1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
|
/* Cache and manage the values of registers for GDB, the GNU debugger.
Copyright 1986, 87, 89, 91, 94, 95, 96, 1998, 2000
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "target.h"
#include "gdbarch.h"
/*
* DATA STRUCTURE
*
* Here is the actual register cache.
*/
/* NOTE: this is a write-back cache. There is no "dirty" bit for
recording if the register values have been changed (eg. by the
user). Therefore all registers must be written back to the
target when appropriate. */
/* REGISTERS contains the cached register values (in target byte order). */
char *registers;
/* REGISTER_VALID is 0 if the register needs to be fetched,
1 if it has been fetched, and
-1 if the register value was not available.
"Not available" means don't try to fetch it again. */
signed char *register_valid;
/* The thread/process associated with the current set of registers.
For now, -1 is special, and means `no current process'. */
static int registers_pid = -1;
/*
* FUNCTIONS:
*/
/* REGISTER_CACHED()
Returns 0 if the value is not in the cache (needs fetch).
>0 if the value is in the cache.
<0 if the value is permanently unavailable (don't ask again). */
int
register_cached (int regnum)
{
return register_valid[regnum];
}
/* FIND_SAVED_REGISTER ()
Return the address in which frame FRAME's value of register REGNUM
has been saved in memory. Or return zero if it has not been saved.
If REGNUM specifies the SP, the value we return is actually
the SP value, not an address where it was saved. */
CORE_ADDR
find_saved_register (struct frame_info *frame, int regnum)
{
register struct frame_info *frame1 = NULL;
register CORE_ADDR addr = 0;
if (frame == NULL) /* No regs saved if want current frame */
return 0;
#ifdef HAVE_REGISTER_WINDOWS
/* We assume that a register in a register window will only be saved
in one place (since the name changes and/or disappears as you go
towards inner frames), so we only call get_frame_saved_regs on
the current frame. This is directly in contradiction to the
usage below, which assumes that registers used in a frame must be
saved in a lower (more interior) frame. This change is a result
of working on a register window machine; get_frame_saved_regs
always returns the registers saved within a frame, within the
context (register namespace) of that frame. */
/* However, note that we don't want this to return anything if
nothing is saved (if there's a frame inside of this one). Also,
callers to this routine asking for the stack pointer want the
stack pointer saved for *this* frame; this is returned from the
next frame. */
if (REGISTER_IN_WINDOW_P (regnum))
{
frame1 = get_next_frame (frame);
if (!frame1)
return 0; /* Registers of this frame are active. */
/* Get the SP from the next frame in; it will be this
current frame. */
if (regnum != SP_REGNUM)
frame1 = frame;
FRAME_INIT_SAVED_REGS (frame1);
return frame1->saved_regs[regnum]; /* ... which might be zero */
}
#endif /* HAVE_REGISTER_WINDOWS */
/* Note that this next routine assumes that registers used in
frame x will be saved only in the frame that x calls and
frames interior to it. This is not true on the sparc, but the
above macro takes care of it, so we should be all right. */
while (1)
{
QUIT;
frame1 = get_prev_frame (frame1);
if (frame1 == 0 || frame1 == frame)
break;
FRAME_INIT_SAVED_REGS (frame1);
if (frame1->saved_regs[regnum])
addr = frame1->saved_regs[regnum];
}
return addr;
}
/* DEFAULT_GET_SAVED_REGISTER ()
Find register number REGNUM relative to FRAME and put its (raw,
target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
variable was optimized out (and thus can't be fetched). Set *LVAL
to lval_memory, lval_register, or not_lval, depending on whether
the value was fetched from memory, from a register, or in a strange
and non-modifiable way (e.g. a frame pointer which was calculated
rather than fetched). Set *ADDRP to the address, either in memory
on as a REGISTER_BYTE offset into the registers array.
Note that this implementation never sets *LVAL to not_lval. But
it can be replaced by defining GET_SAVED_REGISTER and supplying
your own.
The argument RAW_BUFFER must point to aligned memory. */
static void
default_get_saved_register (char *raw_buffer,
int *optimized,
CORE_ADDR *addrp,
struct frame_info *frame,
int regnum,
enum lval_type *lval)
{
CORE_ADDR addr;
if (!target_has_registers)
error ("No registers.");
/* Normal systems don't optimize out things with register numbers. */
if (optimized != NULL)
*optimized = 0;
addr = find_saved_register (frame, regnum);
if (addr != 0)
{
if (lval != NULL)
*lval = lval_memory;
if (regnum == SP_REGNUM)
{
if (raw_buffer != NULL)
{
/* Put it back in target format. */
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
(LONGEST) addr);
}
if (addrp != NULL)
*addrp = 0;
return;
}
if (raw_buffer != NULL)
target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
}
else
{
if (lval != NULL)
*lval = lval_register;
addr = REGISTER_BYTE (regnum);
if (raw_buffer != NULL)
read_register_gen (regnum, raw_buffer);
}
if (addrp != NULL)
*addrp = addr;
}
#if !defined (GET_SAVED_REGISTER)
#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
#endif
void
get_saved_register (char *raw_buffer,
int *optimized,
CORE_ADDR *addrp,
struct frame_info *frame,
int regnum,
enum lval_type *lval)
{
GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
}
/* READ_RELATIVE_REGISTER_RAW_BYTES_FOR_FRAME
Copy the bytes of register REGNUM, relative to the input stack frame,
into our memory at MYADDR, in target byte order.
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
Returns 1 if could not be read, 0 if could. */
/* FIXME: This function increases the confusion between FP_REGNUM
and the virtual/pseudo-frame pointer. */
static int
read_relative_register_raw_bytes_for_frame (int regnum,
char *myaddr,
struct frame_info *frame)
{
int optim;
if (regnum == FP_REGNUM && frame)
{
/* Put it back in target format. */
store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
(LONGEST) FRAME_FP (frame));
return 0;
}
get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
regnum, (enum lval_type *) NULL);
if (register_valid[regnum] < 0)
return 1; /* register value not available */
return optim;
}
/* READ_RELATIVE_REGISTER_RAW_BYTES
Copy the bytes of register REGNUM, relative to the current stack
frame, into our memory at MYADDR, in target byte order.
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
Returns 1 if could not be read, 0 if could. */
int
read_relative_register_raw_bytes (int regnum, char *myaddr)
{
return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
selected_frame);
}
/* Low level examining and depositing of registers.
The caller is responsible for making sure that the inferior is
stopped before calling the fetching routines, or it will get
garbage. (a change from GDB version 3, in which the caller got the
value from the last stop). */
/* REGISTERS_CHANGED ()
Indicate that registers may have changed, so invalidate the cache. */
void
registers_changed (void)
{
int i;
int numregs = ARCH_NUM_REGS;
registers_pid = -1;
/* Force cleanup of any alloca areas if using C alloca instead of
a builtin alloca. This particular call is used to clean up
areas allocated by low level target code which may build up
during lengthy interactions between gdb and the target before
gdb gives control to the user (ie watchpoints). */
alloca (0);
for (i = 0; i < numregs; i++)
register_valid[i] = 0;
if (registers_changed_hook)
registers_changed_hook ();
}
/* REGISTERS_FETCHED ()
Indicate that all registers have been fetched, so mark them all valid. */
void
registers_fetched (void)
{
int i;
int numregs = ARCH_NUM_REGS;
for (i = 0; i < numregs; i++)
register_valid[i] = 1;
}
/* read_register_bytes and write_register_bytes are generally a *BAD*
idea. They are inefficient because they need to check for partial
updates, which can only be done by scanning through all of the
registers and seeing if the bytes that are being read/written fall
inside of an invalid register. [The main reason this is necessary
is that register sizes can vary, so a simple index won't suffice.]
It is far better to call read_register_gen and write_register_gen
if you want to get at the raw register contents, as it only takes a
regno as an argument, and therefore can't do a partial register
update.
Prior to the recent fixes to check for partial updates, both read
and write_register_bytes always checked to see if any registers
were stale, and then called target_fetch_registers (-1) to update
the whole set. This caused really slowed things down for remote
targets. */
/* Copy INLEN bytes of consecutive data from registers
starting with the INREGBYTE'th byte of register data
into memory at MYADDR. */
void
read_register_bytes (int inregbyte, char *myaddr, int inlen)
{
int inregend = inregbyte + inlen;
int regno;
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
/* See if we are trying to read bytes from out-of-date registers. If so,
update just those registers. */
for (regno = 0; regno < NUM_REGS; regno++)
{
int regstart, regend;
if (register_valid[regno])
continue;
if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
continue;
regstart = REGISTER_BYTE (regno);
regend = regstart + REGISTER_RAW_SIZE (regno);
if (regend <= inregbyte || inregend <= regstart)
/* The range the user wants to read doesn't overlap with regno. */
continue;
/* We've found an invalid register where at least one byte will be read.
Update it from the target. */
target_fetch_registers (regno);
if (!register_valid[regno])
error ("read_register_bytes: Couldn't update register %d.", regno);
}
if (myaddr != NULL)
memcpy (myaddr, ®isters[inregbyte], inlen);
}
/* Read register REGNO into memory at MYADDR, which must be large
enough for REGISTER_RAW_BYTES (REGNO). Target byte-order. If the
register is known to be the size of a CORE_ADDR or smaller,
read_register can be used instead. */
void
read_register_gen (int regno, char *myaddr)
{
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
if (!register_valid[regno])
target_fetch_registers (regno);
memcpy (myaddr, ®isters[REGISTER_BYTE (regno)],
REGISTER_RAW_SIZE (regno));
}
/* Write register REGNO at MYADDR to the target. MYADDR points at
REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */
/* Registers we shouldn't try to store. */
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#endif
void
write_register_gen (int regno, char *myaddr)
{
int size;
/* On the sparc, writing %g0 is a no-op, so we don't even want to
change the registers array if something writes to this register. */
if (CANNOT_STORE_REGISTER (regno))
return;
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
size = REGISTER_RAW_SIZE (regno);
/* If we have a valid copy of the register, and new value == old value,
then don't bother doing the actual store. */
if (register_valid[regno]
&& memcmp (®isters[REGISTER_BYTE (regno)], myaddr, size) == 0)
return;
target_prepare_to_store ();
memcpy (®isters[REGISTER_BYTE (regno)], myaddr, size);
register_valid[regno] = 1;
target_store_registers (regno);
}
/* Copy INLEN bytes of consecutive data from memory at MYADDR
into registers starting with the MYREGSTART'th byte of register data. */
void
write_register_bytes (int myregstart, char *myaddr, int inlen)
{
int myregend = myregstart + inlen;
int regno;
target_prepare_to_store ();
/* Scan through the registers updating any that are covered by the
range myregstart<=>myregend using write_register_gen, which does
nice things like handling threads, and avoiding updates when the
new and old contents are the same. */
for (regno = 0; regno < NUM_REGS; regno++)
{
int regstart, regend;
regstart = REGISTER_BYTE (regno);
regend = regstart + REGISTER_RAW_SIZE (regno);
/* Is this register completely outside the range the user is writing? */
if (myregend <= regstart || regend <= myregstart)
/* do nothing */ ;
/* Is this register completely within the range the user is writing? */
else if (myregstart <= regstart && regend <= myregend)
write_register_gen (regno, myaddr + (regstart - myregstart));
/* The register partially overlaps the range being written. */
else
{
char regbuf[MAX_REGISTER_RAW_SIZE];
/* What's the overlap between this register's bytes and
those the caller wants to write? */
int overlapstart = max (regstart, myregstart);
int overlapend = min (regend, myregend);
/* We may be doing a partial update of an invalid register.
Update it from the target before scribbling on it. */
read_register_gen (regno, regbuf);
memcpy (registers + overlapstart,
myaddr + (overlapstart - myregstart),
overlapend - overlapstart);
target_store_registers (regno);
}
}
}
/* Return the raw contents of register REGNO, regarding it as an
UNSIGNED integer. */
ULONGEST
read_register (int regno)
{
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
if (!register_valid[regno])
target_fetch_registers (regno);
return (extract_unsigned_integer (®isters[REGISTER_BYTE (regno)],
REGISTER_RAW_SIZE (regno)));
}
ULONGEST
read_register_pid (int regno, int pid)
{
int save_pid;
CORE_ADDR retval;
if (pid == inferior_pid)
return read_register (regno);
save_pid = inferior_pid;
inferior_pid = pid;
retval = read_register (regno);
inferior_pid = save_pid;
return retval;
}
/* Return the raw contents of register REGNO, regarding it a SIGNED
integer. */
LONGEST
read_signed_register (int regno)
{
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
if (!register_valid[regno])
target_fetch_registers (regno);
return (extract_signed_integer (®isters[REGISTER_BYTE (regno)],
REGISTER_RAW_SIZE (regno)));
}
LONGEST
read_signed_register_pid (int regno, int pid)
{
int save_pid;
LONGEST retval;
if (pid == inferior_pid)
return read_signed_register (regno);
save_pid = inferior_pid;
inferior_pid = pid;
retval = read_signed_register (regno);
inferior_pid = save_pid;
return retval;
}
/* Store VALUE, into the raw contents of register number REGNO. */
void
write_register (int regno, LONGEST val)
{
PTR buf;
int size;
/* On the sparc, writing %g0 is a no-op, so we don't even want to
change the registers array if something writes to this register. */
if (CANNOT_STORE_REGISTER (regno))
return;
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
size = REGISTER_RAW_SIZE (regno);
buf = alloca (size);
store_signed_integer (buf, size, (LONGEST) val);
/* If we have a valid copy of the register, and new value == old value,
then don't bother doing the actual store. */
if (register_valid[regno]
&& memcmp (®isters[REGISTER_BYTE (regno)], buf, size) == 0)
return;
target_prepare_to_store ();
memcpy (®isters[REGISTER_BYTE (regno)], buf, size);
register_valid[regno] = 1;
target_store_registers (regno);
}
void
write_register_pid (int regno, CORE_ADDR val, int pid)
{
int save_pid;
if (pid == inferior_pid)
{
write_register (regno, val);
return;
}
save_pid = inferior_pid;
inferior_pid = pid;
write_register (regno, val);
inferior_pid = save_pid;
}
/* SUPPLY_REGISTER()
Record that register REGNO contains VAL. This is used when the
value is obtained from the inferior or core dump, so there is no
need to store the value there.
If VAL is a NULL pointer, then it's probably an unsupported register.
We just set it's value to all zeros. We might want to record this
fact, and report it to the users of read_register and friends. */
void
supply_register (int regno, char *val)
{
#if 1
if (registers_pid != inferior_pid)
{
registers_changed ();
registers_pid = inferior_pid;
}
#endif
register_valid[regno] = 1;
if (val)
memcpy (®isters[REGISTER_BYTE (regno)], val,
REGISTER_RAW_SIZE (regno));
else
memset (®isters[REGISTER_BYTE (regno)], '\000',
REGISTER_RAW_SIZE (regno));
/* On some architectures, e.g. HPPA, there are a few stray bits in
some registers, that the rest of the code would like to ignore. */
#ifdef CLEAN_UP_REGISTER_VALUE
CLEAN_UP_REGISTER_VALUE (regno, ®isters[REGISTER_BYTE (regno)]);
#endif
}
/* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc.
Special handling for registers PC, SP, and FP. */
/* This routine is getting awfully cluttered with #if's. It's probably
time to turn this into READ_PC and define it in the tm.h file.
Ditto for write_pc.
1999-06-08: The following were re-written so that it assumes the
existance of a TARGET_READ_PC et.al. macro. A default generic
version of that macro is made available where needed.
Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
by the multi-arch framework, it will eventually be possible to
eliminate the intermediate read_pc_pid(). The client would call
TARGET_READ_PC directly. (cagney). */
#ifndef TARGET_READ_PC
#define TARGET_READ_PC generic_target_read_pc
#endif
CORE_ADDR
generic_target_read_pc (int pid)
{
#ifdef PC_REGNUM
if (PC_REGNUM >= 0)
{
CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
return pc_val;
}
#endif
internal_error ("generic_target_read_pc");
return 0;
}
CORE_ADDR
read_pc_pid (int pid)
{
int saved_inferior_pid;
CORE_ADDR pc_val;
/* In case pid != inferior_pid. */
saved_inferior_pid = inferior_pid;
inferior_pid = pid;
pc_val = TARGET_READ_PC (pid);
inferior_pid = saved_inferior_pid;
return pc_val;
}
CORE_ADDR
read_pc (void)
{
return read_pc_pid (inferior_pid);
}
#ifndef TARGET_WRITE_PC
#define TARGET_WRITE_PC generic_target_write_pc
#endif
void
generic_target_write_pc (CORE_ADDR pc, int pid)
{
#ifdef PC_REGNUM
if (PC_REGNUM >= 0)
write_register_pid (PC_REGNUM, pc, pid);
if (NPC_REGNUM >= 0)
write_register_pid (NPC_REGNUM, pc + 4, pid);
if (NNPC_REGNUM >= 0)
write_register_pid (NNPC_REGNUM, pc + 8, pid);
#else
internal_error ("generic_target_write_pc");
#endif
}
void
write_pc_pid (CORE_ADDR pc, int pid)
{
int saved_inferior_pid;
/* In case pid != inferior_pid. */
saved_inferior_pid = inferior_pid;
inferior_pid = pid;
TARGET_WRITE_PC (pc, pid);
inferior_pid = saved_inferior_pid;
}
void
write_pc (CORE_ADDR pc)
{
write_pc_pid (pc, inferior_pid);
}
/* Cope with strage ways of getting to the stack and frame pointers */
#ifndef TARGET_READ_SP
#define TARGET_READ_SP generic_target_read_sp
#endif
CORE_ADDR
generic_target_read_sp (void)
{
#ifdef SP_REGNUM
if (SP_REGNUM >= 0)
return read_register (SP_REGNUM);
#endif
internal_error ("generic_target_read_sp");
}
CORE_ADDR
read_sp (void)
{
return TARGET_READ_SP ();
}
#ifndef TARGET_WRITE_SP
#define TARGET_WRITE_SP generic_target_write_sp
#endif
void
generic_target_write_sp (CORE_ADDR val)
{
#ifdef SP_REGNUM
if (SP_REGNUM >= 0)
{
write_register (SP_REGNUM, val);
return;
}
#endif
internal_error ("generic_target_write_sp");
}
void
write_sp (CORE_ADDR val)
{
TARGET_WRITE_SP (val);
}
#ifndef TARGET_READ_FP
#define TARGET_READ_FP generic_target_read_fp
#endif
CORE_ADDR
generic_target_read_fp (void)
{
#ifdef FP_REGNUM
if (FP_REGNUM >= 0)
return read_register (FP_REGNUM);
#endif
internal_error ("generic_target_read_fp");
}
CORE_ADDR
read_fp (void)
{
return TARGET_READ_FP ();
}
#ifndef TARGET_WRITE_FP
#define TARGET_WRITE_FP generic_target_write_fp
#endif
void
generic_target_write_fp (CORE_ADDR val)
{
#ifdef FP_REGNUM
if (FP_REGNUM >= 0)
{
write_register (FP_REGNUM, val);
return;
}
#endif
internal_error ("generic_target_write_fp");
}
void
write_fp (CORE_ADDR val)
{
TARGET_WRITE_FP (val);
}
static void
build_regcache (void)
{
/* We allocate some extra slop since we do a lot of memcpy's around
`registers', and failing-soft is better than failing hard. */
int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
registers = xmalloc (sizeof_registers);
memset (registers, 0, sizeof_registers);
register_valid = xmalloc (sizeof_register_valid);
memset (register_valid, 0, sizeof_register_valid);
}
void
_initialize_regcache (void)
{
build_regcache ();
register_gdbarch_swap (®isters, sizeof (registers), NULL);
register_gdbarch_swap (®ister_valid, sizeof (register_valid), NULL);
register_gdbarch_swap (NULL, 0, build_regcache);
}
|