[] =
{
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
  /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
  /* 127 */ S(sia), S(sda)
};

/* Motorola/IBM PowerPC 750 or 740.  */
static const struct reg registers_750[] =
{
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
  /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
  /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
  /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
  /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
  /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
};


/* Motorola PowerPC 7400.  */
static const struct reg registers_7400[] =
{
  /* gpr0-gpr31, fpr0-fpr31 */
  COMMON_UISA_REGS,
  /* cr, lr, ctr, xer, fpscr */
  PPC_UISA_SPRS,
  /* sr0-sr15 */
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  /* vr0-vr31, vrsave, vscr */
  PPC_ALTIVEC_REGS
  /* FIXME? Add more registers? */
};

/* Motorola e500.  */
static const struct reg registers_e500[] =
{
  /*   0 ..  31 */ PPC_SPE_GP_REGS,
  /*  32 ..  63 */ PPC_SPE_UPPER_GP_REGS,
  /*  64 ..  65 */ R(pc), R(ps),
  /*  66 ..  70 */ PPC_UISA_NOFP_SPRS,
  /*  71 ..  72 */ R8(acc), S4(spefscr),
  /* NOTE: Add new registers here the end of the raw register
     list and just before the first pseudo register.  */
  /*  73 .. 104 */ PPC_EV_PSEUDO_REGS
};

/* Information about a particular processor variant.  */

struct variant
  {
    /* Name of this variant.  */
    char *name;

    /* English description of the variant.  */
    char *description;

    /* bfd_arch_info.arch corresponding to variant.  */
    enum bfd_architecture arch;

    /* bfd_arch_info.mach corresponding to variant.  */
    unsigned long mach;

    /* Number of real registers.  */
    int nregs;

    /* Number of pseudo registers.  */
    int npregs;

    /* Number of total registers (the sum of nregs and npregs).  */
    int num_tot_regs;

    /* Table of register names; registers[R] is the name of the register
       number R.  */
    const struct reg *regs;
  };

#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))

static int
num_registers (const struct reg *reg_list, int num_tot_regs)
{
  int i;
  int nregs = 0;

  for (i = 0; i < num_tot_regs; i++)
    if (!reg_list[i].pseudo)
      nregs++;
       
  return nregs;
}

static int
num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
{
  int i;
  int npregs = 0;

  for (i = 0; i < num_tot_regs; i++)
    if (reg_list[i].pseudo)
      npregs ++; 

  return npregs;
}

/* Information in this table comes from the following web sites:
   IBM:       http://www.chips.ibm.com:80/products/embedded/
   Motorola:  http://www.mot.com/SPS/PowerPC/

   I'm sure I've got some of the variant descriptions not quite right.
   Please report any inaccuracies you find to GDB's maintainer.

   If you add entries to this table, please be sure to allow the new
   value as an argument to the --with-cpu flag, in configure.in.  */

static struct variant variants[] =
{

  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
   bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
   registers_powerpc},
  {"power", "POWER user-level", bfd_arch_rs6000,
   bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
   registers_power},
  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
   bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
   registers_403},
  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
   bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
   registers_601},
  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
   bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
   registers_602},
  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
   bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
   registers_603},
  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
   604, -1, -1, tot_num_registers (registers_604),
   registers_604},
  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
   bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
   registers_403GC},
  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
   bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
   registers_505},
  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
   bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
   registers_860},
  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
   bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
   registers_750},
  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
   bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
   registers_7400},
  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
   bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
   registers_e500},

  /* 64-bit */
  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
   bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
   registers_powerpc},
  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
   bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
   registers_powerpc},
  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
   bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
   registers_powerpc},
  {"a35", "PowerPC A35", bfd_arch_powerpc,
   bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
   registers_powerpc},
  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
   bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
   registers_powerpc},
  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
   bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
   registers_powerpc},

  /* FIXME: I haven't checked the register sets of the following.  */
  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
   bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
   registers_power},
  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
   bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
   registers_power},
  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
   bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
   registers_power},

  {0, 0, 0, 0, 0, 0, 0, 0}
};

/* Initialize the number of registers and pseudo registers in each variant.  */

static void
init_variants (void)
{
  struct variant *v;

  for (v = variants; v->name; v++)
    {
      if (v->nregs == -1)
        v->nregs = num_registers (v->regs, v->num_tot_regs);
      if (v->npregs == -1)
        v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
    }  
}

/* Return the variant corresponding to architecture ARCH and machine number
   MACH.  If no such variant exists, return null.  */

static const struct variant *
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
{
  const struct variant *v;

  for (v = variants; v->name; v++)
    if (arch == v->arch && mach == v->mach)
      return v;

  return NULL;
}

static int
gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
{
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    return print_insn_big_powerpc (memaddr, info);
  else
    return print_insn_little_powerpc (memaddr, info);
}

static CORE_ADDR
rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
}

static struct frame_id
rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_id_build (frame_unwind_register_unsigned (next_frame,
							 SP_REGNUM),
			 frame_pc_unwind (next_frame));
}

struct rs6000_frame_cache
{
  CORE_ADDR base;
  CORE_ADDR initial_sp;
  struct trad_frame_saved_reg *saved_regs;
};

static struct rs6000_frame_cache *
rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
{
  struct rs6000_frame_cache *cache;
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct rs6000_framedata fdata;
  int wordsize = tdep->wordsize;

  if ((*this_cache) != NULL)
    return (*this_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);

  skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
		 &fdata);

  /* If there were any saved registers, figure out parent's stack
     pointer.  */
  /* The following is true only if the frame doesn't have a call to
     alloca(), FIXME.  */

  if (fdata.saved_fpr == 0
      && fdata.saved_gpr == 0
      && fdata.saved_vr == 0
      && fdata.saved_ev == 0
      && fdata.lr_offset == 0
      && fdata.cr_offset == 0
      && fdata.vr_offset == 0
      && fdata.ev_offset == 0)
    cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
  else
    {
      /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
	 address of the current frame.  Things might be easier if the
	 ->frame pointed to the outer-most address of the frame.  In
	 the mean time, the address of the prev frame is used as the
	 base address of this frame.  */
      cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
      if (!fdata.frameless)
	/* Frameless really means stackless.  */
	cache->base = read_memory_addr (cache->base, wordsize);
    }
  trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);

  /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
     All fpr's from saved_fpr to fp31 are saved.  */

  if (fdata.saved_fpr >= 0)
    {
      int i;
      CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;

      /* If skip_prologue says floating-point registers were saved,
         but the current architecture has no floating-point registers,
         then that's strange.  But we have no indices to even record
         the addresses under, so we just ignore it.  */
      if (ppc_floating_point_unit_p (gdbarch))
        for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
          {
            cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
            fpr_addr += 8;
          }
    }

  /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
     All gpr's from saved_gpr to gpr31 are saved.  */

  if (fdata.saved_gpr >= 0)
    {
      int i;
      CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
      for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
	{
	  cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
	  gpr_addr += wordsize;
	}
    }

  /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
     All vr's from saved_vr to vr31 are saved.  */
  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
    {
      if (fdata.saved_vr >= 0)
	{
	  int i;
	  CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
	  for (i = fdata.saved_vr; i < 32; i++)
	    {
	      cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
	      vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
	    }
	}
    }

  /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
     All vr's from saved_ev to ev31 are saved. ????? */
  if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
    {
      if (fdata.saved_ev >= 0)
	{
	  int i;
	  CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
	  for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
	    {
	      cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
              cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
	      ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
            }
	}
    }

  /* If != 0, fdata.cr_offset is the offset from the frame that
     holds the CR.  */
  if (fdata.cr_offset != 0)
    cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;

  /* If != 0, fdata.lr_offset is the offset from the frame that
     holds the LR.  */
  if (fdata.lr_offset != 0)
    cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
  /* The PC is found in the link register.  */
  cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];

  /* If != 0, fdata.vrsave_offset is the offset from the frame that
     holds the VRSAVE.  */
  if (fdata.vrsave_offset != 0)
    cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;

  if (fdata.alloca_reg < 0)
    /* If no alloca register used, then fi->frame is the value of the
       %sp for this frame, and it is good enough.  */
    cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
  else
    cache->initial_sp = frame_unwind_register_unsigned (next_frame,
							fdata.alloca_reg);

  return cache;
}

static void
rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
		      struct frame_id *this_id)
{
  struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
							this_cache);
  (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
}

static void
rs6000_frame_prev_register (struct frame_info *next_frame,
				 void **this_cache,
				 int regnum, int *optimizedp,
				 enum lval_type *lvalp, CORE_ADDR *addrp,
				 int *realnump, void *valuep)
{
  struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
							this_cache);
  trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
				optimizedp, lvalp, addrp, realnump, valuep);
}

static const struct frame_unwind rs6000_frame_unwind =
{
  NORMAL_FRAME,
  rs6000_frame_this_id,
  rs6000_frame_prev_register
};

static const struct frame_unwind *
rs6000_frame_sniffer (struct frame_info *next_frame)
{
  return &rs6000_frame_unwind;
}



static CORE_ADDR
rs6000_frame_base_address (struct frame_info *next_frame,
				void **this_cache)
{
  struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
							this_cache);
  return info->initial_sp;
}

static const struct frame_base rs6000_frame_base = {
  &rs6000_frame_unwind,
  rs6000_frame_base_address,
  rs6000_frame_base_address,
  rs6000_frame_base_address
};

static const struct frame_base *
rs6000_frame_base_sniffer (struct frame_info *next_frame)
{
  return &rs6000_frame_base;
}

/* Initialize the current architecture based on INFO.  If possible, re-use an
   architecture from ARCHES, which is a list of architectures already created
   during this debugging session.

   Called e.g. at program startup, when reading a core file, and when reading
   a binary file.  */

static struct gdbarch *
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int wordsize, from_xcoff_exec, from_elf_exec, i, off;
  struct reg *regs;
  const struct variant *v;
  enum bfd_architecture arch;
  unsigned long mach;
  bfd abfd;
  int sysv_abi;
  asection *sect;

  from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
    bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;

  from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
    bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;

  sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;

  /* Check word size.  If INFO is from a binary file, infer it from
     that, else choose a likely default.  */
  if (from_xcoff_exec)
    {
      if (bfd_xcoff_is_xcoff64 (info.abfd))
	wordsize = 8;
      else
	wordsize = 4;
    }
  else if (from_elf_exec)
    {
      if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
	wordsize = 8;
      else
	wordsize = 4;
    }
  else
    {
      if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
	wordsize = info.bfd_arch_info->bits_per_word /
	  info.bfd_arch_info->bits_per_byte;
      else
	wordsize = 4;
    }

  /* Find a candidate among extant architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* Word size in the various PowerPC bfd_arch_info structs isn't
         meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
         separate word size check.  */
      tdep = gdbarch_tdep (arches->gdbarch);
      if (tdep && tdep->wordsize == wordsize)
	return arches->gdbarch;
    }

  /* None found, create a new architecture from INFO, whose bfd_arch_info
     validity depends on the source:
       - executable		useless
       - rs6000_host_arch()	good
       - core file		good
       - "set arch"		trust blindly
       - GDB startup		useless but harmless */

  if (!from_xcoff_exec)
    {
      arch = info.bfd_arch_info->arch;
      mach = info.bfd_arch_info->mach;
    }
  else
    {
      arch = bfd_arch_powerpc;
      bfd_default_set_arch_mach (&abfd, arch, 0);
      info.bfd_arch_info = bfd_get_arch_info (&abfd);
      mach = info.bfd_arch_info->mach;
    }
  tdep = xmalloc (sizeof (struct gdbarch_tdep));
  tdep->wordsize = wordsize;

  /* For e500 executables, the apuinfo section is of help here.  Such
     section contains the identifier and revision number of each
     Application-specific Processing Unit that is present on the
     chip.  The content of the section is determined by the assembler
     which looks at each instruction and determines which unit (and
     which version of it) can execute it. In our case we just look for
     the existance of the section.  */

  if (info.abfd)
    {
      sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
      if (sect)
	{
	  arch = info.bfd_arch_info->arch;
	  mach = bfd_mach_ppc_e500;
	  bfd_default_set_arch_mach (&abfd, arch, mach);
	  info.bfd_arch_info = bfd_get_arch_info (&abfd);
	}
    }

  gdbarch = gdbarch_alloc (&info, tdep);

  /* Initialize the number of real and pseudo registers in each variant.  */
  init_variants ();

  /* Choose variant.  */
  v = find_variant_by_arch (arch, mach);
  if (!v)
    return NULL;

  tdep->regs = v->regs;

  tdep->ppc_gp0_regnum = 0;
  tdep->ppc_toc_regnum = 2;
  tdep->ppc_ps_regnum = 65;
  tdep->ppc_cr_regnum = 66;
  tdep->ppc_lr_regnum = 67;
  tdep->ppc_ctr_regnum = 68;
  tdep->ppc_xer_regnum = 69;
  if (v->mach == bfd_mach_ppc_601)
    tdep->ppc_mq_regnum = 124;
  else if (arch == bfd_arch_rs6000)
    tdep->ppc_mq_regnum = 70;
  else
    tdep->ppc_mq_regnum = -1;
  tdep->ppc_fp0_regnum = 32;
  tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
  tdep->ppc_sr0_regnum = 71;
  tdep->ppc_vr0_regnum = -1;
  tdep->ppc_vrsave_regnum = -1;
  tdep->ppc_ev0_upper_regnum = -1;
  tdep->ppc_ev0_regnum = -1;
  tdep->ppc_ev31_regnum = -1;
  tdep->ppc_acc_regnum = -1;
  tdep->ppc_spefscr_regnum = -1;

  set_gdbarch_pc_regnum (gdbarch, 64);
  set_gdbarch_sp_regnum (gdbarch, 1);
  set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
  set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
  if (sysv_abi && wordsize == 8)
    set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
  else if (sysv_abi && wordsize == 4)
    set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
  else
    {
      set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
      set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
    }

  /* Set lr_frame_offset.  */
  if (wordsize == 8)
    tdep->lr_frame_offset = 16;
  else if (sysv_abi)
    tdep->lr_frame_offset = 4;
  else
    tdep->lr_frame_offset = 8;

  if (v->arch == bfd_arch_rs6000)
    tdep->ppc_sr0_regnum = -1;
  else if (v->arch == bfd_arch_powerpc)
    switch (v->mach)
      {
      case bfd_mach_ppc: 
        tdep->ppc_sr0_regnum = -1;
	tdep->ppc_vr0_regnum = 71;
	tdep->ppc_vrsave_regnum = 104;
	break;
      case bfd_mach_ppc_7400:
	tdep->ppc_vr0_regnum = 119;
	tdep->ppc_vrsave_regnum = 152;
	break;
      case bfd_mach_ppc_e500:
        tdep->ppc_toc_regnum = -1;
        tdep->ppc_ev0_upper_regnum = 32;
	tdep->ppc_ev0_regnum = 73;
	tdep->ppc_ev31_regnum = 104;
        tdep->ppc_acc_regnum = 71;
        tdep->ppc_spefscr_regnum = 72;
        tdep->ppc_fp0_regnum = -1;
        tdep->ppc_fpscr_regnum = -1;
        tdep->ppc_sr0_regnum = -1;
        set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
        set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
        set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
	break;

      case bfd_mach_ppc64:
      case bfd_mach_ppc_620:
      case bfd_mach_ppc_630:
      case bfd_mach_ppc_a35:
      case bfd_mach_ppc_rs64ii:
      case bfd_mach_ppc_rs64iii:
        /* These processor's register sets don't have segment registers.  */
        tdep->ppc_sr0_regnum = -1;
        break;
      }   
  else
    internal_error (__FILE__, __LINE__,
                    "rs6000_gdbarch_init: "
                    "received unexpected BFD 'arch' value");

  /* Sanity check on registers.  */
  gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);

  /* Select instruction printer.  */
  if (arch == bfd_arch_rs6000)
    set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
  else
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);

  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);

  set_gdbarch_num_regs (gdbarch, v->nregs);
  set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
  set_gdbarch_register_name (gdbarch, rs6000_register_name);
  set_gdbarch_register_type (gdbarch, rs6000_register_type);

  set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  if (sysv_abi)
    set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
  else
    set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_char_signed (gdbarch, 0);

  set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
  if (sysv_abi && wordsize == 8)
    /* PPC64 SYSV.  */
    set_gdbarch_frame_red_zone_size (gdbarch, 288);
  else if (!sysv_abi && wordsize == 4)
    /* PowerOpen / AIX 32 bit.  The saved area or red zone consists of
       19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
       Problem is, 220 isn't frame (16 byte) aligned.  Round it up to
       224.  */
    set_gdbarch_frame_red_zone_size (gdbarch, 224);

  set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
  set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);

  set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
  /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
     is correct for the SysV ABI when the wordsize is 8, but I'm also
     fairly certain that ppc_sysv_abi_push_arguments() will give even
     worse results since it only works for 32-bit code.  So, for the moment,
     we're better off calling rs6000_push_arguments() since it works for
     64-bit code.  At some point in the future, this matter needs to be
     revisited.  */
  if (sysv_abi && wordsize == 4)
    set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
  else if (sysv_abi && wordsize == 8)
    set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
  else
    set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);

  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);

  set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);

  /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
     for the descriptor and ".FN" for the entry-point -- a user
     specifying "break FN" will unexpectedly end up with a breakpoint
     on the descriptor and not the function.  This architecture method
     transforms any breakpoints on descriptors into breakpoints on the
     corresponding entry point.  */
  if (sysv_abi && wordsize == 8)
    set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);

  /* Not sure on this. FIXMEmgo */
  set_gdbarch_frame_args_skip (gdbarch, 8);

  if (!sysv_abi)
    set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);

  if (!sysv_abi)
    {
      /* Handle RS/6000 function pointers (which are really function
         descriptors).  */
      set_gdbarch_convert_from_func_ptr_addr (gdbarch,
	rs6000_convert_from_func_ptr_addr);
    }

  /* Helpers for function argument information.  */
  set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  switch (info.osabi)
    {
    case GDB_OSABI_NETBSD_AOUT:
    case GDB_OSABI_NETBSD_ELF:
    case GDB_OSABI_UNKNOWN:
    case GDB_OSABI_LINUX:
      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
      frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
      set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
      break;
    default:
      set_gdbarch_believe_pcc_promotion (gdbarch, 1);

      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
      frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
      set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
    }

  if (from_xcoff_exec)
    {
      /* NOTE: jimix/2003-06-09: This test should really check for
	 GDB_OSABI_AIX when that is defined and becomes
	 available. (Actually, once things are properly split apart,
	 the test goes away.) */
       /* RS6000/AIX does not support PT_STEP.  Has to be simulated.  */
       set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
    }

  init_sim_regno_table (gdbarch);

  return gdbarch;
}

static void
rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  if (tdep == NULL)
    return;

  /* FIXME: Dump gdbarch_tdep.  */
}

static struct cmd_list_element *info_powerpc_cmdlist = NULL;

static void
rs6000_info_powerpc_command (char *args, int from_tty)
{
  help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
}

/* Initialization code.  */

extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */

void
_initialize_rs6000_tdep (void)
{
  gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
  gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);

  /* Add root prefix command for "info powerpc" commands */
  add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
		  "Various POWERPC info specific commands.",
		  &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
}