aboutsummaryrefslogtreecommitdiff
path: root/gdb/remote-nindy.c
blob: c168511be7c40613441b70083768100773629748 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
/* Memory-access and commands for remote NINDY process, for GDB.
   Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
   Contributed by Intel Corporation.  Modified from remote.c by Chris Benenati.

GDB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone
for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing.
Refer to the GDB General Public License for full details.

Everyone is granted permission to copy, modify and redistribute GDB,
but only under the conditions described in the GDB General Public
License.  A copy of this license is supposed to have been given to you
along with GDB so you can know your rights and responsibilities.  It
should be in a file named COPYING.  Among other things, the copyright
notice and this notice must be preserved on all copies.

In other words, go ahead and share GDB, but don't try to stop
anyone else from sharing it farther.  Help stamp out software hoarding!
*/

/*
Except for the data cache routines, this file bears little resemblence
to remote.c.  A new (although similar) protocol has been specified, and
portions of the code are entirely dependent on having an i80960 with a
NINDY ROM monitor at the other end of the line.
*/

/*****************************************************************************
 *
 * REMOTE COMMUNICATION PROTOCOL BETWEEN GDB960 AND THE NINDY ROM MONITOR.
 *
 *
 * MODES OF OPERATION
 * ----- -- ---------
 *	
 * As far as NINDY is concerned, GDB is always in one of two modes: command
 * mode or passthrough mode.
 *
 * In command mode (the default) pre-defined packets containing requests
 * are sent by GDB to NINDY.  NINDY never talks except in reponse to a request.
 *
 * Once the the user program is started, GDB enters passthrough mode, to give
 * the user program access to the terminal.  GDB remains in this mode until
 * NINDY indicates that the program has stopped.
 *
 *
 * PASSTHROUGH MODE
 * ----------- ----
 *
 * GDB writes all input received from the keyboard directly to NINDY, and writes
 * all characters received from NINDY directly to the monitor.
 *
 * Keyboard input is neither buffered nor echoed to the monitor.
 *
 * GDB remains in passthrough mode until NINDY sends a single ^P character,
 * to indicate that the user process has stopped.
 *
 * Note:
 *	GDB assumes NINDY performs a 'flushreg' when the user program stops.
 *
 *
 * COMMAND MODE
 * ------- ----
 *
 * All info (except for message ack and nak) is transferred between gdb
 * and the remote processor in messages of the following format:
 *
 *		<info>#<checksum>
 *
 * where 
 *	#	is a literal character
 *
 *	<info>	ASCII information;  all numeric information is in the
 *		form of hex digits ('0'-'9' and lowercase 'a'-'f').
 *
 *	<checksum>
 *		is a pair of ASCII hex digits representing an 8-bit
 *		checksum formed by adding together each of the
 *		characters in <info>.
 *
 * The receiver of a message always sends a single character to the sender
 * to indicate that the checksum was good ('+') or bad ('-');  the sender
 * re-transmits the entire message over until a '+' is received.
 *
 * In response to a command NINDY always sends back either data or
 * a result code of the form "Xnn", where "nn" are hex digits and "X00"
 * means no errors.  (Exceptions: the "s" and "c" commands don't respond.)
 *
 * SEE THE HEADER OF THE FILE "gdb.c" IN THE NINDY MONITOR SOURCE CODE FOR A
 * FULL DESCRIPTION OF LEGAL COMMANDS.
 *
 * SEE THE FILE "stop.h" IN THE NINDY MONITOR SOURCE CODE FOR A LIST
 * OF STOP CODES.
 *
 ***************************************************************************/

#include "defs.h"
#include <signal.h>
#include <sys/types.h>
#include <setjmp.h>

#include "frame.h"
#include "inferior.h"
#include "bfd.h"
#include "symfile.h"
#include "target.h"
#include "gdbcore.h"
#include "command.h"
#include "ieee-float.h"

#include "wait.h"
#include <sys/file.h>
#include <ctype.h>
#include "serial.h"
#include "nindy-share/env.h"
#include "nindy-share/stop.h"

extern int unlink();
extern char *getenv();
extern char *mktemp();

extern void generic_mourn_inferior ();

extern struct target_ops nindy_ops;
extern FILE *instream;
extern struct ext_format ext_format_i960;	/* i960-tdep.c */

extern char ninStopWhy ();

int nindy_initial_brk;	/* nonzero if want to send an initial BREAK to nindy */
int nindy_old_protocol;	/* nonzero if want to use old protocol */
char *nindy_ttyname;	/* name of tty to talk to nindy on, or null */

#define DLE	'\020'	/* Character NINDY sends to indicate user program has
			 * halted.  */
#define TRUE	1
#define FALSE	0

/* From nindy-share/nindy.c.  */
extern serial_t nindy_serial;

static int have_regs = 0;	/* 1 iff regs read since i960 last halted */
static int regs_changed = 0;	/* 1 iff regs were modified since last read */

extern char *exists();

static void
dcache_flush (), dcache_poke (), dcache_init();

static int
dcache_fetch ();

static void
nindy_fetch_registers PARAMS ((int));

static void
nindy_store_registers PARAMS ((int));

static char *savename;

static void
nindy_close (quitting)
     int quitting;
{
  if (nindy_serial != NULL)
    SERIAL_CLOSE (nindy_serial);
  nindy_serial = NULL;

  if (savename)
    free (savename);
  savename = 0;
}

/* Open a connection to a remote debugger.   
   FIXME, there should be a way to specify the various options that are
   now specified with gdb command-line options.  (baud_rate, old_protocol,
   and initial_brk)  */
void
nindy_open (name, from_tty)
    char *name;		/* "/dev/ttyXX", "ttyXX", or "XX": tty to be opened */
    int from_tty;
{

  if (!name)
    error_no_arg ("serial port device name");

  target_preopen (from_tty);
  
  nindy_close (0);

  have_regs = regs_changed = 0;
  dcache_init();

  /* Allow user to interrupt the following -- we could hang if there's
     no NINDY at the other end of the remote tty.  */
  immediate_quit++;
  ninConnect(name, baud_rate ? baud_rate : "9600",
	     nindy_initial_brk, !from_tty, nindy_old_protocol);
  immediate_quit--;

  if (nindy_serial == NULL)
    {
      perror_with_name (name);
    }

  savename = savestring (name, strlen (name));
  push_target (&nindy_ops);
  target_fetch_registers(-1);
}

/* User-initiated quit of nindy operations.  */

static void
nindy_detach (name, from_tty)
     char *name;
     int from_tty;
{
  if (name)
    error ("Too many arguments");
  pop_target ();
}

static void
nindy_files_info ()
{
  printf("\tAttached to %s at %s bps%s%s.\n", savename,
	 baud_rate? baud_rate: "9600",
	 nindy_old_protocol? " in old protocol": "",
         nindy_initial_brk? " with initial break": "");
}

/* Return the number of characters in the buffer before
   the first DLE character.  */

static
int
non_dle( buf, n )
    char *buf;		/* Character buffer; NOT '\0'-terminated */
    int n;		/* Number of characters in buffer */
{
	int i;

	for ( i = 0; i < n; i++ ){
		if ( buf[i] == DLE ){
			break;
		}
	}
	return i;
}

/* Tell the remote machine to resume.  */

void
nindy_resume (pid, step, siggnal)
     int pid, step, siggnal;
{
	if (siggnal != 0 && siggnal != stop_signal)
	  error ("Can't send signals to remote NINDY targets.");

	dcache_flush();
	if ( regs_changed ){
		nindy_store_registers (-1);
		regs_changed = 0;
	}
	have_regs = 0;
	ninGo( step );
}

/* FIXME, we can probably use the normal terminal_inferior stuff here.
   We have to do terminal_inferior and then set up the passthrough
   settings initially.  Thereafter, terminal_ours and terminal_inferior
   will automatically swap the settings around for us.  */

struct clean_up_tty_args {
  serial_ttystate state;
  serial_t serial;
};

static void
clean_up_tty (ptrarg)
     PTR ptrarg;
{
  struct clean_up_tty_args *args = (struct clean_up_tty_args *) ptrarg;
  SERIAL_SET_TTY_STATE (args->serial, args->state);
  free (args->state);
  warning ("\n\n\
You may need to reset the 80960 and/or reload your program.\n");
}

/* Wait until the remote machine stops. While waiting, operate in passthrough
 * mode; i.e., pass everything NINDY sends to stdout, and everything from
 * stdin to NINDY.
 *
 * Return to caller, storing status in 'status' just as `wait' would.
 */

static int
nindy_wait( status )
    WAITTYPE *status;
{
  fd_set fds;
  char buf[500];	/* FIXME, what is "500" here? */
  int i, n;
  unsigned char stop_exit;
  unsigned char stop_code;
  struct clean_up_tty_args tty_args;
  struct cleanup *old_cleanups;
  long ip_value, fp_value, sp_value;	/* Reg values from stop */

  WSETEXIT( (*status), 0 );

  /* OPERATE IN PASSTHROUGH MODE UNTIL NINDY SENDS A DLE CHARACTER */

  /* Save current tty attributes, and restore them when done.  */
  tty_args.serial = SERIAL_FDOPEN (0);
  tty_args.state = SERIAL_GET_TTY_STATE (tty_args.serial);
  old_cleanups = make_cleanup (clean_up_tty, &tty_args);

  /* Pass input from keyboard to NINDY as it arrives.  NINDY will interpret
     <CR> and perform echo.  */
  /* This used to set CBREAK and clear ECHO and CRMOD.  I hope this is close
     enough.  */
  SERIAL_RAW (tty_args.serial);

  while (1)
    {
      /* Wait for input on either the remote port or stdin.  */
      FD_ZERO (&fds);
      FD_SET (0, &fds);
      FD_SET (nindy_serial->fd, &fds);
      if (select (nindy_serial->fd + 1, &fds, 0, 0, 0) <= 0)
	continue;

      /* Pass input through to correct place */
      if (FD_ISSET (0, &fds))
	{
	  /* Input on stdin */
	  n = read (0, buf, sizeof (buf));
	  if (n)
	    {
	      SERIAL_WRITE (nindy_serial, buf, n );
	    }
	}

      if (FD_ISSET (nindy_serial->fd, &fds))
	{
	  /* Input on remote */
	  n = read (nindy_serial->fd, buf, sizeof (buf));
	  if (n)
	    {
	      /* Write out any characters in buffer preceding DLE */
	      i = non_dle( buf, n );
	      if ( i > 0 )
		{
		  write (1, buf, i);
		}

	      if (i != n)
		{
		  /* There *was* a DLE in the buffer */
		  stop_exit = ninStopWhy(&stop_code,
					 &ip_value, &fp_value, &sp_value);
		  if (!stop_exit && (stop_code == STOP_SRQ))
		    {
		      immediate_quit++;
		      ninSrq();
		      immediate_quit--;
		    }
		  else
		    {
		      /* Get out of loop */
		      supply_register (IP_REGNUM, 
				       (char *)&ip_value);
		      supply_register (FP_REGNUM, 
				       (char *)&fp_value);
		      supply_register (SP_REGNUM, 
				       (char *)&sp_value);
		      break;
		    }
		}
	    }
	}
    }

  do_cleanups (old_cleanups);

  if (stop_exit)
    {
      /* User program exited */
      WSETEXIT ((*status), stop_code);
    }
  else
    {
      /* Fault or trace */
      switch (stop_code)
	{
	case STOP_GDB_BPT:
	case TRACE_STEP:
	  /* Breakpoint or single stepping.  */
	  stop_code = SIGTRAP;
	  break;
	default:
	  /* The target is not running Unix, and its faults/traces do
	     not map nicely into Unix signals.  Make sure they do not
	     get confused with Unix signals by numbering them with
	     values higher than the highest legal Unix signal.  code
	     in i960_print_fault(), called via PRINT_RANDOM_SIGNAL,
	     will interpret the value.  */
	  stop_code += NSIG;
	  break;
	}
      WSETSTOP ((*status), stop_code);
    }
  return inferior_pid;
}

/* Read the remote registers into the block REGS.  */

/* This is the block that ninRegsGet and ninRegsPut handles.  */
struct nindy_regs {
  char	local_regs[16 * 4];
  char	global_regs[16 * 4];
  char	pcw_acw[2 * 4];
  char	ip[4];
  char	tcw[4];
  char	fp_as_double[4 * 8];
};

static void
nindy_fetch_registers(regno)
     int regno;
{
  struct nindy_regs nindy_regs;
  int regnum, inv;
  double dub;

  immediate_quit++;
  ninRegsGet( (char *) &nindy_regs );
  immediate_quit--;

  memcpy (&registers[REGISTER_BYTE (R0_REGNUM)], nindy_regs.local_regs, 16*4);
  memcpy (&registers[REGISTER_BYTE (G0_REGNUM)], nindy_regs.global_regs, 16*4);
  memcpy (&registers[REGISTER_BYTE (PCW_REGNUM)], nindy_regs.pcw_acw, 2*4);
  memcpy (&registers[REGISTER_BYTE (IP_REGNUM)], nindy_regs.ip, 1*4);
  memcpy (&registers[REGISTER_BYTE (TCW_REGNUM)], nindy_regs.tcw, 1*4);
  for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 4; regnum++) {
    dub = unpack_double (builtin_type_double,
			 &nindy_regs.fp_as_double[8 * (regnum - FP0_REGNUM)],
			 &inv);
    /* dub now in host byte order */
    double_to_ieee_extended (&ext_format_i960, &dub,
			     &registers[REGISTER_BYTE (regnum)]);
  }

  registers_fetched ();
}

static void
nindy_prepare_to_store()
{
  /* Fetch all regs if they aren't already here.  */
  read_register_bytes (0, NULL, REGISTER_BYTES);
}

static void
nindy_store_registers(regno)
     int regno;
{
  struct nindy_regs nindy_regs;
  int regnum, inv;
  double dub;

  memcpy (nindy_regs.local_regs, &registers[REGISTER_BYTE (R0_REGNUM)], 16*4);
  memcpy (nindy_regs.global_regs, &registers[REGISTER_BYTE (G0_REGNUM)], 16*4);
  memcpy (nindy_regs.pcw_acw, &registers[REGISTER_BYTE (PCW_REGNUM)], 2*4);
  memcpy (nindy_regs.ip, &registers[REGISTER_BYTE (IP_REGNUM)], 1*4);
  memcpy (nindy_regs.tcw, &registers[REGISTER_BYTE (TCW_REGNUM)], 1*4);
  /* Float regs.  Only works on IEEE_FLOAT hosts.  FIXME!  */
  for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 4; regnum++) {
    ieee_extended_to_double (&ext_format_i960,
			     &registers[REGISTER_BYTE (regnum)], &dub);
    /* dub now in host byte order */
    /* FIXME-someday, the arguments to unpack_double are backward.
       It expects a target double and returns a host; we pass the opposite.
       This mostly works but not quite.  */
    dub = unpack_double (builtin_type_double, (char *)&dub, &inv);
    /* dub now in target byte order */
    memcpy (&nindy_regs.fp_as_double[8 * (regnum - FP0_REGNUM)], &dub, 8);
  }

  immediate_quit++;
  ninRegsPut( (char *) &nindy_regs );
  immediate_quit--;
}

/* Read a word from remote address ADDR and return it.
 * This goes through the data cache.
 */
int
nindy_fetch_word (addr)
     CORE_ADDR addr;
{
	return dcache_fetch (addr);
}

/* Write a word WORD into remote address ADDR.
   This goes through the data cache.  */

void
nindy_store_word (addr, word)
     CORE_ADDR addr;
     int word;
{
	dcache_poke (addr, word);
}

/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.   Copy to inferior if
   WRITE is nonzero.  Returns the length copied.

   This is stolen almost directly from infptrace.c's child_xfer_memory,
   which also deals with a word-oriented memory interface.  Sometime,
   FIXME, rewrite this to not use the word-oriented routines.  */

int
nindy_xfer_inferior_memory(memaddr, myaddr, len, write, target)
     CORE_ADDR memaddr;
     char *myaddr;
     int len;
     int write;
     struct target_ops *target;			/* ignored */
{
  register int i;
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & - sizeof (int);
  /* Round ending address up; get number of longwords that makes.  */
  register int count
    = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  /* Allocate buffer of that many longwords.  */
  register int *buffer = (int *) alloca (count * sizeof (int));

  if (write)
    {
      /* Fill start and end extra bytes of buffer with existing memory data.  */

      if (addr != memaddr || len < (int)sizeof (int)) {
	/* Need part of initial word -- fetch it.  */
        buffer[0] = nindy_fetch_word (addr);
      }

      if (count > 1)		/* FIXME, avoid if even boundary */
	{
	  buffer[count - 1]
	    = nindy_fetch_word (addr + (count - 1) * sizeof (int));
	}

      /* Copy data to be written over corresponding part of buffer */

      memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);

      /* Write the entire buffer.  */

      for (i = 0; i < count; i++, addr += sizeof (int))
	{
	  errno = 0;
	  nindy_store_word (addr, buffer[i]);
	  if (errno)
	    return 0;
	}
    }
  else
    {
      /* Read all the longwords */
      for (i = 0; i < count; i++, addr += sizeof (int))
	{
	  errno = 0;
	  buffer[i] = nindy_fetch_word (addr);
	  if (errno)
	    return 0;
	  QUIT;
	}

      /* Copy appropriate bytes out of the buffer.  */
      memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
    }
  return len;
}

/* The data cache records all the data read from the remote machine
   since the last time it stopped.

   Each cache block holds 16 bytes of data
   starting at a multiple-of-16 address.  */

#define DCACHE_SIZE 64		/* Number of cache blocks */

struct dcache_block {
	struct dcache_block *next, *last;
	unsigned int addr;	/* Address for which data is recorded.  */
	int data[4];
};

struct dcache_block dcache_free, dcache_valid;

/* Free all the data cache blocks, thus discarding all cached data.  */ 
static
void
dcache_flush ()
{
  register struct dcache_block *db;

  while ((db = dcache_valid.next) != &dcache_valid)
    {
      remque (db);
      insque (db, &dcache_free);
    }
}

/*
 * If addr is present in the dcache, return the address of the block
 * containing it.
 */
static
struct dcache_block *
dcache_hit (addr)
     unsigned int addr;
{
  register struct dcache_block *db;

  if (addr & 3)
    abort ();

  /* Search all cache blocks for one that is at this address.  */
  db = dcache_valid.next;
  while (db != &dcache_valid)
    {
      if ((addr & 0xfffffff0) == db->addr)
	return db;
      db = db->next;
    }
  return NULL;
}

/*  Return the int data at address ADDR in dcache block DC.  */
static
int
dcache_value (db, addr)
     struct dcache_block *db;
     unsigned int addr;
{
  if (addr & 3)
    abort ();
  return (db->data[(addr>>2)&3]);
}

/* Get a free cache block, put or keep it on the valid list,
   and return its address.  The caller should store into the block
   the address and data that it describes, then remque it from the
   free list and insert it into the valid list.  This procedure
   prevents errors from creeping in if a ninMemGet is interrupted
   (which used to put garbage blocks in the valid list...).  */
static
struct dcache_block *
dcache_alloc ()
{
  register struct dcache_block *db;

  if ((db = dcache_free.next) == &dcache_free)
    {
      /* If we can't get one from the free list, take last valid and put
	 it on the free list.  */
      db = dcache_valid.last;
      remque (db);
      insque (db, &dcache_free);
    }

  remque (db);
  insque (db, &dcache_valid);
  return (db);
}

/* Return the contents of the word at address ADDR in the remote machine,
   using the data cache.  */
static
int
dcache_fetch (addr)
     CORE_ADDR addr;
{
  register struct dcache_block *db;

  db = dcache_hit (addr);
  if (db == 0)
    {
      db = dcache_alloc ();
      immediate_quit++;
      ninMemGet(addr & ~0xf, (unsigned char *)db->data, 16);
      immediate_quit--;
      db->addr = addr & ~0xf;
      remque (db);			/* Off the free list */
      insque (db, &dcache_valid);	/* On the valid list */
    }
  return (dcache_value (db, addr));
}

/* Write the word at ADDR both in the data cache and in the remote machine.  */
static void
dcache_poke (addr, data)
     CORE_ADDR addr;
     int data;
{
  register struct dcache_block *db;

  /* First make sure the word is IN the cache.  DB is its cache block.  */
  db = dcache_hit (addr);
  if (db == 0)
    {
      db = dcache_alloc ();
      immediate_quit++;
      ninMemGet(addr & ~0xf, (unsigned char *)db->data, 16);
      immediate_quit--;
      db->addr = addr & ~0xf;
      remque (db);			/* Off the free list */
      insque (db, &dcache_valid);	/* On the valid list */
    }

  /* Modify the word in the cache.  */
  db->data[(addr>>2)&3] = data;

  /* Send the changed word.  */
  immediate_quit++;
  ninMemPut(addr, (unsigned char *)&data, 4);
  immediate_quit--;
}

/* The cache itself. */
struct dcache_block the_cache[DCACHE_SIZE];

/* Initialize the data cache.  */
static void
dcache_init ()
{
  register i;
  register struct dcache_block *db;

  db = the_cache;
  dcache_free.next = dcache_free.last = &dcache_free;
  dcache_valid.next = dcache_valid.last = &dcache_valid;
  for (i=0;i<DCACHE_SIZE;i++,db++)
    insque (db, &dcache_free);
}


static void
nindy_create_inferior (execfile, args, env)
     char *execfile;
     char *args;
     char **env;
{
  int entry_pt;
  int pid;

  if (args && *args)
    error ("Can't pass arguments to remote NINDY process");

  if (execfile == 0 || exec_bfd == 0)
    error ("No exec file specified");

  entry_pt = (int) bfd_get_start_address (exec_bfd);

  pid = 42;

#ifdef CREATE_INFERIOR_HOOK
  CREATE_INFERIOR_HOOK (pid);
#endif  

/* The "process" (board) is already stopped awaiting our commands, and
   the program is already downloaded.  We just set its PC and go.  */

  inferior_pid = pid;		/* Needed for wait_for_inferior below */

  clear_proceed_status ();

  /* Tell wait_for_inferior that we've started a new process.  */
  init_wait_for_inferior ();

  /* Set up the "saved terminal modes" of the inferior
     based on what modes we are starting it with.  */
  target_terminal_init ();

  /* Install inferior's terminal modes.  */
  target_terminal_inferior ();

  /* insert_step_breakpoint ();  FIXME, do we need this?  */
  proceed ((CORE_ADDR)entry_pt, -1, 0);		/* Let 'er rip... */
}

static void
reset_command(args, from_tty)
     char *args;
     int from_tty;
{
  if (nindy_serial == NULL)
    {
      error( "No target system to reset -- use 'target nindy' command.");
    }
  if ( query("Really reset the target system?",0,0) )
    {
      SERIAL_SEND_BREAK (nindy_serial);
      tty_flush (nindy_serial);
    }
}

void
nindy_kill (args, from_tty)
     char *args;
     int from_tty;
{
  return;		/* Ignore attempts to kill target system */
}

/* Clean up when a program exits.

   The program actually lives on in the remote processor's RAM, and may be
   run again without a download.  Don't leave it full of breakpoint
   instructions.  */

void
nindy_mourn_inferior ()
{
  remove_breakpoints ();
  unpush_target (&nindy_ops);
  generic_mourn_inferior ();	/* Do all the proper things now */
}

/* Pass the args the way catch_errors wants them.  */
static int
nindy_open_stub (arg)
     char *arg;
{
  nindy_open (arg, 1);
  return 1;
}

static int
load_stub (arg)
     char *arg;
{
  target_load (arg, 1);
  return 1;
}

/* This routine is run as a hook, just before the main command loop is
   entered.  If gdb is configured for the i960, but has not had its
   nindy target specified yet, this will loop prompting the user to do so.

   Unlike the loop provided by Intel, we actually let the user get out
   of this with a RETURN.  This is useful when e.g. simply examining
   an i960 object file on the host system.  */

void
nindy_before_main_loop ()
{
  char ttyname[100];
  char *p, *p2;

  while (current_target != &nindy_ops) { /* remote tty not specified yet */
	if ( instream == stdin ){
		printf("\nAttach /dev/ttyNN -- specify NN, or \"quit\" to quit:  ");
		fflush( stdout );
	}
	fgets( ttyname, sizeof(ttyname)-1, stdin );

	/* Strip leading and trailing whitespace */
	for ( p = ttyname; isspace(*p); p++ ){
		;
	}
	if ( *p == '\0' ){
		return;		/* User just hit spaces or return, wants out */
	}
	for ( p2= p; !isspace(*p2) && (*p2 != '\0'); p2++ ){
		;
	}
	*p2= '\0';
	if ( STREQ("quit",p) ){
		exit(1);
	}

	if (catch_errors (nindy_open_stub, p, "", RETURN_MASK_ALL))
	  {
	    /* Now that we have a tty open for talking to the remote machine,
	       download the executable file if one was specified.  */
	    if (exec_bfd)
	      {
		catch_errors (load_stub, bfd_get_filename (exec_bfd), "",
			      RETURN_MASK_ALL);
	      }
	  }
  }
}

/* Define the target subroutine names */

struct target_ops nindy_ops = {
	"nindy", "Remote serial target in i960 NINDY-specific protocol",
	"Use a remote i960 system running NINDY connected by a serial line.\n\
Specify the name of the device the serial line is connected to.\n\
The speed (baud rate), whether to use the old NINDY protocol,\n\
and whether to send a break on startup, are controlled by options\n\
specified when you started GDB.",
	nindy_open, nindy_close,
	0,
	nindy_detach,
	nindy_resume,
	nindy_wait,
	nindy_fetch_registers, nindy_store_registers,
	nindy_prepare_to_store,
	nindy_xfer_inferior_memory, nindy_files_info,
	0, 0, /* insert_breakpoint, remove_breakpoint, */
	0, 0, 0, 0, 0,	/* Terminal crud */
	nindy_kill,
	generic_load,
	0, /* lookup_symbol */
	nindy_create_inferior,
	nindy_mourn_inferior,
	0,		/* can_run */
	0, /* notice_signals */
	process_stratum, 0, /* next */
	1, 1, 1, 1, 1,	/* all mem, mem, stack, regs, exec */
	0, 0,			/* Section pointers */
	OPS_MAGIC,		/* Always the last thing */
};

void
_initialize_nindy ()
{
  add_target (&nindy_ops);
  add_com ("reset", class_obscure, reset_command,
	   "Send a 'break' to the remote target system.\n\
Only useful if the target has been equipped with a circuit\n\
to perform a hard reset when a break is detected.");
}