aboutsummaryrefslogtreecommitdiff
path: root/gdb/pyr-dep.c
blob: 0e7156d5bb8970b8859bda4998d527a9fea21b0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
/* Low level interface to ptrace, for GDB when running under Unix.
   Copyright (C) 1988, 1989 Free Software Foundation, Inc.

This file is part of GDB.

GDB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GDB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GDB; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include <stdio.h>
#include "defs.h"
#include "param.h"
#include "frame.h"
#include "inferior.h"

#include <sys/param.h>
#include <sys/dir.h>
#include <signal.h>
#include <sys/ioctl.h>
/* #include <fcntl.h>  Can we live without this?  */

#include <a.out.h>
#ifndef N_SET_MAGIC
#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
#endif

#include <sys/user.h>		/* After a.out.h  */
#include <sys/file.h>
#include <sys/stat.h>

extern int errno;

/* This function simply calls ptrace with the given arguments.  
   It exists so that all calls to ptrace are isolated in this 
   machine-dependent file. */
int
call_ptrace (request, pid, arg3, arg4)
     int request, pid, arg3, arg4;
{
  return ptrace (request, pid, arg3, arg4);
}

kill_inferior ()
{
  if (remote_debugging)
    return;
  if (inferior_pid == 0)
    return;
  ptrace (8, inferior_pid, 0, 0);
  wait (0);
  inferior_died ();
}

/* This is used when GDB is exiting.  It gives less chance of error.*/

kill_inferior_fast ()
{
  if (remote_debugging)
    return;
  if (inferior_pid == 0)
    return;
  ptrace (8, inferior_pid, 0, 0);
  wait (0);
}

/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */

void
resume (step, signal)
     int step;
     int signal;
{
  errno = 0;
  if (remote_debugging)
    remote_resume (step, signal);
  else
    {
      ptrace (step ? 9 : 7, inferior_pid, 1, signal);
      if (errno)
	perror_with_name ("ptrace");
    }
}

void
fetch_inferior_registers ()
{
  register int regno, datum;
  register unsigned int regaddr;
  int reg_buf[NUM_REGS+1];
  struct user u;
  register int skipped_frames = 0;

  if (remote_debugging)
    remote_fetch_registers ();
  else
    {
      for (regno = 0; regno < 64; regno++) {
	reg_buf[regno] = ptrace (3, inferior_pid, regno, 0);

#if defined(PYRAMID_CONTROL_FRAME_DEBUGGING)
	printf ("Fetching %s from inferior, got %0x\n",
		reg_names[regno],
		reg_buf[regno]);
#endif /* PYRAMID_CONTROL_FRAME_DEBUGGING */

	if (reg_buf[regno] == -1 && errno == EIO) {
	  printf("fetch_interior_registers: fetching %s from inferior\n",
		 reg_names[regno]);
	  errno = 0;
	}
	supply_register (regno, reg_buf+regno);
      }
      /* that leaves regs 64, 65, and 66 */
      datum = ptrace (3, inferior_pid,
		      ((char *)&u.u_pcb.pcb_csp) -
		      ((char *)&u), 0);



      /* FIXME: Find the Current Frame Pointer (CFP). CFP is a global
	 register (ie, NOT windowed), that gets saved in a frame iff
	 the code for that frame has a prologue (ie, "adsf N").  If
	 there is a prologue, the adsf insn saves the old cfp in
	 pr13, cfp is set to sp, and N bytes of locals are allocated
	 (sp is decremented by n).
	 This makes finding CFP hard. I guess the right way to do it
	 is: 
	     - If this is the innermost frame, believe ptrace() or
	     the core area.
	     - Otherwise:
		 Find the first insn of the current frame.
		 - find the saved pc;
		 - find the call insn that saved it;
		 - figure out where the call is to;
		 - if the first insn is an adsf, we got a frame
		   pointer. */
      

      /* Normal processors have separate stack pointers for user and
         kernel mode. Getting the last user mode frame on such
	 machines is easy: the kernel context of the ptrace()'d
	 process is on the kernel stack, and the USP points to what
	 we want. But Pyramids only have a single cfp for both user and
	 kernel mode.  And processes being ptrace()'d have some
	 kernel-context control frames on their stack.
	 To avoid tracing back into the kernel context of an inferior,
	 we skip 0 or more contiguous control frames where the pc is
	 in the kernel. */ 

      while (1) {
	register int inferior_saved_pc;
	inferior_saved_pc = ptrace (1, inferior_pid, datum+((32+15)*4), 0);
	if (inferior_saved_pc > 0) break;
#if defined(PYRAMID_CONTROL_FRAME_DEBUGGING)
	printf("skipping kernel frame %08x, pc=%08x\n", datum,
	       inferior_saved_pc);
#endif /* PYRAMID_CONTROL_FRAME_DEBUGGING */
	skipped_frames++;
	datum -= CONTROL_STACK_FRAME_SIZE;
      }
     
      reg_buf[CSP_REGNUM] = datum;
      supply_register(CSP_REGNUM, reg_buf+CSP_REGNUM);
#ifdef  PYRAMID_CONTROL_FRAME_DEBUGGING
      if (skipped_frames) {
	fprintf (stderr,
		 "skipped %d frames from %x to %x; cfp was %x, now %x\n",
		 skipped_frames, reg_buf[CSP_REGNUM]);
      }
#endif /* PYRAMID_CONTROL_FRAME_DEBUGGING */
    }
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

store_inferior_registers (regno)
     int regno;
{
  register unsigned int regaddr;
  char buf[80];

  if (regno >= 0)
    {
      if ((0 <= regno) && (regno < 64)) {
	/*regaddr = register_addr (regno, offset);*/
	regaddr = regno;
	errno = 0;
	ptrace (6, inferior_pid, regaddr, read_register (regno));
	if (errno != 0)
	  {
	    sprintf (buf, "writing register number %d", regno);
	    perror_with_name (buf);
	  }
      }
    }
  else for (regno = 0; regno < NUM_REGS; regno++)
    {
      /*regaddr = register_addr (regno, offset);*/
      regaddr = regno;
      errno = 0;
      ptrace (6, inferior_pid, regaddr, read_register (regno));
      if (errno != 0)
	{
	  sprintf (buf, "writing all regs, number %d", regno);
	  perror_with_name (buf);
	}
    }
}

/* Copy LEN bytes from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR. 
   On failure (cannot read from inferior, usually because address is out
   of bounds) returns the value of errno. */

int
read_inferior_memory (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     char *myaddr;
     int len;
{
  register int i;
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & - sizeof (int);
  /* Round ending address up; get number of longwords that makes.  */
  register int count
    = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  /* Allocate buffer of that many longwords.  */
  register int *buffer = (int *) alloca (count * sizeof (int));
  extern int errno;

  /* Read all the longwords */
  for (i = 0; i < count; i++, addr += sizeof (int))
    {
      errno = 0;
#if 0
/*This is now done by read_memory, because when this function did it,
  reading a byte or short int hardware port read whole longs, causing
  serious side effects
  such as bus errors and unexpected hardware operation.  This would
  also be a problem with ptrace if the inferior process could read
  or write hardware registers, but that's not usually the case.  */
      if (remote_debugging)
	buffer[i] = remote_fetch_word (addr);
      else
#endif
	buffer[i] = ptrace (1, inferior_pid, addr, 0);
      if (errno)
	return errno;
    }

  /* Copy appropriate bytes out of the buffer.  */
  bcopy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
  return 0;
}

/* Copy LEN bytes of data from debugger memory at MYADDR
   to inferior's memory at MEMADDR.
   On failure (cannot write the inferior)
   returns the value of errno.  */

int
write_inferior_memory (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     char *myaddr;
     int len;
{
  register int i;
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & - sizeof (int);
  /* Round ending address up; get number of longwords that makes.  */
  register int count
    = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
  /* Allocate buffer of that many longwords.  */
  register int *buffer = (int *) alloca (count * sizeof (int));
  extern int errno;

  /* Fill start and end extra bytes of buffer with existing memory data.  */

  if (remote_debugging)
    buffer[0] = remote_fetch_word (addr);
  else
    buffer[0] = ptrace (1, inferior_pid, addr, 0);

  if (count > 1)
    {
      if (remote_debugging)
	buffer[count - 1]
	  = remote_fetch_word (addr + (count - 1) * sizeof (int));
      else
	buffer[count - 1]
	  = ptrace (1, inferior_pid,
		    addr + (count - 1) * sizeof (int), 0);
    }

  /* Copy data to be written over corresponding part of buffer */

  bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);

  /* Write the entire buffer.  */

  for (i = 0; i < count; i++, addr += sizeof (int))
    {
      errno = 0;
      if (remote_debugging)
	remote_store_word (addr, buffer[i]);
      else
	ptrace (4, inferior_pid, addr, buffer[i]);
      if (errno)
	return errno;
    }

  return 0;
}

/*** Extensions to  core and dump files, for GDB. */

extern unsigned int last_frame_offset;

#ifdef PYRAMID_CORE

/* Can't make definitions here static, since core.c needs them
   to do bounds checking on the core-file areas. O well. */

/* have two stacks: one for data, one for register windows. */
extern CORE_ADDR reg_stack_start;
extern CORE_ADDR reg_stack_end;

/* need this so we can find the global registers: they never get saved. */
static CORE_ADDR global_reg_offset;
static CORE_ADDR last_frame_address;
static CORE_ADDR last_frame_offset;


/* Address in core file of start of register window stack area.
   Don't know if is this any of meaningful, useful or necessary.   */
static CORE_ADDR reg_stack_offset;

#endif /* PYRAMID_CORE */  


/* Work with core dump and executable files, for GDB. 
   This code would be in core.c if it weren't machine-dependent. */

#ifndef N_TXTADDR
#define N_TXTADDR(hdr) 0
#endif /* no N_TXTADDR */

#ifndef N_DATADDR
#define N_DATADDR(hdr) hdr.a_text
#endif /* no N_DATADDR */

/* Make COFF and non-COFF names for things a little more compatible
   to reduce conditionals later.  */

#ifdef COFF_FORMAT
#define a_magic magic
#endif

#ifndef COFF_FORMAT
#ifndef AOUTHDR
#define AOUTHDR struct exec
#endif
#endif

extern char *sys_siglist[];


/* Hook for `exec_file_command' command to call.  */

extern void (*exec_file_display_hook) ();
   
/* File names of core file and executable file.  */

extern char *corefile;
extern char *execfile;

/* Descriptors on which core file and executable file are open.
   Note that the execchan is closed when an inferior is created
   and reopened if the inferior dies or is killed.  */

extern int corechan;
extern int execchan;

/* Last modification time of executable file.
   Also used in source.c to compare against mtime of a source file.  */

extern int exec_mtime;

/* Virtual addresses of bounds of the two areas of memory in the core file.  */

extern CORE_ADDR data_start;
extern CORE_ADDR data_end;
extern CORE_ADDR stack_start;
extern CORE_ADDR stack_end;

#ifdef PYRAMID_CORE
/* Well, "two areas of memory" on most machines; but pyramids have a
   third area, for the register-window stack, and we need its
   base and  bound too.  */

extern CORE_ADDR reg_stack_start;
extern CORE_ADDR reg_stack_start;
#endif /* PYRAMID_CORE */

/* Virtual addresses of bounds of two areas of memory in the exec file.
   Note that the data area in the exec file is used only when there is no core file.  */

extern CORE_ADDR text_start;
extern CORE_ADDR text_end;

extern CORE_ADDR exec_data_start;
extern CORE_ADDR exec_data_end;

/* Address in executable file of start of text area data.  */

extern int text_offset;

/* Address in executable file of start of data area data.  */

extern int exec_data_offset;

/* Address in core file of start of data area data.  */

extern int data_offset;

/* Address in core file of start of stack area data.  */

extern int stack_offset;

#ifdef COFF_FORMAT
/* various coff data structures */

extern FILHDR file_hdr;
extern SCNHDR text_hdr;
extern SCNHDR data_hdr;

#endif /* not COFF_FORMAT */

/* a.out header saved in core file.  */
  
extern AOUTHDR core_aouthdr;

/* a.out header of exec file.  */

extern AOUTHDR exec_aouthdr;

extern void validate_files ();

core_file_command (filename, from_tty)
     char *filename;
     int from_tty;
{
  int val;
  extern char registers[];

  /* Discard all vestiges of any previous core file
     and mark data and stack spaces as empty.  */

  if (corefile)
    free (corefile);
  corefile = 0;

  if (corechan >= 0)
    close (corechan);
  corechan = -1;

  data_start = 0;
  data_end = 0;
  stack_start = STACK_END_ADDR;
  stack_end = STACK_END_ADDR;

#ifdef PYRAMID_CORE
  reg_stack_start = CONTROL_STACK_ADDR;
  reg_stack_end = CONTROL_STACK_ADDR;	/* this isn't strictly true...*/
#endif /* PYRAMID_CORE */

  /* Now, if a new core file was specified, open it and digest it.  */

  if (filename)
    {
      filename = tilde_expand (filename);
      make_cleanup (free, filename);
      
      if (have_inferior_p ())
	error ("To look at a core file, you must kill the inferior with \"kill\".");
      corechan = open (filename, O_RDONLY, 0);
      if (corechan < 0)
	perror_with_name (filename);
      /* 4.2-style (and perhaps also sysV-style) core dump file.  */
      {
	struct user u;

	unsigned int reg_offset;

	val = myread (corechan, &u, sizeof u);
	if (val < 0)
	  perror_with_name ("Not a core file: reading upage");
	if (val != sizeof u)
	  error ("Not a core file: could only read %d bytes", val);
	data_start = exec_data_start;

	data_end = data_start + NBPG * u.u_dsize;
	data_offset = NBPG * UPAGES;
	stack_offset = NBPG * (UPAGES + u.u_dsize);

	/* find registers in core file */
#ifdef PYRAMID_PTRACE
	stack_start = stack_end - NBPG * u.u_ussize;
	reg_stack_offset = stack_offset + (NBPG *u.u_ussize);
	reg_stack_end = reg_stack_start + NBPG * u.u_cssize;

	last_frame_address = ((int) u.u_pcb.pcb_csp);
	last_frame_offset = reg_stack_offset + last_frame_address
		- CONTROL_STACK_ADDR ;
	global_reg_offset = (char *)&u - (char *)&u.u_pcb.pcb_gr0 ;

	/* skip any control-stack frames that were executed in the
	   kernel. */

	while (1) {
	    char buf[4];
	    val = lseek (corechan, last_frame_offset+(47*4), 0);
	    if (val < 0)
		    perror_with_name (filename);
	    val = myread (corechan, buf, sizeof buf);
	    if (val < 0)
		    perror_with_name (filename);

	    if (*(int *)buf >= 0)
		    break;
	    printf ("skipping frame %0x\n", last_frame_address);
	    last_frame_offset -= CONTROL_STACK_FRAME_SIZE;
	    last_frame_address -= CONTROL_STACK_FRAME_SIZE;
	}
	reg_offset = last_frame_offset;

#if 1 || defined(PYRAMID_CONTROL_FRAME_DEBUGGING)
	printf ("Control stack pointer = 0x%08x\n",
		u.u_pcb.pcb_csp);
	printf ("offset to control stack %d outermost frame %d (%0x)\n",
	      reg_stack_offset, reg_offset, last_frame_address);
#endif /* PYRAMID_CONTROL_FRAME_DEBUGGING */

#else /* not PYRAMID_CORE */
	stack_start = stack_end - NBPG * u.u_ssize;
        reg_offset = (int) u.u_ar0 - KERNEL_U_ADDR;
#endif /* not PYRAMID_CORE */

#ifdef __not_on_pyr_yet
	/* Some machines put an absolute address in here and some put
	   the offset in the upage of the regs.  */
	reg_offset = (int) u.u_ar0;
	if (reg_offset > NBPG * UPAGES)
	  reg_offset -= KERNEL_U_ADDR;
#endif

	/* I don't know where to find this info.
	   So, for now, mark it as not available.  */
	N_SET_MAGIC (core_aouthdr, 0);

	/* Read the register values out of the core file and store
	   them where `read_register' will find them.  */

	{
	  register int regno;

	  for (regno = 0; regno < 64; regno++)
	    {
	      char buf[MAX_REGISTER_RAW_SIZE];

	      val = lseek (corechan, register_addr (regno, reg_offset), 0);
	      if (val < 0
		  || (val = myread (corechan, buf, sizeof buf)) < 0)
		{
		  char * buffer = (char *) alloca (strlen (reg_names[regno])
						   + 30);
		  strcpy (buffer, "Reading register ");
		  strcat (buffer, reg_names[regno]);
						   
		  perror_with_name (buffer);
		}

	      if (val < 0)
		perror_with_name (filename);
#ifdef PYRAMID_CONTROL_FRAME_DEBUGGING
      printf ("[reg %s(%d), offset in file %s=0x%0x, addr =0x%0x, =%0x]\n",
	      reg_names[regno], regno, filename,
	      register_addr(regno, reg_offset),
	      regno * 4 + last_frame_address,
	      *((int *)buf));
#endif /* PYRAMID_CONTROL_FRAME_DEBUGGING */
	      supply_register (regno, buf);
	    }
	}
      }
      if (filename[0] == '/')
	corefile = savestring (filename, strlen (filename));
      else
	{
	  corefile = concat (current_directory, "/", filename);
	}

#if 1 || defined(PYRAMID_CONTROL_FRAME_DEBUGGING)
      printf ("Providing CSP (%0x) as nominal address of current frame.\n",
	      last_frame_address);
#endif PYRAMID_CONTROL_FRAME_DEBUGGING
      /* FIXME: Which of the following is correct? */
#if 0
      set_current_frame ( create_new_frame (read_register (FP_REGNUM),
					    read_pc ()));
#else
      set_current_frame ( create_new_frame (last_frame_address,
					    read_pc ()));
#endif

      select_frame (get_current_frame (), 0);
      validate_files ();
    }
  else if (from_tty)
    printf ("No core file now.\n");
}

exec_file_command (filename, from_tty)
     char *filename;
     int from_tty;
{
  int val;

  /* Eliminate all traces of old exec file.
     Mark text segment as empty.  */

  if (execfile)
    free (execfile);
  execfile = 0;
  data_start = 0;
  data_end -= exec_data_start;
  text_start = 0;
  text_end = 0;
  exec_data_start = 0;
  exec_data_end = 0;
  if (execchan >= 0)
    close (execchan);
  execchan = -1;

  /* Now open and digest the file the user requested, if any.  */

  if (filename)
    {
      filename = tilde_expand (filename);
      make_cleanup (free, filename);
      
      execchan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
			&execfile);
      if (execchan < 0)
	perror_with_name (filename);

#ifdef COFF_FORMAT
#else /* not COFF_FORMAT */
      {
	struct stat st_exec;

#ifdef gould
#endif /* gould */
	val = myread (execchan, &exec_aouthdr, sizeof (AOUTHDR));

	if (val < 0)
	  perror_with_name (filename);

        text_start = N_TXTADDR (exec_aouthdr);
        exec_data_start = N_DATADDR (exec_aouthdr);
#ifdef gould
#else
	text_offset = N_TXTOFF (exec_aouthdr);
	exec_data_offset = N_TXTOFF (exec_aouthdr) + exec_aouthdr.a_text;
#endif
	text_end = text_start + exec_aouthdr.a_text;
        exec_data_end = exec_data_start + exec_aouthdr.a_data;
	data_start = exec_data_start;
	data_end += exec_data_start;

	fstat (execchan, &st_exec);
	exec_mtime = st_exec.st_mtime;
      }
#endif /* not COFF_FORMAT */

      validate_files ();
    }
  else if (from_tty)
    printf ("No exec file now.\n");

  /* Tell display code (if any) about the changed file name.  */
  if (exec_file_display_hook)
    (*exec_file_display_hook) (filename);
}

/*** Prettier register printing. ***/

/* Print registers in the same format as pyramid's dbx, adb, sdb.  */
pyr_print_registers(reg_buf, regnum)
    long *reg_buf[];
{
  register int regno;
  int usp, ksp;
  struct user u;

  for (regno = 0; regno < 16; regno++) {
    printf/*_filtered*/ ("%6.6s: %8x  %6.6s: %8x  %6s: %8x  %6s: %8x\n",
		     reg_names[regno], reg_buf[regno],
		     reg_names[regno+16], reg_buf[regno+16],
		     reg_names[regno+32], reg_buf[regno+32],
		     reg_names[regno+48], reg_buf[regno+48]);
  }
  usp = ptrace (3, inferior_pid,
		      ((char *)&u.u_pcb.pcb_usp) -
		      ((char *)&u), 0);
  ksp = ptrace (3, inferior_pid,
		      ((char *)&u.u_pcb.pcb_ksp) -
		      ((char *)&u), 0);
  printf/*_filtered*/ ("\n%6.6s: %8x  %6.6s: %8x (%08x) %6.6s %8x\n",
		   reg_names[CSP_REGNUM],reg_buf[CSP_REGNUM],
		   reg_names[KSP_REGNUM], reg_buf[KSP_REGNUM], ksp,
		   "usp", usp);
}

/* Print the register regnum, or all registers if regnum is -1. */

pyr_do_registers_info (regnum)
    int regnum;
{
  /* On a pyr, we know a virtual register can always fit in an long.
     Here (and elsewhere) we take advantage of that.  Yuk.  */
  long raw_regs[MAX_REGISTER_RAW_SIZE*NUM_REGS];
  register int i;
  
  for (i = 0 ; i < 64 ; i++) {
    read_relative_register_raw_bytes(i, raw_regs+i);
  }
  if (regnum == -1)
    pyr_print_registers (raw_regs, regnum);
  else
    for (i = 0; i < NUM_REGS; i++)
      if (i == regnum) {
	long val = raw_regs[i];
	
	fputs_filtered (reg_names[i], stdout);
	printf_filtered(":");
	print_spaces_filtered (6 - strlen (reg_names[i]), stdout);
	if (val == 0)
	  printf_filtered ("0");
	else
	  printf_filtered ("0x%08x  %d", val, val);
	printf_filtered("\n");
      }
}

/*** Debugging editions of various macros from m-pyr.h ****/

CORE_ADDR frame_locals_address (frame)
    FRAME frame;
{
  register int addr = find_saved_register (frame,CFP_REGNUM);
  register int result = read_memory_integer (addr, 4);
#ifdef PYRAMID_CONTROL_FRAME_DEBUGGING
  fprintf (stderr,
	   "\t[[..frame_locals:%8x, %s= %x @%x fcfp= %x foo= %x\n\t gr13=%x pr13=%x tr13=%x @%x]]\n",
	   frame->frame,
	   reg_names[CFP_REGNUM],
	   result, addr,
	   frame->frame_cfp, (CFP_REGNUM),


	   read_register(13), read_register(29), read_register(61),
	   find_saved_register(frame, 61));
#endif /* PYRAMID_CONTROL_FRAME_DEBUGGING */

  /* FIXME: I thought read_register (CFP_REGNUM) should be the right answer;
     or at least CFP_REGNUM relative to FRAME (ie, result).
     There seems to be a bug in the way the innermost frame is set up.  */

    return ((frame->next) ? result: frame->frame_cfp);
}

CORE_ADDR frame_args_addr (frame)
    FRAME frame;
{
  register int addr = find_saved_register (frame,CFP_REGNUM);
  register int result = read_memory_integer (addr, 4);

#ifdef PYRAMID_CONTROL_FRAME_DEBUGGING
  fprintf (stderr,
	   "\t[[..frame_args:%8x, %s= %x @%x fcfp= %x r_r= %x\n\t gr13=%x pr13=%x tr13=%x @%x]]\n",
	   frame->frame,
	   reg_names[CFP_REGNUM],
	   result, addr,
	   frame->frame_cfp, read_register(CFP_REGNUM),

	   read_register(13), read_register(29), read_register(61),
	   find_saved_register(frame, 61));
#endif /*  PYRAMID_CONTROL_FRAME_DEBUGGING */

  /* FIXME: I thought read_register (CFP_REGNUM) should be the right answer;
     or at least CFP_REGNUM relative to FRAME (ie, result).
     There seems to be a bug in the way the innermost frame is set up.  */
    return ((frame->next) ? result: frame->frame_cfp);
}