aboutsummaryrefslogtreecommitdiff
path: root/gdb/regex.c
blob: 3f30284a63972e58499cba91b7875fc923858a45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
/* Extended regular expression matching and search library.
   Copyright (C) 1985, 1989 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* To test, compile with -Dtest.
 This Dtestable feature turns this into a self-contained program
 which reads a pattern, describes how it compiles,
 then reads a string and searches for it.  */

#ifdef emacs

/* The `emacs' switch turns on certain special matching commands
 that make sense only in emacs. */

#include "config.h"
#include "lisp.h"
#include "buffer.h"
#include "syntax.h"

#else  /* not emacs */

#include "defs.h"
#include <string.h>

/*
 * Define the syntax stuff, so we can do the \<...\> things.
 */

#ifndef Sword /* must be non-zero in some of the tests below... */
#define Sword 1
#endif

#define SYNTAX(c) re_syntax_table[c]

#ifdef SYNTAX_TABLE

char *re_syntax_table;

#else

static char re_syntax_table[256];

static void
init_syntax_once ()
{
   register int c;
   static int done = 0;

   if (done)
     return;

   memset (re_syntax_table, '\0', sizeof re_syntax_table);

   for (c = 'a'; c <= 'z'; c++)
     re_syntax_table[c] = Sword;

   for (c = 'A'; c <= 'Z'; c++)
     re_syntax_table[c] = Sword;

   for (c = '0'; c <= '9'; c++)
     re_syntax_table[c] = Sword;

   done = 1;
}

#endif /* SYNTAX_TABLE */
#endif /* not emacs */

#include "regex.h"

/* Number of failure points to allocate space for initially,
 when matching.  If this number is exceeded, more space is allocated,
 so it is not a hard limit.  */

#ifndef NFAILURES
#define NFAILURES 80
#endif /* NFAILURES */

/* width of a byte in bits */

#define BYTEWIDTH 8

/* We remove any previous definition of `SIGN_EXTEND_CHAR',
   since ours (we hope) works properly with all combinations of
   machines, compilers, `char' and `unsigned char' argument types.
   (Per Bothner suggested the basic approach.)  */
#undef SIGN_EXTEND_CHAR
#if __STDC__
#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
#else  /* not __STDC__ */
/* As in Harbison and Steele.  */
#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
#endif

static int obscure_syntax = 0;

/* Specify the precise syntax of regexp for compilation.
   This provides for compatibility for various utilities
   which historically have different, incompatible syntaxes.

   The argument SYNTAX is a bit-mask containing the two bits
   RE_NO_BK_PARENS and RE_NO_BK_VBAR.  */

int
re_set_syntax (syntax)
     int syntax;
{
  int ret;

  ret = obscure_syntax;
  obscure_syntax = syntax;
  return ret;
}

/* re_compile_pattern takes a regular-expression string
   and converts it into a buffer full of byte commands for matching.

  PATTERN   is the address of the pattern string
  SIZE      is the length of it.
  BUFP	    is a  struct re_pattern_buffer *  which points to the info
	    on where to store the byte commands.
	    This structure contains a  char *  which points to the
	    actual space, which should have been obtained with malloc.
	    re_compile_pattern may use  realloc  to grow the buffer space.

  The number of bytes of commands can be found out by looking in
  the  struct re_pattern_buffer  that bufp pointed to,
  after re_compile_pattern returns.
*/

#define PATPUSH(ch) (*b++ = (char) (ch))

#define PATFETCH(c) \
 {if (p == pend) goto end_of_pattern; \
  c = * (unsigned char *) p++; \
  if (translate) c = translate[c]; }

#define PATFETCH_RAW(c) \
 {if (p == pend) goto end_of_pattern; \
  c = * (unsigned char *) p++; }

#define PATUNFETCH p--

/* This is not an arbitrary limit: the arguments which represent offsets
   into the pattern are two bytes long.  So if 2^16 bytes turns out to
   be too small, many things would have to change.  */
#define MAX_BUF_SIZE (1 << 16)


/* Extend the buffer by twice its current size via realloc and
   reset the pointers that pointed into the old block to point to the
   correct places in the new one.  If extending the buffer results in it
   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
#define EXTEND_BUFFER                                                 \
  do {                                                                  \
    char *old_buffer = bufp->buffer;                           \
    if (bufp->allocated == MAX_BUF_SIZE)                                \
      goto too_big;                                                 \
    bufp->allocated <<= 1;                                              \
    if (bufp->allocated > MAX_BUF_SIZE)                                 \
      bufp->allocated = MAX_BUF_SIZE;                                   \
    bufp->buffer = (char *) realloc (bufp->buffer, bufp->allocated);\
    if (bufp->buffer == NULL)                                           \
      goto memory_exhausted;                                                \
    /* If the buffer moved, move all the pointers into it.  */          \
    if (old_buffer != bufp->buffer)                                     \
      {                                                                 \
        b = (b - old_buffer) + bufp->buffer;                            \
        begalt = (begalt - old_buffer) + bufp->buffer;                  \
        if (fixup_jump)                                             \
          fixup_jump = (fixup_jump - old_buffer) + bufp->buffer;\
        if (laststart)                                                  \
          laststart = (laststart - old_buffer) + bufp->buffer;          \
        if (pending_exact)                                              \
          pending_exact = (pending_exact - old_buffer) + bufp->buffer;  \
      }                                                                 \
  } while (0)

static void store_jump (), insert_jump ();

char *
re_compile_pattern (pattern, size, bufp)
     char *pattern;
     int size;
     struct re_pattern_buffer *bufp;
{
  register char *b = bufp->buffer;
  register char *p = pattern;
  char *pend = pattern + size;
  register unsigned c, c1;
  char *p1;
  unsigned char *translate = (unsigned char *) bufp->translate;

  /* address of the count-byte of the most recently inserted "exactn" command.
    This makes it possible to tell whether a new exact-match character
    can be added to that command or requires a new "exactn" command. */
     
  char *pending_exact = 0;

  /* address of the place where a forward-jump should go
    to the end of the containing expression.
    Each alternative of an "or", except the last, ends with a forward-jump
    of this sort. */

  char *fixup_jump = 0;

  /* address of start of the most recently finished expression.
    This tells postfix * where to find the start of its operand. */

  char *laststart = 0;

  /* In processing a repeat, 1 means zero matches is allowed */

  char zero_times_ok;

  /* In processing a repeat, 1 means many matches is allowed */

  char many_times_ok;

  /* address of beginning of regexp, or inside of last \( */

  char *begalt = b;

  /* Stack of information saved by \( and restored by \).
     Four stack elements are pushed by each \(:
       First, the value of b.
       Second, the value of fixup_jump.
       Third, the value of regnum.
       Fourth, the value of begalt.  */

  int stackb[40];
  int *stackp = stackb;
  int *stacke = stackb + 40;
  int *stackt;

  /* Counts \('s as they are encountered.  Remembered for the matching \),
     where it becomes the "register number" to put in the stop_memory command */

  int regnum = 1;

  bufp->fastmap_accurate = 0;

#ifndef emacs
#ifndef SYNTAX_TABLE
  /*
   * Initialize the syntax table.
   */
   init_syntax_once();
#endif
#endif

  if (bufp->allocated == 0)
    {
      bufp->allocated = 28;
      if (bufp->buffer)
	/* EXTEND_BUFFER loses when bufp->allocated is 0 */
	bufp->buffer = (char *) realloc (bufp->buffer, 28);
      else
	/* Caller did not allocate a buffer.  Do it for him */
	bufp->buffer = (char *) malloc (28);
      if (!bufp->buffer) goto memory_exhausted;
      begalt = b = bufp->buffer;
    }

  while (p != pend)
    {
      if (b - bufp->buffer > bufp->allocated - 10)
	/* Note that EXTEND_BUFFER clobbers c */
	EXTEND_BUFFER;

      PATFETCH (c);

      switch (c)
	{
	case '$':
	  if (obscure_syntax & RE_TIGHT_VBAR)
	    {
	      if (! (obscure_syntax & RE_CONTEXT_INDEP_OPS) && p != pend)
		goto normal_char;
	      /* Make operand of last vbar end before this `$'.  */
	      if (fixup_jump)
		store_jump (fixup_jump, jump, b);
	      fixup_jump = 0;
	      PATPUSH (endline);
	      break;
	    }

	  /* $ means succeed if at end of line, but only in special contexts.
	    If randomly in the middle of a pattern, it is a normal character. */
	  if (p == pend || *p == '\n'
	      || (obscure_syntax & RE_CONTEXT_INDEP_OPS)
	      || (obscure_syntax & RE_NO_BK_PARENS
		  ? *p == ')'
		  : *p == '\\' && p[1] == ')')
	      || (obscure_syntax & RE_NO_BK_VBAR
		  ? *p == '|'
		  : *p == '\\' && p[1] == '|'))
	    {
	      PATPUSH (endline);
	      break;
	    }
	  goto normal_char;

	case '^':
	  /* ^ means succeed if at beg of line, but only if no preceding pattern. */

	  if (laststart && p[-2] != '\n'
	      && ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
	    goto normal_char;
	  if (obscure_syntax & RE_TIGHT_VBAR)
	    {
	      if (p != pattern + 1
		  && ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
		goto normal_char;
	      PATPUSH (begline);
	      begalt = b;
	    }
	  else
	    PATPUSH (begline);
	  break;

	case '+':
	case '?':
	  if (obscure_syntax & RE_BK_PLUS_QM)
	    goto normal_char;
	handle_plus:
	case '*':
	  /* If there is no previous pattern, char not special. */
	  if (!laststart && ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
	    goto normal_char;
	  /* If there is a sequence of repetition chars,
	     collapse it down to equivalent to just one.  */
	  zero_times_ok = 0;
	  many_times_ok = 0;
	  while (1)
	    {
	      zero_times_ok |= c != '+';
	      many_times_ok |= c != '?';
	      if (p == pend)
		break;
	      PATFETCH (c);
	      if (c == '*')
		;
	      else if (!(obscure_syntax & RE_BK_PLUS_QM)
		       && (c == '+' || c == '?'))
		;
	      else if ((obscure_syntax & RE_BK_PLUS_QM)
		       && c == '\\')
		{
		  int c1;
		  PATFETCH (c1);
		  if (!(c1 == '+' || c1 == '?'))
		    {
		      PATUNFETCH;
		      PATUNFETCH;
		      break;
		    }
		  c = c1;
		}
	      else
		{
		  PATUNFETCH;
		  break;
		}
	    }

	  /* Star, etc. applied to an empty pattern is equivalent
	     to an empty pattern.  */
	  if (!laststart)
	    break;

	  /* Now we know whether 0 matches is allowed,
	     and whether 2 or more matches is allowed.  */
	  if (many_times_ok)
	    {
	      /* If more than one repetition is allowed,
		 put in a backward jump at the end.  */
	      store_jump (b, maybe_finalize_jump, laststart - 3);
	      b += 3;
	    }
	  insert_jump (on_failure_jump, laststart, b + 3, b);
	  pending_exact = 0;
	  b += 3;
	  if (!zero_times_ok)
	    {
	      /* At least one repetition required: insert before the loop
		 a skip over the initial on-failure-jump instruction */
	      insert_jump (dummy_failure_jump, laststart, laststart + 6, b);
	      b += 3;
	    }
	  break;

	case '.':
	  laststart = b;
	  PATPUSH (anychar);
	  break;

	case '[':
	  while (b - bufp->buffer
		 > bufp->allocated - 3 - (1 << BYTEWIDTH) / BYTEWIDTH)
	    /* Note that EXTEND_BUFFER clobbers c */
	    EXTEND_BUFFER;

	  laststart = b;
	  if (*p == '^')
	    PATPUSH (charset_not), p++;
	  else
	    PATPUSH (charset);
	  p1 = p;

	  PATPUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
	  /* Clear the whole map */
	  memset (b, '\0', (1 << BYTEWIDTH) / BYTEWIDTH);
	  /* Read in characters and ranges, setting map bits */
	  while (1)
	    {
	      PATFETCH (c);
	      if (c == ']' && p != p1 + 1) break;
	      if (*p == '-' && p[1] != ']')
		{
		  PATFETCH (c1);
		  PATFETCH (c1);
		  while (c <= c1)
		    b[c / BYTEWIDTH] |= 1 << (c % BYTEWIDTH), c++;
		}
	      else
		{
		  b[c / BYTEWIDTH] |= 1 << (c % BYTEWIDTH);
		}
	    }
	  /* Discard any bitmap bytes that are all 0 at the end of the map.
	     Decrement the map-length byte too. */
	  while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
	    b[-1]--;
	  b += b[-1];
	  break;

	case '(':
	  if (! (obscure_syntax & RE_NO_BK_PARENS))
	    goto normal_char;
	  else
	    goto handle_open;

	case ')':
	  if (! (obscure_syntax & RE_NO_BK_PARENS))
	    goto normal_char;
	  else
	    goto handle_close;

	case '\n':
	  if (! (obscure_syntax & RE_NEWLINE_OR))
	    goto normal_char;
	  else
	    goto handle_bar;

	case '|':
	  if (! (obscure_syntax & RE_NO_BK_VBAR))
	    goto normal_char;
	  else
	    goto handle_bar;

        case '\\':
	  if (p == pend) goto invalid_pattern;
	  PATFETCH_RAW (c);
	  switch (c)
	    {
	    case '(':
	      if (obscure_syntax & RE_NO_BK_PARENS)
		goto normal_backsl;
	    handle_open:
	      if (stackp == stacke) goto nesting_too_deep;
	      if (regnum < RE_NREGS)
	        {
		  PATPUSH (start_memory);
		  PATPUSH (regnum);
	        }
	      *stackp++ = b - bufp->buffer;
	      *stackp++ = fixup_jump ? fixup_jump - bufp->buffer + 1 : 0;
	      *stackp++ = regnum++;
	      *stackp++ = begalt - bufp->buffer;
	      fixup_jump = 0;
	      laststart = 0;
	      begalt = b;
	      break;

	    case ')':
	      if (obscure_syntax & RE_NO_BK_PARENS)
		goto normal_backsl;
	    handle_close:
	      if (stackp == stackb) goto unmatched_close;
	      begalt = *--stackp + bufp->buffer;
	      if (fixup_jump)
		store_jump (fixup_jump, jump, b);
	      if (stackp[-1] < RE_NREGS)
		{
		  PATPUSH (stop_memory);
		  PATPUSH (stackp[-1]);
		}
	      stackp -= 2;
	      fixup_jump = 0;
	      if (*stackp)
		fixup_jump = *stackp + bufp->buffer - 1;
	      laststart = *--stackp + bufp->buffer;
	      break;

	    case '|':
	      if (obscure_syntax & RE_NO_BK_VBAR)
		goto normal_backsl;
	    handle_bar:
	      insert_jump (on_failure_jump, begalt, b + 6, b);
	      pending_exact = 0;
	      b += 3;
	      if (fixup_jump)
		store_jump (fixup_jump, jump, b);
	      fixup_jump = b;
	      b += 3;
	      laststart = 0;
	      begalt = b;
	      break;

#ifdef emacs
	    case '=':
	      PATPUSH (at_dot);
	      break;

	    case 's':	
	      laststart = b;
	      PATPUSH (syntaxspec);
	      PATFETCH (c);
	      PATPUSH (syntax_spec_code[c]);
	      break;

	    case 'S':
	      laststart = b;
	      PATPUSH (notsyntaxspec);
	      PATFETCH (c);
	      PATPUSH (syntax_spec_code[c]);
	      break;
#endif /* emacs */

	    case 'w':
	      laststart = b;
	      PATPUSH (wordchar);
	      break;

	    case 'W':
	      laststart = b;
	      PATPUSH (notwordchar);
	      break;

	    case '<':
	      PATPUSH (wordbeg);
	      break;

	    case '>':
	      PATPUSH (wordend);
	      break;

	    case 'b':
	      PATPUSH (wordbound);
	      break;

	    case 'B':
	      PATPUSH (notwordbound);
	      break;

	    case '`':
	      PATPUSH (begbuf);
	      break;

	    case '\'':
	      PATPUSH (endbuf);
	      break;

	    case '1':
	    case '2':
	    case '3':
	    case '4':
	    case '5':
	    case '6':
	    case '7':
	    case '8':
	    case '9':
	      c1 = c - '0';
	      if (c1 >= regnum)
		goto normal_char;
	      for (stackt = stackp - 2;  stackt > stackb;  stackt -= 4)
 		if (*stackt == c1)
		  goto normal_char;
	      laststart = b;
	      PATPUSH (duplicate);
	      PATPUSH (c1);
	      break;

	    case '+':
	    case '?':
	      if (obscure_syntax & RE_BK_PLUS_QM)
		goto handle_plus;

	    default:
	    normal_backsl:
	      /* You might think it would be useful for \ to mean
		 not to translate; but if we don't translate it
		 it will never match anything.  */
	      if (translate) c = translate[c];
	      goto normal_char;
	    }
	  break;

	default:
	normal_char:
	  if (!pending_exact || pending_exact + *pending_exact + 1 != b
	      || *pending_exact == 0177 || *p == '*' || *p == '^'
	      || ((obscure_syntax & RE_BK_PLUS_QM)
		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
		  : (*p == '+' || *p == '?')))
	    {
	      laststart = b;
	      PATPUSH (exactn);
	      pending_exact = b;
	      PATPUSH (0);
	    }
	  PATPUSH (c);
	  (*pending_exact)++;
	}
    }

  if (fixup_jump)
    store_jump (fixup_jump, jump, b);

  if (stackp != stackb) goto unmatched_open;

  bufp->used = b - bufp->buffer;
  return 0;

 invalid_pattern:
  return "Invalid regular expression";

 unmatched_open:
  return "Unmatched \\(";

 unmatched_close:
  return "Unmatched \\)";

 end_of_pattern:
  return "Premature end of regular expression";

 nesting_too_deep:
  return "Nesting too deep";

 too_big:
  return "Regular expression too big";

 memory_exhausted:
  return "Memory exhausted";
}

/* Store where `from' points a jump operation to jump to where `to' points.
  `opcode' is the opcode to store. */

static void
store_jump (from, opcode, to)
     char *from, *to;
     char opcode;
{
  from[0] = opcode;
  from[1] = (to - (from + 3)) & 0377;
  from[2] = (to - (from + 3)) >> 8;
}

/* Open up space at char FROM, and insert there a jump to TO.
   CURRENT_END gives te end of the storage no in use,
   so we know how much data to copy up.
   OP is the opcode of the jump to insert.

   If you call this function, you must zero out pending_exact.  */

static void
insert_jump (op, from, to, current_end)
     char op;
     char *from, *to, *current_end;
{
  register char *pto = current_end + 3;
  register char *pfrom = current_end;
  while (pfrom != from)
    *--pto = *--pfrom;
  store_jump (from, op, to);
}

/* Given a pattern, compute a fastmap from it.
 The fastmap records which of the (1 << BYTEWIDTH) possible characters
 can start a string that matches the pattern.
 This fastmap is used by re_search to skip quickly over totally implausible text.

 The caller must supply the address of a (1 << BYTEWIDTH)-byte data area
 as bufp->fastmap.
 The other components of bufp describe the pattern to be used.  */

void
re_compile_fastmap (bufp)
     struct re_pattern_buffer *bufp;
{
  unsigned char *pattern = (unsigned char *) bufp->buffer;
  int size = bufp->used;
  register char *fastmap = bufp->fastmap;
  register unsigned char *p = pattern;
  register unsigned char *pend = pattern + size;
  register int j;
  unsigned char *translate = (unsigned char *) bufp->translate;

  unsigned char *stackb[NFAILURES];
  unsigned char **stackp = stackb;

  memset (fastmap, '\0', (1 << BYTEWIDTH));
  bufp->fastmap_accurate = 1;
  bufp->can_be_null = 0;
      
  while (p)
    {
      if (p == pend)
	{
	  bufp->can_be_null = 1;
	  break;
	}
#ifdef SWITCH_ENUM_BUG
      switch ((int) ((enum regexpcode) *p++))
#else
      switch ((enum regexpcode) *p++)
#endif
	{
	case exactn:
	  if (translate)
	    fastmap[translate[p[1]]] = 1;
	  else
	    fastmap[p[1]] = 1;
	  break;

        case begline:
        case before_dot:
	case at_dot:
	case after_dot:
	case begbuf:
	case endbuf:
	case wordbound:
	case notwordbound:
	case wordbeg:
	case wordend:
	  continue;

	case endline:
	  if (translate)
	    fastmap[translate['\n']] = 1;
	  else
	    fastmap['\n'] = 1;
	  if (bufp->can_be_null != 1)
	    bufp->can_be_null = 2;
	  break;

	case finalize_jump:
	case maybe_finalize_jump:
	case jump:
	case dummy_failure_jump:
	  bufp->can_be_null = 1;
	  j = *p++ & 0377;
	  j += SIGN_EXTEND_CHAR (*(char *)p) << 8;
	  p += j + 1;		/* The 1 compensates for missing ++ above */
	  if (j > 0)
	    continue;
	  /* Jump backward reached implies we just went through
	     the body of a loop and matched nothing.
	     Opcode jumped to should be an on_failure_jump.
	     Just treat it like an ordinary jump.
	     For a * loop, it has pushed its failure point already;
	     if so, discard that as redundant.  */
	  if ((enum regexpcode) *p != on_failure_jump)
	    continue;
	  p++;
	  j = *p++ & 0377;
	  j += SIGN_EXTEND_CHAR (*(char *)p) << 8;
	  p += j + 1;		/* The 1 compensates for missing ++ above */
	  if (stackp != stackb && *stackp == p)
	    stackp--;
	  continue;
	  
	case on_failure_jump:
	  j = *p++ & 0377;
	  j += SIGN_EXTEND_CHAR (*(char *)p) << 8;
	  p++;
	  *++stackp = p + j;
	  continue;

	case start_memory:
	case stop_memory:
	  p++;
	  continue;

	case duplicate:
	  bufp->can_be_null = 1;
	  fastmap['\n'] = 1;
	case anychar:
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (j != '\n')
	      fastmap[j] = 1;
	  if (bufp->can_be_null)
	    return;
	  /* Don't return; check the alternative paths
	     so we can set can_be_null if appropriate.  */
	  break;

	case wordchar:
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (SYNTAX (j) == Sword)
	      fastmap[j] = 1;
	  break;

	case notwordchar:
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (SYNTAX (j) != Sword)
	      fastmap[j] = 1;
	  break;

#ifdef emacs
	case syntaxspec:
	  k = *p++;
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (SYNTAX (j) == (enum syntaxcode) k)
	      fastmap[j] = 1;
	  break;

	case notsyntaxspec:
	  k = *p++;
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (SYNTAX (j) != (enum syntaxcode) k)
	      fastmap[j] = 1;
	  break;
#endif /* emacs */

	case charset:
	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
	      {
		if (translate)
		  fastmap[translate[j]] = 1;
		else
		  fastmap[j] = 1;
	      }
	  break;

	case charset_not:
	  /* Chars beyond end of map must be allowed */
	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
	    if (translate)
	      fastmap[translate[j]] = 1;
	    else
	      fastmap[j] = 1;

	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
	      {
		if (translate)
		  fastmap[translate[j]] = 1;
		else
		  fastmap[j] = 1;
	      }
	  break;
	}

      /* Get here means we have successfully found the possible starting characters
	 of one path of the pattern.  We need not follow this path any farther.
	 Instead, look at the next alternative remembered in the stack. */
      if (stackp != stackb)
	p = *stackp--;
      else
	break;
    }
}

/* Like re_search_2, below, but only one string is specified. */

int
re_search (pbufp, string, size, startpos, range, regs)
     struct re_pattern_buffer *pbufp;
     char *string;
     int size, startpos, range;
     struct re_registers *regs;
{
  return re_search_2 (pbufp, 0, 0, string, size, startpos, range, regs, size);
}

/* Like re_match_2 but tries first a match starting at index STARTPOS,
   then at STARTPOS + 1, and so on.
   RANGE is the number of places to try before giving up.
   If RANGE is negative, the starting positions tried are
    STARTPOS, STARTPOS - 1, etc.
   It is up to the caller to make sure that range is not so large
   as to take the starting position outside of the input strings.

The value returned is the position at which the match was found,
 or -1 if no match was found,
 or -2 if error (such as failure stack overflow).  */

int
re_search_2 (pbufp, string1, size1, string2, size2, startpos, range, regs, mstop)
     struct re_pattern_buffer *pbufp;
     char *string1, *string2;
     int size1, size2;
     int startpos;
     register int range;
     struct re_registers *regs;
     int mstop;
{
  register char *fastmap = pbufp->fastmap;
  register unsigned char *translate = (unsigned char *) pbufp->translate;
  int total = size1 + size2;
  int val;

  /* Update the fastmap now if not correct already */
  if (fastmap && !pbufp->fastmap_accurate)
    re_compile_fastmap (pbufp);
  
  /* Don't waste time in a long search for a pattern
     that says it is anchored.  */
  if (pbufp->used > 0 && (enum regexpcode) pbufp->buffer[0] == begbuf
      && range > 0)
    {
      if (startpos > 0)
	return -1;
      else
	range = 1;
    }

  while (1)
    {
      /* If a fastmap is supplied, skip quickly over characters
	 that cannot possibly be the start of a match.
	 Note, however, that if the pattern can possibly match
	 the null string, we must test it at each starting point
	 so that we take the first null string we get.  */

      if (fastmap && startpos < total && pbufp->can_be_null != 1)
	{
	  if (range > 0)
	    {
	      register int lim = 0;
	      register unsigned char *p;
	      int irange = range;
	      if (startpos < size1 && startpos + range >= size1)
		lim = range - (size1 - startpos);

	      p = ((unsigned char *)
		   &(startpos >= size1 ? string2 - size1 : string1)[startpos]);

	      if (translate)
		{
		  while (range > lim && !fastmap[translate[*p++]])
		    range--;
		}
	      else
		{
		  while (range > lim && !fastmap[*p++])
		    range--;
		}
	      startpos += irange - range;
	    }
	  else
	    {
	      register unsigned char c;
	      if (startpos >= size1)
		c = string2[startpos - size1];
	      else
		c = string1[startpos];
	      c &= 0xff;
	      if (translate ? !fastmap[translate[c]] : !fastmap[c])
		goto advance;
	    }
	}

      if (range >= 0 && startpos == total
	  && fastmap && pbufp->can_be_null == 0)
	return -1;

      val = re_match_2 (pbufp, string1, size1, string2, size2, startpos, regs, mstop);
      if (0 <= val)
	{
	  if (val == -2)
	    return -2;
	  return startpos;
	}

#ifdef C_ALLOCA
      alloca (0);
#endif /* C_ALLOCA */

    advance:
      if (!range) break;
      if (range > 0) range--, startpos++; else range++, startpos--;
    }
  return -1;
}

#ifndef emacs   /* emacs never uses this */
int
re_match (pbufp, string, size, pos, regs)
     struct re_pattern_buffer *pbufp;
     char *string;
     int size, pos;
     struct re_registers *regs;
{
  return re_match_2 (pbufp, 0, 0, string, size, pos, regs, size);
}
#endif /* emacs */

/* Maximum size of failure stack.  Beyond this, overflow is an error.  */

int re_max_failures = 2000;

static int memcmp_translate();
/* Match the pattern described by PBUFP
   against data which is the virtual concatenation of STRING1 and STRING2.
   SIZE1 and SIZE2 are the sizes of the two data strings.
   Start the match at position POS.
   Do not consider matching past the position MSTOP.

   If pbufp->fastmap is nonzero, then it had better be up to date.

   The reason that the data to match are specified as two components
   which are to be regarded as concatenated
   is so this function can be used directly on the contents of an Emacs buffer.

   -1 is returned if there is no match.  -2 is returned if there is
   an error (such as match stack overflow).  Otherwise the value is the length
   of the substring which was matched.  */

int
re_match_2 (pbufp, string1, size1, string2, size2, pos, regs, mstop)
     struct re_pattern_buffer *pbufp;
     unsigned char *string1, *string2;
     int size1, size2;
     int pos;
     struct re_registers *regs;
     int mstop;
{
  register unsigned char *p = (unsigned char *) pbufp->buffer;
  register unsigned char *pend = p + pbufp->used;
  /* End of first string */
  unsigned char *end1;
  /* End of second string */
  unsigned char *end2;
  /* Pointer just past last char to consider matching */
  unsigned char *end_match_1, *end_match_2;
  register unsigned char *d, *dend;
  register int mcnt;
  unsigned char *translate = (unsigned char *) pbufp->translate;

 /* Failure point stack.  Each place that can handle a failure further down the line
    pushes a failure point on this stack.  It consists of two char *'s.
    The first one pushed is where to resume scanning the pattern;
    the second pushed is where to resume scanning the strings.
    If the latter is zero, the failure point is a "dummy".
    If a failure happens and the innermost failure point is dormant,
    it discards that failure point and tries the next one. */

  unsigned char *initial_stack[2 * NFAILURES];
  unsigned char **stackb = initial_stack;
  unsigned char **stackp = stackb, **stacke = &stackb[2 * NFAILURES];

  /* Information on the "contents" of registers.
     These are pointers into the input strings; they record
     just what was matched (on this attempt) by some part of the pattern.
     The start_memory command stores the start of a register's contents
     and the stop_memory command stores the end.

     At that point, regstart[regnum] points to the first character in the register,
     regend[regnum] points to the first character beyond the end of the register,
     regstart_seg1[regnum] is true iff regstart[regnum] points into string1,
     and regend_seg1[regnum] is true iff regend[regnum] points into string1.  */

  unsigned char *regstart[RE_NREGS];
  unsigned char *regend[RE_NREGS];
  unsigned char regstart_seg1[RE_NREGS], regend_seg1[RE_NREGS];

  /* Set up pointers to ends of strings.
     Don't allow the second string to be empty unless both are empty.  */
  if (!size2)
    {
      string2 = string1;
      size2 = size1;
      string1 = 0;
      size1 = 0;
    }
  end1 = string1 + size1;
  end2 = string2 + size2;

  /* Compute where to stop matching, within the two strings */
  if (mstop <= size1)
    {
      end_match_1 = string1 + mstop;
      end_match_2 = string2;
    }
  else
    {
      end_match_1 = end1;
      end_match_2 = string2 + mstop - size1;
    }

  /* Initialize \) text positions to -1
     to mark ones that no \( or \) has been seen for.  */

  for (mcnt = 0; mcnt < sizeof (regend) / sizeof (*regend); mcnt++)
    regend[mcnt] = (unsigned char *) -1;

  /* `p' scans through the pattern as `d' scans through the data.
     `dend' is the end of the input string that `d' points within.
     `d' is advanced into the following input string whenever necessary,
     but this happens before fetching;
     therefore, at the beginning of the loop,
     `d' can be pointing at the end of a string,
     but it cannot equal string2.  */

  if (pos <= size1)
    d = string1 + pos, dend = end_match_1;
  else
    d = string2 + pos - size1, dend = end_match_2;

/* Write PREFETCH; just before fetching a character with *d.  */
#define PREFETCH \
 while (d == dend)						    \
  { if (dend == end_match_2) goto fail;  /* end of string2 => failure */   \
    d = string2;  /* end of string1 => advance to string2. */       \
    dend = end_match_2; }

  /* This loop loops over pattern commands.
     It exits by returning from the function if match is complete,
     or it drops through if match fails at this starting point in the input data. */

  while (1)
    {
      if (p == pend)
	/* End of pattern means we have succeeded! */
	{
	  /* If caller wants register contents data back, convert it to indices */
	  if (regs)
	    {
 	      regs->start[0] = pos;
 	      if (dend == end_match_1)
 		regs->end[0] = d - string1;
 	      else
 		regs->end[0] = d - string2 + size1;
 	      for (mcnt = 1; mcnt < RE_NREGS; mcnt++)
		{
		  if (regend[mcnt] == (unsigned char *) -1)
		    {
		      regs->start[mcnt] = -1;
		      regs->end[mcnt] = -1;
		      continue;
		    }
 		  if (regstart_seg1[mcnt])
		    regs->start[mcnt] = regstart[mcnt] - string1;
		  else
		    regs->start[mcnt] = regstart[mcnt] - string2 + size1;
 		  if (regend_seg1[mcnt])
		    regs->end[mcnt] = regend[mcnt] - string1;
		  else
		    regs->end[mcnt] = regend[mcnt] - string2 + size1;
		}
	    }
 	  if (dend == end_match_1)
	    return (d - string1 - pos);
	  else
	    return d - string2 + size1 - pos;
	}

      /* Otherwise match next pattern command */
#ifdef SWITCH_ENUM_BUG
      switch ((int) ((enum regexpcode) *p++))
#else
      switch ((enum regexpcode) *p++)
#endif
	{

	/* \( is represented by a start_memory, \) by a stop_memory.
	    Both of those commands contain a "register number" argument.
	    The text matched within the \( and \) is recorded under that number.
	    Then, \<digit> turns into a `duplicate' command which
	    is followed by the numeric value of <digit> as the register number. */

	case start_memory:
	  regstart[*p] = d;
 	  regstart_seg1[*p++] = (dend == end_match_1);
	  break;

	case stop_memory:
	  regend[*p] = d;
 	  regend_seg1[*p++] = (dend == end_match_1);
	  break;

	case duplicate:
	  {
	    int regno = *p++;   /* Get which register to match against */
	    register unsigned char *d2, *dend2;

	    d2 = regstart[regno];
 	    dend2 = ((regstart_seg1[regno] == regend_seg1[regno])
		     ? regend[regno] : end_match_1);
	    while (1)
	      {
		/* Advance to next segment in register contents, if necessary */
		while (d2 == dend2)
		  {
		    if (dend2 == end_match_2) break;
		    if (dend2 == regend[regno]) break;
		    d2 = string2, dend2 = regend[regno];  /* end of string1 => advance to string2. */
		  }
		/* At end of register contents => success */
		if (d2 == dend2) break;

		/* Advance to next segment in data being matched, if necessary */
		PREFETCH;

		/* mcnt gets # consecutive chars to compare */
		mcnt = dend - d;
		if (mcnt > dend2 - d2)
		  mcnt = dend2 - d2;
		/* Compare that many; failure if mismatch, else skip them. */
		if (translate ? memcmp_translate (d, d2, mcnt, translate) : memcmp (d, d2, mcnt))
		  goto fail;
		d += mcnt, d2 += mcnt;
	      }
	  }
	  break;

	case anychar:
	  /* fetch a data character */
	  PREFETCH;
	  /* Match anything but a newline.  */
	  if ((translate ? translate[*d++] : *d++) == '\n')
	    goto fail;
	  break;

	case charset:
	case charset_not:
	  {
	    /* Nonzero for charset_not */
	    int not = 0;
	    register int c;
	    if (*(p - 1) == (unsigned char) charset_not)
	      not = 1;

	    /* fetch a data character */
	    PREFETCH;

	    if (translate)
	      c = translate [*d];
	    else
	      c = *d;

	    if (c < *p * BYTEWIDTH
		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
	      not = !not;

	    p += 1 + *p;

	    if (!not) goto fail;
	    d++;
	    break;
	  }

	case begline:
	  if (d == string1 || d[-1] == '\n')
	    break;
	  goto fail;

	case endline:
	  if (d == end2
	      || (d == end1 ? (size2 == 0 || *string2 == '\n') : *d == '\n'))
	    break;
	  goto fail;

	/* "or" constructs ("|") are handled by starting each alternative
	    with an on_failure_jump that points to the start of the next alternative.
	    Each alternative except the last ends with a jump to the joining point.
	    (Actually, each jump except for the last one really jumps
	     to the following jump, because tensioning the jumps is a hassle.) */

	/* The start of a stupid repeat has an on_failure_jump that points
	   past the end of the repeat text.
	   This makes a failure point so that, on failure to match a repetition,
	   matching restarts past as many repetitions have been found
	   with no way to fail and look for another one.  */

	/* A smart repeat is similar but loops back to the on_failure_jump
	   so that each repetition makes another failure point. */

	case on_failure_jump:
	  if (stackp == stacke)
	    {
	      unsigned char **stackx;
	      if (stacke - stackb > re_max_failures * 2)
		return -2;
	      stackx = (unsigned char **) alloca (2 * (stacke - stackb)
					 * sizeof (char *));
	      memcpy (stackx, stackb, (stacke - stackb) * sizeof (char *));
	      stackp = stackx + (stackp - stackb);
	      stacke = stackx + 2 * (stacke - stackb);
	      stackb = stackx;
	    }
	  mcnt = *p++ & 0377;
	  mcnt += SIGN_EXTEND_CHAR (*(char *)p) << 8;
	  p++;
	  *stackp++ = mcnt + p;
	  *stackp++ = d;
	  break;

	/* The end of a smart repeat has an maybe_finalize_jump back.
	   Change it either to a finalize_jump or an ordinary jump. */

	case maybe_finalize_jump:
	  mcnt = *p++ & 0377;
	  mcnt += SIGN_EXTEND_CHAR (*(char *)p) << 8;
	  p++;
	  {
	    register unsigned char *p2 = p;
	    /* Compare what follows with the begining of the repeat.
	       If we can establish that there is nothing that they would
	       both match, we can change to finalize_jump */
	    while (p2 != pend
		   && (*p2 == (unsigned char) stop_memory
		       || *p2 == (unsigned char) start_memory))
	      p2++;
	    if (p2 == pend)
	      p[-3] = (unsigned char) finalize_jump;
	    else if (*p2 == (unsigned char) exactn
		     || *p2 == (unsigned char) endline)
	      {
		register int c = *p2 == (unsigned char) endline ? '\n' : p2[2];
		register unsigned char *p1 = p + mcnt;
		/* p1[0] ... p1[2] are an on_failure_jump.
		   Examine what follows that */
		if (p1[3] == (unsigned char) exactn && p1[5] != c)
		  p[-3] = (unsigned char) finalize_jump;
		else if (p1[3] == (unsigned char) charset
			 || p1[3] == (unsigned char) charset_not)
		  {
		    int not = p1[3] == (unsigned char) charset_not;
		    if (c < p1[4] * BYTEWIDTH
			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
		      not = !not;
		    /* not is 1 if c would match */
		    /* That means it is not safe to finalize */
		    if (!not)
		      p[-3] = (unsigned char) finalize_jump;
		  }
	      }
	  }
	  p -= 2;
	  if (p[-1] != (unsigned char) finalize_jump)
	    {
	      p[-1] = (unsigned char) jump;
	      goto nofinalize;
	    }

	/* The end of a stupid repeat has a finalize-jump
	   back to the start, where another failure point will be made
	   which will point after all the repetitions found so far. */

	case finalize_jump:
	  stackp -= 2;

	case jump:
	nofinalize:
	  mcnt = *p++ & 0377;
	  mcnt += SIGN_EXTEND_CHAR (*(char *)p) << 8;
	  p += mcnt + 1;	/* The 1 compensates for missing ++ above */
	  break;

	case dummy_failure_jump:
	  if (stackp == stacke)
	    {
	      unsigned char **stackx
		= (unsigned char **) alloca (2 * (stacke - stackb)
					     * sizeof (char *));
	      memcpy (stackx, stackb, (stacke - stackb) * sizeof (char *));
	      stackp = stackx + (stackp - stackb);
	      stacke = stackx + 2 * (stacke - stackb);
	      stackb = stackx;
	    }
	  *stackp++ = 0;
	  *stackp++ = 0;
	  goto nofinalize;

	case wordbound:
	  if (d == string1  /* Points to first char */
	      || d == end2  /* Points to end */
	      || (d == end1 && size2 == 0)) /* Points to end */
	    break;
	  if ((SYNTAX (d[-1]) == Sword)
	      != (SYNTAX (d == end1 ? *string2 : *d) == Sword))
	    break;
	  goto fail;

	case notwordbound:
	  if (d == string1  /* Points to first char */
	      || d == end2  /* Points to end */
	      || (d == end1 && size2 == 0)) /* Points to end */
	    goto fail;
	  if ((SYNTAX (d[-1]) == Sword)
	      != (SYNTAX (d == end1 ? *string2 : *d) == Sword))
	    goto fail;
	  break;

	case wordbeg:
	  if (d == end2  /* Points to end */
	      || (d == end1 && size2 == 0) /* Points to end */
	      || SYNTAX (* (d == end1 ? string2 : d)) != Sword) /* Next char not a letter */
	    goto fail;
	  if (d == string1  /* Points to first char */
	      || SYNTAX (d[-1]) != Sword)  /* prev char not letter */
	    break;
	  goto fail;

	case wordend:
	  if (d == string1  /* Points to first char */
	      || SYNTAX (d[-1]) != Sword)  /* prev char not letter */
	    goto fail;
	  if (d == end2  /* Points to end */
	      || (d == end1 && size2 == 0) /* Points to end */
	      || SYNTAX (d == end1 ? *string2 : *d) != Sword) /* Next char not a letter */
	    break;
	  goto fail;

#ifdef emacs
	case before_dot:
	  if (((d - string2 <= (unsigned) size2)
	       ? d - bf_p2 : d - bf_p1)
	      <= point)
	    goto fail;
	  break;

	case at_dot:
	  if (((d - string2 <= (unsigned) size2)
	       ? d - bf_p2 : d - bf_p1)
	      == point)
	    goto fail;
	  break;

	case after_dot:
	  if (((d - string2 <= (unsigned) size2)
	       ? d - bf_p2 : d - bf_p1)
	      >= point)
	    goto fail;
	  break;

	case wordchar:
	  mcnt = (int) Sword;
	  goto matchsyntax;

	case syntaxspec:
	  mcnt = *p++;
	matchsyntax:
	  PREFETCH;
	  if (SYNTAX (*d++) != (enum syntaxcode) mcnt) goto fail;
	  break;
	  
	case notwordchar:
	  mcnt = (int) Sword;
	  goto matchnotsyntax;

	case notsyntaxspec:
	  mcnt = *p++;
	matchnotsyntax:
	  PREFETCH;
	  if (SYNTAX (*d++) == (enum syntaxcode) mcnt) goto fail;
	  break;
#else
	case wordchar:
	  PREFETCH;
	  if (SYNTAX (*d++) == 0) goto fail;
	  break;
	  
	case notwordchar:
	  PREFETCH;
	  if (SYNTAX (*d++) != 0) goto fail;
	  break;
#endif /* not emacs */

	case begbuf:
	  if (d == string1)	/* Note, d cannot equal string2 */
	    break;		/* unless string1 == string2.  */
	  goto fail;

	case endbuf:
	  if (d == end2 || (d == end1 && size2 == 0))
	    break;
	  goto fail;

	case exactn:
	  /* Match the next few pattern characters exactly.
	     mcnt is how many characters to match. */
	  mcnt = *p++;
	  if (translate)
	    {
	      do
		{
		  PREFETCH;
		  if (translate[*d++] != *p++) goto fail;
		}
	      while (--mcnt);
	    }
	  else
	    {
	      do
		{
		  PREFETCH;
		  if (*d++ != *p++) goto fail;
		}
	      while (--mcnt);
	    }
	  break;
	}
      continue;    /* Successfully matched one pattern command; keep matching */

      /* Jump here if any matching operation fails. */
    fail:
      if (stackp != stackb)
	/* A restart point is known.  Restart there and pop it. */
	{
	  if (!stackp[-2])
	    {   /* If innermost failure point is dormant, flush it and keep looking */
	      stackp -= 2;
	      goto fail;
	    }
	  d = *--stackp;
	  p = *--stackp;
	  if (d >= string1 && d <= end1)
	    dend = end_match_1;
	}
      else break;   /* Matching at this starting point really fails! */
    }
  return -1;         /* Failure to match */
}

static int
memcmp_translate (s1, s2, len, translate)
     unsigned char *s1, *s2;
     register int len;
     unsigned char *translate;
{
  register unsigned char *p1 = s1, *p2 = s2;
  while (len)
    {
      if (translate [*p1++] != translate [*p2++]) return 1;
      len--;
    }
  return 0;
}

/* Entry points compatible with bsd4.2 regex library */

#ifndef emacs

static struct re_pattern_buffer re_comp_buf;

char *
re_comp (s)
     const char *s;
{
  if (!s)
    {
      if (!re_comp_buf.buffer)
	return "No previous regular expression";
      return 0;
    }

  if (!re_comp_buf.buffer)
    {
      if (!(re_comp_buf.buffer = (char *) malloc (200)))
	return "Memory exhausted";
      re_comp_buf.allocated = 200;
      if (!(re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH)))
	return "Memory exhausted";
    }
  return re_compile_pattern (s, strlen (s), &re_comp_buf);
}

int
re_exec (s)
     char *s;
{
  int len = strlen (s);
  return 0 <= re_search (&re_comp_buf, s, len, 0, len, 0);
}

#endif /* emacs */

#ifdef test

#include <stdio.h>

/* Indexed by a character, gives the upper case equivalent of the character */

static char upcase[0400] = 
  { 000, 001, 002, 003, 004, 005, 006, 007,
    010, 011, 012, 013, 014, 015, 016, 017,
    020, 021, 022, 023, 024, 025, 026, 027,
    030, 031, 032, 033, 034, 035, 036, 037,
    040, 041, 042, 043, 044, 045, 046, 047,
    050, 051, 052, 053, 054, 055, 056, 057,
    060, 061, 062, 063, 064, 065, 066, 067,
    070, 071, 072, 073, 074, 075, 076, 077,
    0100, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
    0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
    0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
    0130, 0131, 0132, 0133, 0134, 0135, 0136, 0137,
    0140, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
    0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
    0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
    0130, 0131, 0132, 0173, 0174, 0175, 0176, 0177,
    0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207,
    0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217,
    0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227,
    0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237,
    0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247,
    0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257,
    0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267,
    0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277,
    0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307,
    0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317,
    0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327,
    0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337,
    0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347,
    0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357,
    0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367,
    0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377
  };

main (argc, argv)
     int argc;
     char **argv;
{
  char pat[80];
  struct re_pattern_buffer buf;
  int i;
  char c;
  char fastmap[(1 << BYTEWIDTH)];

  /* Allow a command argument to specify the style of syntax.  */
  if (argc > 1)
    obscure_syntax = atoi (argv[1]);

  buf.allocated = 40;
  buf.buffer = (char *) malloc (buf.allocated);
  buf.fastmap = fastmap;
  buf.translate = upcase;

  while (1)
    {
      gets (pat);

      if (*pat)
	{
          re_compile_pattern (pat, strlen(pat), &buf);

	  for (i = 0; i < buf.used; i++)
	    printchar (buf.buffer[i]);

	  putchar_unfiltered ('\n');

	  printf_unfiltered ("%d allocated, %d used.\n", buf.allocated, buf.used);

	  re_compile_fastmap (&buf);
	  printf_unfiltered ("Allowed by fastmap: ");
	  for (i = 0; i < (1 << BYTEWIDTH); i++)
	    if (fastmap[i]) printchar (i);
	  putchar_unfiltered ('\n');
	}

      gets (pat);	/* Now read the string to match against */

      i = re_match (&buf, pat, strlen (pat), 0, 0);
      printf_unfiltered ("Match value %d.\n", i);
    }
}

#ifdef NOTDEF
print_buf (bufp)
     struct re_pattern_buffer *bufp;
{
  int i;

  printf_unfiltered ("buf is :\n----------------\n");
  for (i = 0; i < bufp->used; i++)
    printchar (bufp->buffer[i]);
  
  printf_unfiltered ("\n%d allocated, %d used.\n", bufp->allocated, bufp->used);
  
  printf_unfiltered ("Allowed by fastmap: ");
  for (i = 0; i < (1 << BYTEWIDTH); i++)
    if (bufp->fastmap[i])
      printchar (i);
  printf_unfiltered ("\nAllowed by translate: ");
  if (bufp->translate)
    for (i = 0; i < (1 << BYTEWIDTH); i++)
      if (bufp->translate[i])
	printchar (i);
  printf_unfiltered ("\nfastmap is%s accurate\n", bufp->fastmap_accurate ? "" : "n't");
  printf_unfiltered ("can %s be null\n----------", bufp->can_be_null ? "" : "not");
}
#endif

printchar (c)
     char c;
{
  if (c < 041 || c >= 0177)
    {
      putchar_unfiltered ('\\');
      putchar_unfiltered (((c >> 6) & 3) + '0');
      putchar_unfiltered (((c >> 3) & 7) + '0');
      putchar_unfiltered ((c & 7) + '0');
    }
  else
    putchar_unfiltered (c);
}

error (string)
     char *string;
{
  puts_unfiltered (string);
  exit (1);
}

#endif /* test */