aboutsummaryrefslogtreecommitdiff
path: root/gdb/printcmd.c
blob: d077f13fa55c7a461e9bb180eb1c9783cc4c8d68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
/* Print values for GNU debugger GDB.

   Copyright (C) 1986-2022 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "language.h"
#include "c-lang.h"
#include "expression.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "breakpoint.h"
#include "demangle.h"
#include "gdb-demangle.h"
#include "valprint.h"
#include "annotate.h"
#include "symfile.h"		/* for overlay functions */
#include "objfiles.h"		/* ditto */
#include "completer.h"		/* for completion functions */
#include "ui-out.h"
#include "block.h"
#include "disasm.h"
#include "target-float.h"
#include "observable.h"
#include "solist.h"
#include "parser-defs.h"
#include "charset.h"
#include "arch-utils.h"
#include "cli/cli-utils.h"
#include "cli/cli-option.h"
#include "cli/cli-script.h"
#include "cli/cli-style.h"
#include "gdbsupport/format.h"
#include "source.h"
#include "gdbsupport/byte-vector.h"
#include "gdbsupport/gdb_optional.h"
#include "safe-ctype.h"
#include "gdbsupport/rsp-low.h"

/* Chain containing all defined memory-tag subcommands.  */

static struct cmd_list_element *memory_tag_list;

/* Last specified output format.  */

static char last_format = 0;

/* Last specified examination size.  'b', 'h', 'w' or `q'.  */

static char last_size = 'w';

/* Last specified count for the 'x' command.  */

static int last_count;

/* Last specified tag-printing option.  */

static bool last_print_tags = false;

/* Default address to examine next, and associated architecture.  */

static struct gdbarch *next_gdbarch;
static CORE_ADDR next_address;

/* Number of delay instructions following current disassembled insn.  */

static int branch_delay_insns;

/* Last address examined.  */

static CORE_ADDR last_examine_address;

/* Contents of last address examined.
   This is not valid past the end of the `x' command!  */

static value_ref_ptr last_examine_value;

/* Largest offset between a symbolic value and an address, that will be
   printed as `0x1234 <symbol+offset>'.  */

static unsigned int max_symbolic_offset = UINT_MAX;
static void
show_max_symbolic_offset (struct ui_file *file, int from_tty,
			  struct cmd_list_element *c, const char *value)
{
  gdb_printf (file,
	      _("The largest offset that will be "
		"printed in <symbol+1234> form is %s.\n"),
	      value);
}

/* Append the source filename and linenumber of the symbol when
   printing a symbolic value as `<symbol at filename:linenum>' if set.  */
static bool print_symbol_filename = false;
static void
show_print_symbol_filename (struct ui_file *file, int from_tty,
			    struct cmd_list_element *c, const char *value)
{
  gdb_printf (file, _("Printing of source filename and "
		      "line number with <symbol> is %s.\n"),
	      value);
}

/* Number of auto-display expression currently being displayed.
   So that we can disable it if we get a signal within it.
   -1 when not doing one.  */

static int current_display_number;

/* Last allocated display number.  */

static int display_number;

struct display
  {
    display (const char *exp_string_, expression_up &&exp_,
	     const struct format_data &format_, struct program_space *pspace_,
	     const struct block *block_)
      : exp_string (exp_string_),
	exp (std::move (exp_)),
	number (++display_number),
	format (format_),
	pspace (pspace_),
	block (block_),
	enabled_p (true)
    {
    }

    /* The expression as the user typed it.  */
    std::string exp_string;

    /* Expression to be evaluated and displayed.  */
    expression_up exp;

    /* Item number of this auto-display item.  */
    int number;

    /* Display format specified.  */
    struct format_data format;

    /* Program space associated with `block'.  */
    struct program_space *pspace;

    /* Innermost block required by this expression when evaluated.  */
    const struct block *block;

    /* Status of this display (enabled or disabled).  */
    bool enabled_p;
  };

/* Expressions whose values should be displayed automatically each
   time the program stops.  */

static std::vector<std::unique_ptr<struct display>> all_displays;

/* Prototypes for local functions.  */

static void do_one_display (struct display *);


/* Decode a format specification.  *STRING_PTR should point to it.
   OFORMAT and OSIZE are used as defaults for the format and size
   if none are given in the format specification.
   If OSIZE is zero, then the size field of the returned value
   should be set only if a size is explicitly specified by the
   user.
   The structure returned describes all the data
   found in the specification.  In addition, *STRING_PTR is advanced
   past the specification and past all whitespace following it.  */

static struct format_data
decode_format (const char **string_ptr, int oformat, int osize)
{
  struct format_data val;
  const char *p = *string_ptr;

  val.format = '?';
  val.size = '?';
  val.count = 1;
  val.raw = 0;
  val.print_tags = false;

  if (*p == '-')
    {
      val.count = -1;
      p++;
    }
  if (*p >= '0' && *p <= '9')
    val.count *= atoi (p);
  while (*p >= '0' && *p <= '9')
    p++;

  /* Now process size or format letters that follow.  */

  while (1)
    {
      if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
	val.size = *p++;
      else if (*p == 'r')
	{
	  val.raw = 1;
	  p++;
	}
      else if (*p == 'm')
	{
	  val.print_tags = true;
	  p++;
	}
      else if (*p >= 'a' && *p <= 'z')
	val.format = *p++;
      else
	break;
    }

  *string_ptr = skip_spaces (p);

  /* Set defaults for format and size if not specified.  */
  if (val.format == '?')
    {
      if (val.size == '?')
	{
	  /* Neither has been specified.  */
	  val.format = oformat;
	  val.size = osize;
	}
      else
	/* If a size is specified, any format makes a reasonable
	   default except 'i'.  */
	val.format = oformat == 'i' ? 'x' : oformat;
    }
  else if (val.size == '?')
    switch (val.format)
      {
      case 'a':
	/* Pick the appropriate size for an address.  This is deferred
	   until do_examine when we know the actual architecture to use.
	   A special size value of 'a' is used to indicate this case.  */
	val.size = osize ? 'a' : osize;
	break;
      case 'f':
	/* Floating point has to be word or giantword.  */
	if (osize == 'w' || osize == 'g')
	  val.size = osize;
	else
	  /* Default it to giantword if the last used size is not
	     appropriate.  */
	  val.size = osize ? 'g' : osize;
	break;
      case 'c':
	/* Characters default to one byte.  */
	val.size = osize ? 'b' : osize;
	break;
      case 's':
	/* Display strings with byte size chars unless explicitly
	   specified.  */
	val.size = '\0';
	break;

      default:
	/* The default is the size most recently specified.  */
	val.size = osize;
      }

  return val;
}

/* Print value VAL on stream according to OPTIONS.
   Do not end with a newline.
   SIZE is the letter for the size of datum being printed.
   This is used to pad hex numbers so they line up.  SIZE is 0
   for print / output and set for examine.  */

static void
print_formatted (struct value *val, int size,
		 const struct value_print_options *options,
		 struct ui_file *stream)
{
  struct type *type = check_typedef (value_type (val));
  int len = type->length ();

  if (VALUE_LVAL (val) == lval_memory)
    next_address = value_address (val) + len;

  if (size)
    {
      switch (options->format)
	{
	case 's':
	  {
	    struct type *elttype = value_type (val);

	    next_address = (value_address (val)
			    + val_print_string (elttype, NULL,
						value_address (val), -1,
						stream, options) * len);
	  }
	  return;

	case 'i':
	  /* We often wrap here if there are long symbolic names.  */
	  stream->wrap_here (4);
	  next_address = (value_address (val)
			  + gdb_print_insn (type->arch (),
					    value_address (val), stream,
					    &branch_delay_insns));
	  return;
	}
    }

  if (options->format == 0 || options->format == 's'
      || type->code () == TYPE_CODE_VOID
      || type->code () == TYPE_CODE_REF
      || type->code () == TYPE_CODE_ARRAY
      || type->code () == TYPE_CODE_STRING
      || type->code () == TYPE_CODE_STRUCT
      || type->code () == TYPE_CODE_UNION
      || type->code () == TYPE_CODE_NAMESPACE)
    value_print (val, stream, options);
  else
    /* User specified format, so don't look to the type to tell us
       what to do.  */
    value_print_scalar_formatted (val, options, size, stream);
}

/* Return builtin floating point type of same length as TYPE.
   If no such type is found, return TYPE itself.  */
static struct type *
float_type_from_length (struct type *type)
{
  struct gdbarch *gdbarch = type->arch ();
  const struct builtin_type *builtin = builtin_type (gdbarch);

  if (type->length () == builtin->builtin_float->length ())
    type = builtin->builtin_float;
  else if (type->length () == builtin->builtin_double->length ())
    type = builtin->builtin_double;
  else if (type->length () == builtin->builtin_long_double->length ())
    type = builtin->builtin_long_double;

  return type;
}

/* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
   according to OPTIONS and SIZE on STREAM.  Formats s and i are not
   supported at this level.  */

void
print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
			const struct value_print_options *options,
			int size, struct ui_file *stream)
{
  struct gdbarch *gdbarch = type->arch ();
  unsigned int len = type->length ();
  enum bfd_endian byte_order = type_byte_order (type);

  /* String printing should go through val_print_scalar_formatted.  */
  gdb_assert (options->format != 's');

  /* If the value is a pointer, and pointers and addresses are not the
     same, then at this point, the value's length (in target bytes) is
     gdbarch_addr_bit/TARGET_CHAR_BIT, not type->length ().  */
  if (type->code () == TYPE_CODE_PTR)
    len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;

  /* If we are printing it as unsigned, truncate it in case it is actually
     a negative signed value (e.g. "print/u (short)-1" should print 65535
     (if shorts are 16 bits) instead of 4294967295).  */
  if (options->format != 'c'
      && (options->format != 'd' || type->is_unsigned ()))
    {
      if (len < type->length () && byte_order == BFD_ENDIAN_BIG)
	valaddr += type->length () - len;
    }

  /* Allow LEN == 0, and in this case, don't assume that VALADDR is
     valid.  */
  const gdb_byte zero = 0;
  if (len == 0)
    {
      len = 1;
      valaddr = &zero;
    }

  if (size != 0 && (options->format == 'x' || options->format == 't'))
    {
      /* Truncate to fit.  */
      unsigned newlen;
      switch (size)
	{
	case 'b':
	  newlen = 1;
	  break;
	case 'h':
	  newlen = 2;
	  break;
	case 'w':
	  newlen = 4;
	  break;
	case 'g':
	  newlen = 8;
	  break;
	default:
	  error (_("Undefined output size \"%c\"."), size);
	}
      if (newlen < len && byte_order == BFD_ENDIAN_BIG)
	valaddr += len - newlen;
      len = newlen;
    }

  /* Biased range types and sub-word scalar types must be handled
     here; the value is correctly computed by unpack_long.  */
  gdb::byte_vector converted_bytes;
  /* Some cases below will unpack the value again.  In the biased
     range case, we want to avoid this, so we store the unpacked value
     here for possible use later.  */
  gdb::optional<LONGEST> val_long;
  if ((is_fixed_point_type (type)
       && (options->format == 'o'
	   || options->format == 'x'
	   || options->format == 't'
	   || options->format == 'z'
	   || options->format == 'd'
	   || options->format == 'u'))
      || (type->code () == TYPE_CODE_RANGE && type->bounds ()->bias != 0)
      || type->bit_size_differs_p ())
    {
      val_long.emplace (unpack_long (type, valaddr));
      converted_bytes.resize (type->length ());
      store_signed_integer (converted_bytes.data (), type->length (),
			    byte_order, *val_long);
      valaddr = converted_bytes.data ();
    }

  /* Printing a non-float type as 'f' will interpret the data as if it were
     of a floating-point type of the same length, if that exists.  Otherwise,
     the data is printed as integer.  */
  char format = options->format;
  if (format == 'f' && type->code () != TYPE_CODE_FLT)
    {
      type = float_type_from_length (type);
      if (type->code () != TYPE_CODE_FLT)
	format = 0;
    }

  switch (format)
    {
    case 'o':
      print_octal_chars (stream, valaddr, len, byte_order);
      break;
    case 'd':
      print_decimal_chars (stream, valaddr, len, true, byte_order);
      break;
    case 'u':
      print_decimal_chars (stream, valaddr, len, false, byte_order);
      break;
    case 0:
      if (type->code () != TYPE_CODE_FLT)
	{
	  print_decimal_chars (stream, valaddr, len, !type->is_unsigned (),
			       byte_order);
	  break;
	}
      /* FALLTHROUGH */
    case 'f':
      print_floating (valaddr, type, stream);
      break;

    case 't':
      print_binary_chars (stream, valaddr, len, byte_order, size > 0, options);
      break;
    case 'x':
      print_hex_chars (stream, valaddr, len, byte_order, size > 0);
      break;
    case 'z':
      print_hex_chars (stream, valaddr, len, byte_order, true);
      break;
    case 'c':
      {
	struct value_print_options opts = *options;

	if (!val_long.has_value ())
	  val_long.emplace (unpack_long (type, valaddr));

	opts.format = 0;
	if (type->is_unsigned ())
	  type = builtin_type (gdbarch)->builtin_true_unsigned_char;
	else
	  type = builtin_type (gdbarch)->builtin_true_char;

	value_print (value_from_longest (type, *val_long), stream, &opts);
      }
      break;

    case 'a':
      {
	if (!val_long.has_value ())
	  val_long.emplace (unpack_long (type, valaddr));
	print_address (gdbarch, *val_long, stream);
      }
      break;

    default:
      error (_("Undefined output format \"%c\"."), format);
    }
}

/* Specify default address for `x' command.
   The `info lines' command uses this.  */

void
set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;

  next_gdbarch = gdbarch;
  next_address = addr;

  /* Make address available to the user as $_.  */
  set_internalvar (lookup_internalvar ("_"),
		   value_from_pointer (ptr_type, addr));
}

/* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
   after LEADIN.  Print nothing if no symbolic name is found nearby.
   Optionally also print source file and line number, if available.
   DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
   or to interpret it as a possible C++ name and convert it back to source
   form.  However note that DO_DEMANGLE can be overridden by the specific
   settings of the demangle and asm_demangle variables.  Returns
   non-zero if anything was printed; zero otherwise.  */

int
print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
			struct ui_file *stream,
			int do_demangle, const char *leadin)
{
  std::string name, filename;
  int unmapped = 0;
  int offset = 0;
  int line = 0;

  if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
			      &offset, &filename, &line, &unmapped))
    return 0;

  gdb_puts (leadin, stream);
  if (unmapped)
    gdb_puts ("<*", stream);
  else
    gdb_puts ("<", stream);
  fputs_styled (name.c_str (), function_name_style.style (), stream);
  if (offset != 0)
    gdb_printf (stream, "%+d", offset);

  /* Append source filename and line number if desired.  Give specific
     line # of this addr, if we have it; else line # of the nearest symbol.  */
  if (print_symbol_filename && !filename.empty ())
    {
      gdb_puts (line == -1 ? " in " : " at ", stream);
      fputs_styled (filename.c_str (), file_name_style.style (), stream);
      if (line != -1)
	gdb_printf (stream, ":%d", line);
    }
  if (unmapped)
    gdb_puts ("*>", stream);
  else
    gdb_puts (">", stream);

  return 1;
}

/* See valprint.h.  */

int
build_address_symbolic (struct gdbarch *gdbarch,
			CORE_ADDR addr,  /* IN */
			bool do_demangle, /* IN */
			bool prefer_sym_over_minsym, /* IN */
			std::string *name, /* OUT */
			int *offset,     /* OUT */
			std::string *filename, /* OUT */
			int *line,       /* OUT */
			int *unmapped)   /* OUT */
{
  struct bound_minimal_symbol msymbol;
  struct symbol *symbol;
  CORE_ADDR name_location = 0;
  struct obj_section *section = NULL;
  const char *name_temp = "";
  
  /* Let's say it is mapped (not unmapped).  */
  *unmapped = 0;

  /* Determine if the address is in an overlay, and whether it is
     mapped.  */
  if (overlay_debugging)
    {
      section = find_pc_overlay (addr);
      if (pc_in_unmapped_range (addr, section))
	{
	  *unmapped = 1;
	  addr = overlay_mapped_address (addr, section);
	}
    }

  /* Try to find the address in both the symbol table and the minsyms. 
     In most cases, we'll prefer to use the symbol instead of the
     minsym.  However, there are cases (see below) where we'll choose
     to use the minsym instead.  */

  /* This is defective in the sense that it only finds text symbols.  So
     really this is kind of pointless--we should make sure that the
     minimal symbols have everything we need (by changing that we could
     save some memory, but for many debug format--ELF/DWARF or
     anything/stabs--it would be inconvenient to eliminate those minimal
     symbols anyway).  */
  msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
  symbol = find_pc_sect_function (addr, section);

  if (symbol)
    {
      /* If this is a function (i.e. a code address), strip out any
	 non-address bits.  For instance, display a pointer to the
	 first instruction of a Thumb function as <function>; the
	 second instruction will be <function+2>, even though the
	 pointer is <function+3>.  This matches the ISA behavior.  */
      addr = gdbarch_addr_bits_remove (gdbarch, addr);

      name_location = symbol->value_block ()->entry_pc ();
      if (do_demangle || asm_demangle)
	name_temp = symbol->print_name ();
      else
	name_temp = symbol->linkage_name ();
    }

  if (msymbol.minsym != NULL
      && msymbol.minsym->has_size ()
      && msymbol.minsym->size () == 0
      && msymbol.minsym->type () != mst_text
      && msymbol.minsym->type () != mst_text_gnu_ifunc
      && msymbol.minsym->type () != mst_file_text)
    msymbol.minsym = NULL;

  if (msymbol.minsym != NULL)
    {
      /* Use the minsym if no symbol is found.
      
	 Additionally, use the minsym instead of a (found) symbol if
	 the following conditions all hold:
	   1) The prefer_sym_over_minsym flag is false.
	   2) The minsym address is identical to that of the address under
	      consideration.
	   3) The symbol address is not identical to that of the address
	      under consideration.  */
      if (symbol == NULL ||
	   (!prefer_sym_over_minsym
	    && msymbol.value_address () == addr
	    && name_location != addr))
	{
	  /* If this is a function (i.e. a code address), strip out any
	     non-address bits.  For instance, display a pointer to the
	     first instruction of a Thumb function as <function>; the
	     second instruction will be <function+2>, even though the
	     pointer is <function+3>.  This matches the ISA behavior.  */
	  if (msymbol.minsym->type () == mst_text
	      || msymbol.minsym->type () == mst_text_gnu_ifunc
	      || msymbol.minsym->type () == mst_file_text
	      || msymbol.minsym->type () == mst_solib_trampoline)
	    addr = gdbarch_addr_bits_remove (gdbarch, addr);

	  symbol = 0;
	  name_location = msymbol.value_address ();
	  if (do_demangle || asm_demangle)
	    name_temp = msymbol.minsym->print_name ();
	  else
	    name_temp = msymbol.minsym->linkage_name ();
	}
    }
  if (symbol == NULL && msymbol.minsym == NULL)
    return 1;

  /* If the nearest symbol is too far away, don't print anything symbolic.  */

  /* For when CORE_ADDR is larger than unsigned int, we do math in
     CORE_ADDR.  But when we detect unsigned wraparound in the
     CORE_ADDR math, we ignore this test and print the offset,
     because addr+max_symbolic_offset has wrapped through the end
     of the address space back to the beginning, giving bogus comparison.  */
  if (addr > name_location + max_symbolic_offset
      && name_location + max_symbolic_offset > name_location)
    return 1;

  *offset = (LONGEST) addr - name_location;

  *name = name_temp;

  if (print_symbol_filename)
    {
      struct symtab_and_line sal;

      sal = find_pc_sect_line (addr, section, 0);

      if (sal.symtab)
	{
	  *filename = symtab_to_filename_for_display (sal.symtab);
	  *line = sal.line;
	}
    }
  return 0;
}


/* Print address ADDR symbolically on STREAM.
   First print it as a number.  Then perhaps print
   <SYMBOL + OFFSET> after the number.  */

void
print_address (struct gdbarch *gdbarch,
	       CORE_ADDR addr, struct ui_file *stream)
{
  fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
  print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
}

/* Return a prefix for instruction address:
   "=> " for current instruction, else "   ".  */

const char *
pc_prefix (CORE_ADDR addr)
{
  if (has_stack_frames ())
    {
      frame_info_ptr frame;
      CORE_ADDR pc;

      frame = get_selected_frame (NULL);
      if (get_frame_pc_if_available (frame, &pc) && pc == addr)
	return "=> ";
    }
  return "   ";
}

/* Print address ADDR symbolically on STREAM.  Parameter DEMANGLE
   controls whether to print the symbolic name "raw" or demangled.
   Return non-zero if anything was printed; zero otherwise.  */

int
print_address_demangle (const struct value_print_options *opts,
			struct gdbarch *gdbarch, CORE_ADDR addr,
			struct ui_file *stream, int do_demangle)
{
  if (opts->addressprint)
    {
      fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
      print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
    }
  else
    {
      return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
    }
  return 1;
}


/* Find the address of the instruction that is INST_COUNT instructions before
   the instruction at ADDR.
   Since some architectures have variable-length instructions, we can't just
   simply subtract INST_COUNT * INSN_LEN from ADDR.  Instead, we use line
   number information to locate the nearest known instruction boundary,
   and disassemble forward from there.  If we go out of the symbol range
   during disassembling, we return the lowest address we've got so far and
   set the number of instructions read to INST_READ.  */

static CORE_ADDR
find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
			   int inst_count, int *inst_read)
{
  /* The vector PCS is used to store instruction addresses within
     a pc range.  */
  CORE_ADDR loop_start, loop_end, p;
  std::vector<CORE_ADDR> pcs;
  struct symtab_and_line sal;

  *inst_read = 0;
  loop_start = loop_end = addr;

  /* In each iteration of the outer loop, we get a pc range that ends before
     LOOP_START, then we count and store every instruction address of the range
     iterated in the loop.
     If the number of instructions counted reaches INST_COUNT, return the
     stored address that is located INST_COUNT instructions back from ADDR.
     If INST_COUNT is not reached, we subtract the number of counted
     instructions from INST_COUNT, and go to the next iteration.  */
  do
    {
      pcs.clear ();
      sal = find_pc_sect_line (loop_start, NULL, 1);
      if (sal.line <= 0)
	{
	  /* We reach here when line info is not available.  In this case,
	     we print a message and just exit the loop.  The return value
	     is calculated after the loop.  */
	  gdb_printf (_("No line number information available "
			"for address "));
	  gdb_stdout->wrap_here (2);
	  print_address (gdbarch, loop_start - 1, gdb_stdout);
	  gdb_printf ("\n");
	  break;
	}

      loop_end = loop_start;
      loop_start = sal.pc;

      /* This loop pushes instruction addresses in the range from
	 LOOP_START to LOOP_END.  */
      for (p = loop_start; p < loop_end;)
	{
	  pcs.push_back (p);
	  p += gdb_insn_length (gdbarch, p);
	}

      inst_count -= pcs.size ();
      *inst_read += pcs.size ();
    }
  while (inst_count > 0);

  /* After the loop, the vector PCS has instruction addresses of the last
     source line we processed, and INST_COUNT has a negative value.
     We return the address at the index of -INST_COUNT in the vector for
     the reason below.
     Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
       Line X of File
	  0x4000
	  0x4001
	  0x4005
       Line Y of File
	  0x4009
	  0x400c
       => 0x400e
	  0x4011
     find_instruction_backward is called with INST_COUNT = 4 and expected to
     return 0x4001.  When we reach here, INST_COUNT is set to -1 because
     it was subtracted by 2 (from Line Y) and 3 (from Line X).  The value
     4001 is located at the index 1 of the last iterated line (= Line X),
     which is simply calculated by -INST_COUNT.
     The case when the length of PCS is 0 means that we reached an area for
     which line info is not available.  In such case, we return LOOP_START,
     which was the lowest instruction address that had line info.  */
  p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;

  /* INST_READ includes all instruction addresses in a pc range.  Need to
     exclude the beginning part up to the address we're returning.  That
     is, exclude {0x4000} in the example above.  */
  if (inst_count < 0)
    *inst_read += inst_count;

  return p;
}

/* Backward read LEN bytes of target memory from address MEMADDR + LEN,
   placing the results in GDB's memory from MYADDR + LEN.  Returns
   a count of the bytes actually read.  */

static int
read_memory_backward (struct gdbarch *gdbarch,
		      CORE_ADDR memaddr, gdb_byte *myaddr, int len)
{
  int errcode;
  int nread;      /* Number of bytes actually read.  */

  /* First try a complete read.  */
  errcode = target_read_memory (memaddr, myaddr, len);
  if (errcode == 0)
    {
      /* Got it all.  */
      nread = len;
    }
  else
    {
      /* Loop, reading one byte at a time until we get as much as we can.  */
      memaddr += len;
      myaddr += len;
      for (nread = 0; nread < len; ++nread)
	{
	  errcode = target_read_memory (--memaddr, --myaddr, 1);
	  if (errcode != 0)
	    {
	      /* The read was unsuccessful, so exit the loop.  */
	      gdb_printf (_("Cannot access memory at address %s\n"),
			  paddress (gdbarch, memaddr));
	      break;
	    }
	}
    }
  return nread;
}

/* Returns true if X (which is LEN bytes wide) is the number zero.  */

static int
integer_is_zero (const gdb_byte *x, int len)
{
  int i = 0;

  while (i < len && x[i] == 0)
    ++i;
  return (i == len);
}

/* Find the start address of a string in which ADDR is included.
   Basically we search for '\0' and return the next address,
   but if OPTIONS->PRINT_MAX is smaller than the length of a string,
   we stop searching and return the address to print characters as many as
   PRINT_MAX from the string.  */

static CORE_ADDR
find_string_backward (struct gdbarch *gdbarch,
		      CORE_ADDR addr, int count, int char_size,
		      const struct value_print_options *options,
		      int *strings_counted)
{
  const int chunk_size = 0x20;
  int read_error = 0;
  int chars_read = 0;
  int chars_to_read = chunk_size;
  int chars_counted = 0;
  int count_original = count;
  CORE_ADDR string_start_addr = addr;

  gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
  gdb::byte_vector buffer (chars_to_read * char_size);
  while (count > 0 && read_error == 0)
    {
      int i;

      addr -= chars_to_read * char_size;
      chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
					 chars_to_read * char_size);
      chars_read /= char_size;
      read_error = (chars_read == chars_to_read) ? 0 : 1;
      /* Searching for '\0' from the end of buffer in backward direction.  */
      for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
	{
	  int offset = (chars_to_read - i - 1) * char_size;

	  if (integer_is_zero (&buffer[offset], char_size)
	      || chars_counted == options->print_max)
	    {
	      /* Found '\0' or reached print_max.  As OFFSET is the offset to
		 '\0', we add CHAR_SIZE to return the start address of
		 a string.  */
	      --count;
	      string_start_addr = addr + offset + char_size;
	      chars_counted = 0;
	    }
	}
    }

  /* Update STRINGS_COUNTED with the actual number of loaded strings.  */
  *strings_counted = count_original - count;

  if (read_error != 0)
    {
      /* In error case, STRING_START_ADDR is pointing to the string that
	 was last successfully loaded.  Rewind the partially loaded string.  */
      string_start_addr -= chars_counted * char_size;
    }

  return string_start_addr;
}

/* Examine data at address ADDR in format FMT.
   Fetch it from memory and print on gdb_stdout.  */

static void
do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
{
  char format = 0;
  char size;
  int count = 1;
  struct type *val_type = NULL;
  int i;
  int maxelts;
  struct value_print_options opts;
  int need_to_update_next_address = 0;
  CORE_ADDR addr_rewound = 0;

  format = fmt.format;
  size = fmt.size;
  count = fmt.count;
  next_gdbarch = gdbarch;
  next_address = addr;

  /* Instruction format implies fetch single bytes
     regardless of the specified size.
     The case of strings is handled in decode_format, only explicit
     size operator are not changed to 'b'.  */
  if (format == 'i')
    size = 'b';

  if (size == 'a')
    {
      /* Pick the appropriate size for an address.  */
      if (gdbarch_ptr_bit (next_gdbarch) == 64)
	size = 'g';
      else if (gdbarch_ptr_bit (next_gdbarch) == 32)
	size = 'w';
      else if (gdbarch_ptr_bit (next_gdbarch) == 16)
	size = 'h';
      else
	/* Bad value for gdbarch_ptr_bit.  */
	internal_error (__FILE__, __LINE__,
			_("failed internal consistency check"));
    }

  if (size == 'b')
    val_type = builtin_type (next_gdbarch)->builtin_int8;
  else if (size == 'h')
    val_type = builtin_type (next_gdbarch)->builtin_int16;
  else if (size == 'w')
    val_type = builtin_type (next_gdbarch)->builtin_int32;
  else if (size == 'g')
    val_type = builtin_type (next_gdbarch)->builtin_int64;

  if (format == 's')
    {
      struct type *char_type = NULL;

      /* Search for "char16_t"  or "char32_t" types or fall back to 8-bit char
	 if type is not found.  */
      if (size == 'h')
	char_type = builtin_type (next_gdbarch)->builtin_char16;
      else if (size == 'w')
	char_type = builtin_type (next_gdbarch)->builtin_char32;
      if (char_type)
	val_type = char_type;
      else
	{
	  if (size != '\0' && size != 'b')
	    warning (_("Unable to display strings with "
		       "size '%c', using 'b' instead."), size);
	  size = 'b';
	  val_type = builtin_type (next_gdbarch)->builtin_int8;
	}
    }

  maxelts = 8;
  if (size == 'w')
    maxelts = 4;
  if (size == 'g')
    maxelts = 2;
  if (format == 's' || format == 'i')
    maxelts = 1;

  get_formatted_print_options (&opts, format);

  if (count < 0)
    {
      /* This is the negative repeat count case.
	 We rewind the address based on the given repeat count and format,
	 then examine memory from there in forward direction.  */

      count = -count;
      if (format == 'i')
	{
	  next_address = find_instruction_backward (gdbarch, addr, count,
						    &count);
	}
      else if (format == 's')
	{
	  next_address = find_string_backward (gdbarch, addr, count,
					       val_type->length (),
					       &opts, &count);
	}
      else
	{
	  next_address = addr - count * val_type->length ();
	}

      /* The following call to print_formatted updates next_address in every
	 iteration.  In backward case, we store the start address here
	 and update next_address with it before exiting the function.  */
      addr_rewound = (format == 's'
		      ? next_address - val_type->length ()
		      : next_address);
      need_to_update_next_address = 1;
    }

  /* Whether we need to print the memory tag information for the current
     address range.  */
  bool print_range_tag = true;
  uint32_t gsize = gdbarch_memtag_granule_size (gdbarch);

  /* Print as many objects as specified in COUNT, at most maxelts per line,
     with the address of the next one at the start of each line.  */

  while (count > 0)
    {
      QUIT;

      CORE_ADDR tag_laddr = 0, tag_haddr = 0;

      /* Print the memory tag information if requested.  */
      if (fmt.print_tags && print_range_tag
	  && target_supports_memory_tagging ())
	{
	  tag_laddr = align_down (next_address, gsize);
	  tag_haddr = align_down (next_address + gsize, gsize);

	  struct value *v_addr
	    = value_from_ulongest (builtin_type (gdbarch)->builtin_data_ptr,
				   tag_laddr);

	  if (gdbarch_tagged_address_p (target_gdbarch (), v_addr))
	    {
	      /* Fetch the allocation tag.  */
	      struct value *tag
		= gdbarch_get_memtag (gdbarch, v_addr, memtag_type::allocation);
	      std::string atag
		= gdbarch_memtag_to_string (gdbarch, tag);

	      if (!atag.empty ())
		{
		  gdb_printf (_("<Allocation Tag %s for range [%s,%s)>\n"),
			      atag.c_str (),
			      paddress (gdbarch, tag_laddr),
			      paddress (gdbarch, tag_haddr));
		}
	    }
	  print_range_tag = false;
	}

      if (format == 'i')
	gdb_puts (pc_prefix (next_address));
      print_address (next_gdbarch, next_address, gdb_stdout);
      gdb_printf (":");
      for (i = maxelts;
	   i > 0 && count > 0;
	   i--, count--)
	{
	  gdb_printf ("\t");
	  /* Note that print_formatted sets next_address for the next
	     object.  */
	  last_examine_address = next_address;

	  /* The value to be displayed is not fetched greedily.
	     Instead, to avoid the possibility of a fetched value not
	     being used, its retrieval is delayed until the print code
	     uses it.  When examining an instruction stream, the
	     disassembler will perform its own memory fetch using just
	     the address stored in LAST_EXAMINE_VALUE.  FIXME: Should
	     the disassembler be modified so that LAST_EXAMINE_VALUE
	     is left with the byte sequence from the last complete
	     instruction fetched from memory?  */
	  last_examine_value
	    = release_value (value_at_lazy (val_type, next_address));

	  print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);

	  /* Display any branch delay slots following the final insn.  */
	  if (format == 'i' && count == 1)
	    count += branch_delay_insns;

	  /* Update the tag range based on the current address being
	     processed.  */
	  if (tag_haddr <= next_address)
	      print_range_tag = true;
	}
      gdb_printf ("\n");
    }

  if (need_to_update_next_address)
    next_address = addr_rewound;
}

static void
validate_format (struct format_data fmt, const char *cmdname)
{
  if (fmt.size != 0)
    error (_("Size letters are meaningless in \"%s\" command."), cmdname);
  if (fmt.count != 1)
    error (_("Item count other than 1 is meaningless in \"%s\" command."),
	   cmdname);
  if (fmt.format == 'i')
    error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
	   fmt.format, cmdname);
}

/* Parse print command format string into *OPTS and update *EXPP.
   CMDNAME should name the current command.  */

void
print_command_parse_format (const char **expp, const char *cmdname,
			    value_print_options *opts)
{
  const char *exp = *expp;

  /* opts->raw value might already have been set by 'set print raw-values'
     or by using 'print -raw-values'.
     So, do not set opts->raw to 0, only set it to 1 if /r is given.  */
  if (exp && *exp == '/')
    {
      format_data fmt;

      exp++;
      fmt = decode_format (&exp, last_format, 0);
      validate_format (fmt, cmdname);
      last_format = fmt.format;

      opts->format = fmt.format;
      opts->raw = opts->raw || fmt.raw;
    }
  else
    {
      opts->format = 0;
    }

  *expp = exp;
}

/* See valprint.h.  */

void
print_value (value *val, const value_print_options &opts)
{
  int histindex = record_latest_value (val);

  annotate_value_history_begin (histindex, value_type (val));

  gdb_printf ("$%d = ", histindex);

  annotate_value_history_value ();

  print_formatted (val, 0, &opts, gdb_stdout);
  gdb_printf ("\n");

  annotate_value_history_end ();
}

/* Returns true if memory tags should be validated.  False otherwise.  */

static bool
should_validate_memtags (struct value *value)
{
  gdb_assert (value != nullptr && value_type (value) != nullptr);

  if (!target_supports_memory_tagging ())
    return false;

  enum type_code code = value_type (value)->code ();

  /* Skip non-address values.  */
  if (code != TYPE_CODE_PTR
      && !TYPE_IS_REFERENCE (value_type (value)))
    return false;

  /* OK, we have an address value.  Check we have a complete value we
     can extract.  */
  if (value_optimized_out (value)
      || !value_entirely_available (value))
    return false;

  /* We do.  Check whether it includes any tags.  */
  return gdbarch_tagged_address_p (target_gdbarch (), value);
}

/* Helper for parsing arguments for print_command_1.  */

static struct value *
process_print_command_args (const char *args, value_print_options *print_opts,
			    bool voidprint)
{
  get_user_print_options (print_opts);
  /* Override global settings with explicit options, if any.  */
  auto group = make_value_print_options_def_group (print_opts);
  gdb::option::process_options
    (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);

  print_command_parse_format (&args, "print", print_opts);

  const char *exp = args;

  if (exp != nullptr && *exp)
    {
      /* VOIDPRINT is true to indicate that we do want to print a void
	 value, so invert it for parse_expression.  */
      expression_up expr = parse_expression (exp, nullptr, !voidprint);
      return evaluate_expression (expr.get ());
    }

  return access_value_history (0);
}

/* Implementation of the "print" and "call" commands.  */

static void
print_command_1 (const char *args, int voidprint)
{
  value_print_options print_opts;

  struct value *val = process_print_command_args (args, &print_opts, voidprint);

  if (voidprint || (val && value_type (val) &&
		    value_type (val)->code () != TYPE_CODE_VOID))
    {
      /* If memory tagging validation is on, check if the tag is valid.  */
      if (print_opts.memory_tag_violations)
	{
	  try
	    {
	      if (should_validate_memtags (val)
		  && !gdbarch_memtag_matches_p (target_gdbarch (), val))
		{
		  /* Fetch the logical tag.  */
		  struct value *tag
		    = gdbarch_get_memtag (target_gdbarch (), val,
					  memtag_type::logical);
		  std::string ltag
		    = gdbarch_memtag_to_string (target_gdbarch (), tag);

		  /* Fetch the allocation tag.  */
		  tag = gdbarch_get_memtag (target_gdbarch (), val,
					    memtag_type::allocation);
		  std::string atag
		    = gdbarch_memtag_to_string (target_gdbarch (), tag);

		  gdb_printf (_("Logical tag (%s) does not match the "
				"allocation tag (%s).\n"),
			      ltag.c_str (), atag.c_str ());
		}
	    }
	  catch (gdb_exception_error &ex)
	    {
	      if (ex.error == TARGET_CLOSE_ERROR)
		throw;

	      gdb_printf (gdb_stderr,
			  _("Could not validate memory tag: %s\n"),
			  ex.message->c_str ());
	    }
	}

      print_value (val, print_opts);
    }
}

/* Called from command completion function to skip over /FMT
   specifications, allowing the rest of the line to be completed.  Returns
   true if the /FMT is at the end of the current line and there is nothing
   left to complete, otherwise false is returned.

   In either case *ARGS can be updated to point after any part of /FMT that
   is present.

   This function is designed so that trying to complete '/' will offer no
   completions, the user needs to insert the format specification
   themselves.  Trying to complete '/FMT' (where FMT is any non-empty set
   of alpha-numeric characters) will cause readline to insert a single
   space, setting the user up to enter the expression.  */

static bool
skip_over_slash_fmt (completion_tracker &tracker, const char **args)
{
  const char *text = *args;

  if (text[0] == '/')
    {
      bool in_fmt;
      tracker.set_use_custom_word_point (true);

      if (text[1] == '\0')
	{
	  /* The user tried to complete after typing just the '/' character
	     of the /FMT string.  Step the completer past the '/', but we
	     don't offer any completions.  */
	  in_fmt = true;
	  ++text;
	}
      else
	{
	  /* The user has typed some characters after the '/', we assume
	     this is a complete /FMT string, first skip over it.  */
	  text = skip_to_space (text);

	  if (*text == '\0')
	    {
	      /* We're at the end of the input string.  The user has typed
		 '/FMT' and asked for a completion.  Push an empty
		 completion string, this will cause readline to insert a
		 space so the user now has '/FMT '.  */
	      in_fmt = true;
	      tracker.add_completion (make_unique_xstrdup (text));
	    }
	  else
	    {
	      /* The user has already typed things after the /FMT, skip the
		 whitespace and return false.  Whoever called this function
		 should then try to complete what comes next.  */
	      in_fmt = false;
	      text = skip_spaces (text);
	    }
	}

      tracker.advance_custom_word_point_by (text - *args);
      *args = text;
      return in_fmt;
    }

  return false;
}

/* See valprint.h.  */

void
print_command_completer (struct cmd_list_element *ignore,
			 completion_tracker &tracker,
			 const char *text, const char * /*word*/)
{
  const auto group = make_value_print_options_def_group (nullptr);
  if (gdb::option::complete_options
      (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
    return;

  if (skip_over_slash_fmt (tracker, &text))
    return;

  const char *word = advance_to_expression_complete_word_point (tracker, text);
  expression_completer (ignore, tracker, text, word);
}

static void
print_command (const char *exp, int from_tty)
{
  print_command_1 (exp, true);
}

/* Same as print, except it doesn't print void results.  */
static void
call_command (const char *exp, int from_tty)
{
  print_command_1 (exp, false);
}

/* Implementation of the "output" command.  */

void
output_command (const char *exp, int from_tty)
{
  char format = 0;
  struct value *val;
  struct format_data fmt;
  struct value_print_options opts;

  fmt.size = 0;
  fmt.raw = 0;

  if (exp && *exp == '/')
    {
      exp++;
      fmt = decode_format (&exp, 0, 0);
      validate_format (fmt, "output");
      format = fmt.format;
    }

  expression_up expr = parse_expression (exp);

  val = evaluate_expression (expr.get ());

  annotate_value_begin (value_type (val));

  get_formatted_print_options (&opts, format);
  opts.raw = fmt.raw;
  print_formatted (val, fmt.size, &opts, gdb_stdout);

  annotate_value_end ();

  gdb_flush (gdb_stdout);
}

static void
set_command (const char *exp, int from_tty)
{
  expression_up expr = parse_expression (exp);

  switch (expr->op->opcode ())
    {
    case UNOP_PREINCREMENT:
    case UNOP_POSTINCREMENT:
    case UNOP_PREDECREMENT:
    case UNOP_POSTDECREMENT:
    case BINOP_ASSIGN:
    case BINOP_ASSIGN_MODIFY:
    case BINOP_COMMA:
      break;
    default:
      warning
	(_("Expression is not an assignment (and might have no effect)"));
    }

  evaluate_expression (expr.get ());
}

static void
info_symbol_command (const char *arg, int from_tty)
{
  struct minimal_symbol *msymbol;
  struct obj_section *osect;
  CORE_ADDR addr, sect_addr;
  int matches = 0;
  unsigned int offset;

  if (!arg)
    error_no_arg (_("address"));

  addr = parse_and_eval_address (arg);
  for (objfile *objfile : current_program_space->objfiles ())
    ALL_OBJFILE_OSECTIONS (objfile, osect)
      {
	/* Only process each object file once, even if there's a separate
	   debug file.  */
	if (objfile->separate_debug_objfile_backlink)
	  continue;

	sect_addr = overlay_mapped_address (addr, osect);

	if (osect->addr () <= sect_addr && sect_addr < osect->endaddr ()
	    && (msymbol
		= lookup_minimal_symbol_by_pc_section (sect_addr,
						       osect).minsym))
	  {
	    const char *obj_name, *mapped, *sec_name, *msym_name;
	    const char *loc_string;

	    matches = 1;
	    offset = sect_addr - msymbol->value_address (objfile);
	    mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
	    sec_name = osect->the_bfd_section->name;
	    msym_name = msymbol->print_name ();

	    /* Don't print the offset if it is zero.
	       We assume there's no need to handle i18n of "sym + offset".  */
	    std::string string_holder;
	    if (offset)
	      {
		string_holder = string_printf ("%s + %u", msym_name, offset);
		loc_string = string_holder.c_str ();
	      }
	    else
	      loc_string = msym_name;

	    gdb_assert (osect->objfile && objfile_name (osect->objfile));
	    obj_name = objfile_name (osect->objfile);

	    if (current_program_space->multi_objfile_p ())
	      if (pc_in_unmapped_range (addr, osect))
		if (section_is_overlay (osect))
		  gdb_printf (_("%s in load address range of "
				"%s overlay section %s of %s\n"),
			      loc_string, mapped, sec_name, obj_name);
		else
		  gdb_printf (_("%s in load address range of "
				"section %s of %s\n"),
			      loc_string, sec_name, obj_name);
	      else
		if (section_is_overlay (osect))
		  gdb_printf (_("%s in %s overlay section %s of %s\n"),
			      loc_string, mapped, sec_name, obj_name);
		else
		  gdb_printf (_("%s in section %s of %s\n"),
			      loc_string, sec_name, obj_name);
	    else
	      if (pc_in_unmapped_range (addr, osect))
		if (section_is_overlay (osect))
		  gdb_printf (_("%s in load address range of %s overlay "
				"section %s\n"),
			      loc_string, mapped, sec_name);
		else
		  gdb_printf
		    (_("%s in load address range of section %s\n"),
		     loc_string, sec_name);
	      else
		if (section_is_overlay (osect))
		  gdb_printf (_("%s in %s overlay section %s\n"),
			      loc_string, mapped, sec_name);
		else
		  gdb_printf (_("%s in section %s\n"),
			      loc_string, sec_name);
	  }
      }
  if (matches == 0)
    gdb_printf (_("No symbol matches %s.\n"), arg);
}

static void
info_address_command (const char *exp, int from_tty)
{
  struct gdbarch *gdbarch;
  int regno;
  struct symbol *sym;
  struct bound_minimal_symbol msymbol;
  long val;
  struct obj_section *section;
  CORE_ADDR load_addr, context_pc = 0;
  struct field_of_this_result is_a_field_of_this;

  if (exp == 0)
    error (_("Argument required."));

  sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
		       &is_a_field_of_this).symbol;
  if (sym == NULL)
    {
      if (is_a_field_of_this.type != NULL)
	{
	  gdb_printf ("Symbol \"");
	  fprintf_symbol (gdb_stdout, exp,
			  current_language->la_language, DMGL_ANSI);
	  gdb_printf ("\" is a field of the local class variable ");
	  if (current_language->la_language == language_objc)
	    gdb_printf ("`self'\n");	/* ObjC equivalent of "this" */
	  else
	    gdb_printf ("`this'\n");
	  return;
	}

      msymbol = lookup_bound_minimal_symbol (exp);

      if (msymbol.minsym != NULL)
	{
	  struct objfile *objfile = msymbol.objfile;

	  gdbarch = objfile->arch ();
	  load_addr = msymbol.value_address ();

	  gdb_printf ("Symbol \"");
	  fprintf_symbol (gdb_stdout, exp,
			  current_language->la_language, DMGL_ANSI);
	  gdb_printf ("\" is at ");
	  fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
			gdb_stdout);
	  gdb_printf (" in a file compiled without debugging");
	  section = msymbol.minsym->obj_section (objfile);
	  if (section_is_overlay (section))
	    {
	      load_addr = overlay_unmapped_address (load_addr, section);
	      gdb_printf (",\n -- loaded at ");
	      fputs_styled (paddress (gdbarch, load_addr),
			    address_style.style (),
			    gdb_stdout);
	      gdb_printf (" in overlay section %s",
			  section->the_bfd_section->name);
	    }
	  gdb_printf (".\n");
	}
      else
	error (_("No symbol \"%s\" in current context."), exp);
      return;
    }

  gdb_printf ("Symbol \"");
  gdb_puts (sym->print_name ());
  gdb_printf ("\" is ");
  val = sym->value_longest ();
  if (sym->is_objfile_owned ())
    section = sym->obj_section (sym->objfile ());
  else
    section = NULL;
  gdbarch = sym->arch ();

  if (SYMBOL_COMPUTED_OPS (sym) != NULL)
    {
      SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
						    gdb_stdout);
      gdb_printf (".\n");
      return;
    }

  switch (sym->aclass ())
    {
    case LOC_CONST:
    case LOC_CONST_BYTES:
      gdb_printf ("constant");
      break;

    case LOC_LABEL:
      gdb_printf ("a label at address ");
      load_addr = sym->value_address ();
      fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
		    gdb_stdout);
      if (section_is_overlay (section))
	{
	  load_addr = overlay_unmapped_address (load_addr, section);
	  gdb_printf (",\n -- loaded at ");
	  fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
			gdb_stdout);
	  gdb_printf (" in overlay section %s",
		      section->the_bfd_section->name);
	}
      break;

    case LOC_COMPUTED:
      gdb_assert_not_reached ("LOC_COMPUTED variable missing a method");

    case LOC_REGISTER:
      /* GDBARCH is the architecture associated with the objfile the symbol
	 is defined in; the target architecture may be different, and may
	 provide additional registers.  However, we do not know the target
	 architecture at this point.  We assume the objfile architecture
	 will contain all the standard registers that occur in debug info
	 in that objfile.  */
      regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);

      if (sym->is_argument ())
	gdb_printf (_("an argument in register %s"),
		    gdbarch_register_name (gdbarch, regno));
      else
	gdb_printf (_("a variable in register %s"),
		    gdbarch_register_name (gdbarch, regno));
      break;

    case LOC_STATIC:
      gdb_printf (_("static storage at address "));
      load_addr = sym->value_address ();
      fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
		    gdb_stdout);
      if (section_is_overlay (section))
	{
	  load_addr = overlay_unmapped_address (load_addr, section);
	  gdb_printf (_(",\n -- loaded at "));
	  fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
			gdb_stdout);
	  gdb_printf (_(" in overlay section %s"),
		      section->the_bfd_section->name);
	}
      break;

    case LOC_REGPARM_ADDR:
      /* Note comment at LOC_REGISTER.  */
      regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
      gdb_printf (_("address of an argument in register %s"),
		  gdbarch_register_name (gdbarch, regno));
      break;

    case LOC_ARG:
      gdb_printf (_("an argument at offset %ld"), val);
      break;

    case LOC_LOCAL:
      gdb_printf (_("a local variable at frame offset %ld"), val);
      break;

    case LOC_REF_ARG:
      gdb_printf (_("a reference argument at offset %ld"), val);
      break;

    case LOC_TYPEDEF:
      gdb_printf (_("a typedef"));
      break;

    case LOC_BLOCK:
      gdb_printf (_("a function at address "));
      load_addr = sym->value_block ()->entry_pc ();
      fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
		    gdb_stdout);
      if (section_is_overlay (section))
	{
	  load_addr = overlay_unmapped_address (load_addr, section);
	  gdb_printf (_(",\n -- loaded at "));
	  fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
			gdb_stdout);
	  gdb_printf (_(" in overlay section %s"),
		      section->the_bfd_section->name);
	}
      break;

    case LOC_UNRESOLVED:
      {
	struct bound_minimal_symbol msym;

	msym = lookup_bound_minimal_symbol (sym->linkage_name ());
	if (msym.minsym == NULL)
	  gdb_printf ("unresolved");
	else
	  {
	    section = msym.obj_section ();

	    if (section
		&& (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
	      {
		load_addr = msym.minsym->value_raw_address ();
		gdb_printf (_("a thread-local variable at offset %s "
			      "in the thread-local storage for `%s'"),
			    paddress (gdbarch, load_addr),
			    objfile_name (section->objfile));
	      }
	    else
	      {
		load_addr = msym.value_address ();
		gdb_printf (_("static storage at address "));
		fputs_styled (paddress (gdbarch, load_addr),
			      address_style.style (), gdb_stdout);
		if (section_is_overlay (section))
		  {
		    load_addr = overlay_unmapped_address (load_addr, section);
		    gdb_printf (_(",\n -- loaded at "));
		    fputs_styled (paddress (gdbarch, load_addr),
				  address_style.style (),
				  gdb_stdout);
		    gdb_printf (_(" in overlay section %s"),
				section->the_bfd_section->name);
		  }
	      }
	  }
      }
      break;

    case LOC_OPTIMIZED_OUT:
      gdb_printf (_("optimized out"));
      break;

    default:
      gdb_printf (_("of unknown (botched) type"));
      break;
    }
  gdb_printf (".\n");
}


static void
x_command (const char *exp, int from_tty)
{
  struct format_data fmt;
  struct value *val;

  fmt.format = last_format ? last_format : 'x';
  fmt.print_tags = last_print_tags;
  fmt.size = last_size;
  fmt.count = 1;
  fmt.raw = 0;

  /* If there is no expression and no format, use the most recent
     count.  */
  if (exp == nullptr && last_count > 0)
    fmt.count = last_count;

  if (exp && *exp == '/')
    {
      const char *tmp = exp + 1;

      fmt = decode_format (&tmp, last_format, last_size);
      exp = (char *) tmp;
    }

  last_count = fmt.count;

  /* If we have an expression, evaluate it and use it as the address.  */

  if (exp != 0 && *exp != 0)
    {
      expression_up expr = parse_expression (exp);
      /* Cause expression not to be there any more if this command is
	 repeated with Newline.  But don't clobber a user-defined
	 command's definition.  */
      if (from_tty)
	set_repeat_arguments ("");
      val = evaluate_expression (expr.get ());
      if (TYPE_IS_REFERENCE (value_type (val)))
	val = coerce_ref (val);
      /* In rvalue contexts, such as this, functions are coerced into
	 pointers to functions.  This makes "x/i main" work.  */
      if (value_type (val)->code () == TYPE_CODE_FUNC
	   && VALUE_LVAL (val) == lval_memory)
	next_address = value_address (val);
      else
	next_address = value_as_address (val);

      next_gdbarch = expr->gdbarch;
    }

  if (!next_gdbarch)
    error_no_arg (_("starting display address"));

  do_examine (fmt, next_gdbarch, next_address);

  /* If the examine succeeds, we remember its size and format for next
     time.  Set last_size to 'b' for strings.  */
  if (fmt.format == 's')
    last_size = 'b';
  else
    last_size = fmt.size;
  last_format = fmt.format;

  /* Remember tag-printing setting.  */
  last_print_tags = fmt.print_tags;

  /* Set a couple of internal variables if appropriate.  */
  if (last_examine_value != nullptr)
    {
      /* Make last address examined available to the user as $_.  Use
	 the correct pointer type.  */
      struct type *pointer_type
	= lookup_pointer_type (value_type (last_examine_value.get ()));
      set_internalvar (lookup_internalvar ("_"),
		       value_from_pointer (pointer_type,
					   last_examine_address));

      /* Make contents of last address examined available to the user
	 as $__.  If the last value has not been fetched from memory
	 then don't fetch it now; instead mark it by voiding the $__
	 variable.  */
      if (value_lazy (last_examine_value.get ()))
	clear_internalvar (lookup_internalvar ("__"));
      else
	set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
    }
}

/* Command completion for the 'display' and 'x' commands.  */

static void
display_and_x_command_completer (struct cmd_list_element *ignore,
				 completion_tracker &tracker,
				 const char *text, const char * /*word*/)
{
  if (skip_over_slash_fmt (tracker, &text))
    return;

  const char *word = advance_to_expression_complete_word_point (tracker, text);
  expression_completer (ignore, tracker, text, word);
}



/* Add an expression to the auto-display chain.
   Specify the expression.  */

static void
display_command (const char *arg, int from_tty)
{
  struct format_data fmt;
  struct display *newobj;
  const char *exp = arg;

  if (exp == 0)
    {
      do_displays ();
      return;
    }

  if (*exp == '/')
    {
      exp++;
      fmt = decode_format (&exp, 0, 0);
      if (fmt.size && fmt.format == 0)
	fmt.format = 'x';
      if (fmt.format == 'i' || fmt.format == 's')
	fmt.size = 'b';
    }
  else
    {
      fmt.format = 0;
      fmt.size = 0;
      fmt.count = 0;
      fmt.raw = 0;
    }

  innermost_block_tracker tracker;
  expression_up expr = parse_expression (exp, &tracker);

  newobj = new display (exp, std::move (expr), fmt,
			current_program_space, tracker.block ());
  all_displays.emplace_back (newobj);

  if (from_tty)
    do_one_display (newobj);

  dont_repeat ();
}

/* Clear out the display_chain.  Done when new symtabs are loaded,
   since this invalidates the types stored in many expressions.  */

void
clear_displays ()
{
  all_displays.clear ();
}

/* Delete the auto-display DISPLAY.  */

static void
delete_display (struct display *display)
{
  gdb_assert (display != NULL);

  auto iter = std::find_if (all_displays.begin (),
			    all_displays.end (),
			    [=] (const std::unique_ptr<struct display> &item)
			    {
			      return item.get () == display;
			    });
  gdb_assert (iter != all_displays.end ());
  all_displays.erase (iter);
}

/* Call FUNCTION on each of the displays whose numbers are given in
   ARGS.  DATA is passed unmodified to FUNCTION.  */

static void
map_display_numbers (const char *args,
		     gdb::function_view<void (struct display *)> function)
{
  int num;

  if (args == NULL)
    error_no_arg (_("one or more display numbers"));

  number_or_range_parser parser (args);

  while (!parser.finished ())
    {
      const char *p = parser.cur_tok ();

      num = parser.get_number ();
      if (num == 0)
	warning (_("bad display number at or near '%s'"), p);
      else
	{
	  auto iter = std::find_if (all_displays.begin (),
				    all_displays.end (),
				    [=] (const std::unique_ptr<display> &item)
				    {
				      return item->number == num;
				    });
	  if (iter == all_displays.end ())
	    gdb_printf (_("No display number %d.\n"), num);
	  else
	    function (iter->get ());
	}
    }
}

/* "undisplay" command.  */

static void
undisplay_command (const char *args, int from_tty)
{
  if (args == NULL)
    {
      if (query (_("Delete all auto-display expressions? ")))
	clear_displays ();
      dont_repeat ();
      return;
    }

  map_display_numbers (args, delete_display);
  dont_repeat ();
}

/* Display a single auto-display.  
   Do nothing if the display cannot be printed in the current context,
   or if the display is disabled.  */

static void
do_one_display (struct display *d)
{
  int within_current_scope;

  if (!d->enabled_p)
    return;

  /* The expression carries the architecture that was used at parse time.
     This is a problem if the expression depends on architecture features
     (e.g. register numbers), and the current architecture is now different.
     For example, a display statement like "display/i $pc" is expected to
     display the PC register of the current architecture, not the arch at
     the time the display command was given.  Therefore, we re-parse the
     expression if the current architecture has changed.  */
  if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
    {
      d->exp.reset ();
      d->block = NULL;
    }

  if (d->exp == NULL)
    {

      try
	{
	  innermost_block_tracker tracker;
	  d->exp = parse_expression (d->exp_string.c_str (), &tracker);
	  d->block = tracker.block ();
	}
      catch (const gdb_exception &ex)
	{
	  /* Can't re-parse the expression.  Disable this display item.  */
	  d->enabled_p = false;
	  warning (_("Unable to display \"%s\": %s"),
		   d->exp_string.c_str (), ex.what ());
	  return;
	}
    }

  if (d->block)
    {
      if (d->pspace == current_program_space)
	within_current_scope = contained_in (get_selected_block (0), d->block,
					     true);
      else
	within_current_scope = 0;
    }
  else
    within_current_scope = 1;
  if (!within_current_scope)
    return;

  scoped_restore save_display_number
    = make_scoped_restore (&current_display_number, d->number);

  annotate_display_begin ();
  gdb_printf ("%d", d->number);
  annotate_display_number_end ();
  gdb_printf (": ");
  if (d->format.size)
    {

      annotate_display_format ();

      gdb_printf ("x/");
      if (d->format.count != 1)
	gdb_printf ("%d", d->format.count);
      gdb_printf ("%c", d->format.format);
      if (d->format.format != 'i' && d->format.format != 's')
	gdb_printf ("%c", d->format.size);
      gdb_printf (" ");

      annotate_display_expression ();

      gdb_puts (d->exp_string.c_str ());
      annotate_display_expression_end ();

      if (d->format.count != 1 || d->format.format == 'i')
	gdb_printf ("\n");
      else
	gdb_printf ("  ");

      annotate_display_value ();

      try
	{
	  struct value *val;
	  CORE_ADDR addr;

	  val = evaluate_expression (d->exp.get ());
	  addr = value_as_address (val);
	  if (d->format.format == 'i')
	    addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
	  do_examine (d->format, d->exp->gdbarch, addr);
	}
      catch (const gdb_exception_error &ex)
	{
	  gdb_printf (_("%p[<error: %s>%p]\n"),
		      metadata_style.style ().ptr (), ex.what (),
		      nullptr);
	}
    }
  else
    {
      struct value_print_options opts;

      annotate_display_format ();

      if (d->format.format)
	gdb_printf ("/%c ", d->format.format);

      annotate_display_expression ();

      gdb_puts (d->exp_string.c_str ());
      annotate_display_expression_end ();

      gdb_printf (" = ");

      annotate_display_expression ();

      get_formatted_print_options (&opts, d->format.format);
      opts.raw = d->format.raw;

      try
	{
	  struct value *val;

	  val = evaluate_expression (d->exp.get ());
	  print_formatted (val, d->format.size, &opts, gdb_stdout);
	}
      catch (const gdb_exception_error &ex)
	{
	  fprintf_styled (gdb_stdout, metadata_style.style (),
			  _("<error: %s>"), ex.what ());
	}

      gdb_printf ("\n");
    }

  annotate_display_end ();

  gdb_flush (gdb_stdout);
}

/* Display all of the values on the auto-display chain which can be
   evaluated in the current scope.  */

void
do_displays (void)
{
  for (auto &d : all_displays)
    do_one_display (d.get ());
}

/* Delete the auto-display which we were in the process of displaying.
   This is done when there is an error or a signal.  */

void
disable_display (int num)
{
  for (auto &d : all_displays)
    if (d->number == num)
      {
	d->enabled_p = false;
	return;
      }
  gdb_printf (_("No display number %d.\n"), num);
}

void
disable_current_display (void)
{
  if (current_display_number >= 0)
    {
      disable_display (current_display_number);
      gdb_printf (gdb_stderr,
		  _("Disabling display %d to "
		    "avoid infinite recursion.\n"),
		  current_display_number);
    }
  current_display_number = -1;
}

static void
info_display_command (const char *ignore, int from_tty)
{
  if (all_displays.empty ())
    gdb_printf (_("There are no auto-display expressions now.\n"));
  else
    gdb_printf (_("Auto-display expressions now in effect:\n\
Num Enb Expression\n"));

  for (auto &d : all_displays)
    {
      gdb_printf ("%d:   %c  ", d->number, "ny"[(int) d->enabled_p]);
      if (d->format.size)
	gdb_printf ("/%d%c%c ", d->format.count, d->format.size,
		    d->format.format);
      else if (d->format.format)
	gdb_printf ("/%c ", d->format.format);
      gdb_puts (d->exp_string.c_str ());
      if (d->block && !contained_in (get_selected_block (0), d->block, true))
	gdb_printf (_(" (cannot be evaluated in the current context)"));
      gdb_printf ("\n");
    }
}

/* Implementation of both the "disable display" and "enable display"
   commands.  ENABLE decides what to do.  */

static void
enable_disable_display_command (const char *args, int from_tty, bool enable)
{
  if (args == NULL)
    {
      for (auto &d : all_displays)
	d->enabled_p = enable;
      return;
    }

  map_display_numbers (args,
		       [=] (struct display *d)
		       {
			 d->enabled_p = enable;
		       });
}

/* The "enable display" command.  */

static void
enable_display_command (const char *args, int from_tty)
{
  enable_disable_display_command (args, from_tty, true);
}

/* The "disable display" command.  */

static void
disable_display_command (const char *args, int from_tty)
{
  enable_disable_display_command (args, from_tty, false);
}

/* display_chain items point to blocks and expressions.  Some expressions in
   turn may point to symbols.
   Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
   obstack_free'd when a shared library is unloaded.
   Clear pointers that are about to become dangling.
   Both .exp and .block fields will be restored next time we need to display
   an item by re-parsing .exp_string field in the new execution context.  */

static void
clear_dangling_display_expressions (struct objfile *objfile)
{
  struct program_space *pspace;

  /* With no symbol file we cannot have a block or expression from it.  */
  if (objfile == NULL)
    return;
  pspace = objfile->pspace;
  if (objfile->separate_debug_objfile_backlink)
    {
      objfile = objfile->separate_debug_objfile_backlink;
      gdb_assert (objfile->pspace == pspace);
    }

  for (auto &d : all_displays)
    {
      if (d->pspace != pspace)
	continue;

      struct objfile *bl_objf = nullptr;
      if (d->block != nullptr)
	{
	  bl_objf = block_objfile (d->block);
	  if (bl_objf->separate_debug_objfile_backlink != nullptr)
	    bl_objf = bl_objf->separate_debug_objfile_backlink;
	}

      if (bl_objf == objfile
	  || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
	{
	  d->exp.reset ();
	  d->block = NULL;
	}
    }
}


/* Print the value in stack frame FRAME of a variable specified by a
   struct symbol.  NAME is the name to print; if NULL then VAR's print
   name will be used.  STREAM is the ui_file on which to print the
   value.  INDENT specifies the number of indent levels to print
   before printing the variable name.

   This function invalidates FRAME.  */

void
print_variable_and_value (const char *name, struct symbol *var,
			  frame_info_ptr frame,
			  struct ui_file *stream, int indent)
{

  if (!name)
    name = var->print_name ();

  gdb_printf (stream, "%*s%ps = ", 2 * indent, "",
	      styled_string (variable_name_style.style (), name));

  try
    {
      struct value *val;
      struct value_print_options opts;

      /* READ_VAR_VALUE needs a block in order to deal with non-local
	 references (i.e. to handle nested functions).  In this context, we
	 print variables that are local to this frame, so we can avoid passing
	 a block to it.  */
      val = read_var_value (var, NULL, frame);
      get_user_print_options (&opts);
      opts.deref_ref = 1;
      common_val_print_checked (val, stream, indent, &opts, current_language);

      /* common_val_print invalidates FRAME when a pretty printer calls inferior
	 function.  */
      frame = NULL;
    }
  catch (const gdb_exception_error &except)
    {
      fprintf_styled (stream, metadata_style.style (),
		      "<error reading variable %s (%s)>", name,
		      except.what ());
    }

  gdb_printf (stream, "\n");
}

/* Subroutine of ui_printf to simplify it.
   Print VALUE to STREAM using FORMAT.
   VALUE is a C-style string either on the target or
   in a GDB internal variable.  */

static void
printf_c_string (struct ui_file *stream, const char *format,
		 struct value *value)
{
  const gdb_byte *str;

  if (value_type (value)->code () != TYPE_CODE_PTR
      && VALUE_LVAL (value) == lval_internalvar
      && c_is_string_type_p (value_type (value)))
    {
      size_t len = value_type (value)->length ();

      /* Copy the internal var value to TEM_STR and append a terminating null
	 character.  This protects against corrupted C-style strings that lack
	 the terminating null char.  It also allows Ada-style strings (not
	 null terminated) to be printed without problems.  */
      gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);

      memcpy (tem_str, value_contents (value).data (), len);
      tem_str [len] = 0;
      str = tem_str;
    }
  else
    {
      CORE_ADDR tem = value_as_address (value);;

      if (tem == 0)
	{
	  DIAGNOSTIC_PUSH
	  DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
	    gdb_printf (stream, format, "(null)");
	  DIAGNOSTIC_POP
	  return;
	}

      /* This is a %s argument.  Find the length of the string.  */
      size_t len;

      for (len = 0;; len++)
	{
	  gdb_byte c;

	  QUIT;
	  read_memory (tem + len, &c, 1);
	  if (c == 0)
	    break;
	}

      /* Copy the string contents into a string inside GDB.  */
      gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);

      if (len != 0)
	read_memory (tem, tem_str, len);
      tem_str[len] = 0;
      str = tem_str;
    }

  DIAGNOSTIC_PUSH
  DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
    gdb_printf (stream, format, (char *) str);
  DIAGNOSTIC_POP
}

/* Subroutine of ui_printf to simplify it.
   Print VALUE to STREAM using FORMAT.
   VALUE is a wide C-style string on the target or
   in a GDB internal variable.  */

static void
printf_wide_c_string (struct ui_file *stream, const char *format,
		      struct value *value)
{
  const gdb_byte *str;
  size_t len;
  struct gdbarch *gdbarch = value_type (value)->arch ();
  struct type *wctype = lookup_typename (current_language,
					 "wchar_t", NULL, 0);
  int wcwidth = wctype->length ();

  if (VALUE_LVAL (value) == lval_internalvar
      && c_is_string_type_p (value_type (value)))
    {
      str = value_contents (value).data ();
      len = value_type (value)->length ();
    }
  else
    {
      CORE_ADDR tem = value_as_address (value);

      if (tem == 0)
	{
	  DIAGNOSTIC_PUSH
	  DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
	    gdb_printf (stream, format, "(null)");
	  DIAGNOSTIC_POP
	  return;
	}

      /* This is a %s argument.  Find the length of the string.  */
      enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
      gdb_byte *buf = (gdb_byte *) alloca (wcwidth);

      for (len = 0;; len += wcwidth)
	{
	  QUIT;
	  read_memory (tem + len, buf, wcwidth);
	  if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
	    break;
	}

      /* Copy the string contents into a string inside GDB.  */
      gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);

      if (len != 0)
	read_memory (tem, tem_str, len);
      memset (&tem_str[len], 0, wcwidth);
      str = tem_str;
    }

  auto_obstack output;

  convert_between_encodings (target_wide_charset (gdbarch),
			     host_charset (),
			     str, len, wcwidth,
			     &output, translit_char);
  obstack_grow_str0 (&output, "");

  DIAGNOSTIC_PUSH
  DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
    gdb_printf (stream, format, obstack_base (&output));
  DIAGNOSTIC_POP
}

/* Subroutine of ui_printf to simplify it.
   Print VALUE, a floating point value, to STREAM using FORMAT.  */

static void
printf_floating (struct ui_file *stream, const char *format,
		 struct value *value, enum argclass argclass)
{
  /* Parameter data.  */
  struct type *param_type = value_type (value);
  struct gdbarch *gdbarch = param_type->arch ();

  /* Determine target type corresponding to the format string.  */
  struct type *fmt_type;
  switch (argclass)
    {
      case double_arg:
	fmt_type = builtin_type (gdbarch)->builtin_double;
	break;
      case long_double_arg:
	fmt_type = builtin_type (gdbarch)->builtin_long_double;
	break;
      case dec32float_arg:
	fmt_type = builtin_type (gdbarch)->builtin_decfloat;
	break;
      case dec64float_arg:
	fmt_type = builtin_type (gdbarch)->builtin_decdouble;
	break;
      case dec128float_arg:
	fmt_type = builtin_type (gdbarch)->builtin_declong;
	break;
      default:
	gdb_assert_not_reached ("unexpected argument class");
    }

  /* To match the traditional GDB behavior, the conversion is
     done differently depending on the type of the parameter:

     - if the parameter has floating-point type, it's value
       is converted to the target type;

     - otherwise, if the parameter has a type that is of the
       same size as a built-in floating-point type, the value
       bytes are interpreted as if they were of that type, and
       then converted to the target type (this is not done for
       decimal floating-point argument classes);

     - otherwise, if the source value has an integer value,
       it's value is converted to the target type;

     - otherwise, an error is raised.

     In either case, the result of the conversion is a byte buffer
     formatted in the target format for the target type.  */

  if (fmt_type->code () == TYPE_CODE_FLT)
    {
      param_type = float_type_from_length (param_type);
      if (param_type != value_type (value))
	value = value_from_contents (param_type,
				     value_contents (value).data ());
    }

  value = value_cast (fmt_type, value);

  /* Convert the value to a string and print it.  */
  std::string str
    = target_float_to_string (value_contents (value).data (), fmt_type, format);
  gdb_puts (str.c_str (), stream);
}

/* Subroutine of ui_printf to simplify it.
   Print VALUE, a target pointer, to STREAM using FORMAT.  */

static void
printf_pointer (struct ui_file *stream, const char *format,
		struct value *value)
{
  /* We avoid the host's %p because pointers are too
     likely to be the wrong size.  The only interesting
     modifier for %p is a width; extract that, and then
     handle %p as glibc would: %#x or a literal "(nil)".  */

  const char *p;
  char *fmt, *fmt_p;
#ifdef PRINTF_HAS_LONG_LONG
  long long val = value_as_long (value);
#else
  long val = value_as_long (value);
#endif

  fmt = (char *) alloca (strlen (format) + 5);

  /* Copy up to the leading %.  */
  p = format;
  fmt_p = fmt;
  while (*p)
    {
      int is_percent = (*p == '%');

      *fmt_p++ = *p++;
      if (is_percent)
	{
	  if (*p == '%')
	    *fmt_p++ = *p++;
	  else
	    break;
	}
    }

  if (val != 0)
    *fmt_p++ = '#';

  /* Copy any width or flags.  Only the "-" flag is valid for pointers
     -- see the format_pieces constructor.  */
  while (*p == '-' || (*p >= '0' && *p < '9'))
    *fmt_p++ = *p++;

  gdb_assert (*p == 'p' && *(p + 1) == '\0');
  if (val != 0)
    {
#ifdef PRINTF_HAS_LONG_LONG
      *fmt_p++ = 'l';
#endif
      *fmt_p++ = 'l';
      *fmt_p++ = 'x';
      *fmt_p++ = '\0';
      DIAGNOSTIC_PUSH
      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
	gdb_printf (stream, fmt, val);
      DIAGNOSTIC_POP
    }
  else
    {
      *fmt_p++ = 's';
      *fmt_p++ = '\0';
      DIAGNOSTIC_PUSH
      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
	gdb_printf (stream, fmt, "(nil)");
      DIAGNOSTIC_POP
    }
}

/* printf "printf format string" ARG to STREAM.  */

static void
ui_printf (const char *arg, struct ui_file *stream)
{
  const char *s = arg;
  std::vector<struct value *> val_args;

  if (s == 0)
    error_no_arg (_("format-control string and values to print"));

  s = skip_spaces (s);

  /* A format string should follow, enveloped in double quotes.  */
  if (*s++ != '"')
    error (_("Bad format string, missing '\"'."));

  format_pieces fpieces (&s);

  if (*s++ != '"')
    error (_("Bad format string, non-terminated '\"'."));
  
  s = skip_spaces (s);

  if (*s != ',' && *s != 0)
    error (_("Invalid argument syntax"));

  if (*s == ',')
    s++;
  s = skip_spaces (s);

  {
    int nargs_wanted;
    int i;
    const char *current_substring;

    nargs_wanted = 0;
    for (auto &&piece : fpieces)
      if (piece.argclass != literal_piece)
	++nargs_wanted;

    /* Now, parse all arguments and evaluate them.
       Store the VALUEs in VAL_ARGS.  */

    while (*s != '\0')
      {
	const char *s1;

	s1 = s;
	val_args.push_back (parse_to_comma_and_eval (&s1));

	s = s1;
	if (*s == ',')
	  s++;
      }

    if (val_args.size () != nargs_wanted)
      error (_("Wrong number of arguments for specified format-string"));

    /* Now actually print them.  */
    i = 0;
    for (auto &&piece : fpieces)
      {
	current_substring = piece.string;
	switch (piece.argclass)
	  {
	  case string_arg:
	    printf_c_string (stream, current_substring, val_args[i]);
	    break;
	  case wide_string_arg:
	    printf_wide_c_string (stream, current_substring, val_args[i]);
	    break;
	  case wide_char_arg:
	    {
	      struct gdbarch *gdbarch = value_type (val_args[i])->arch ();
	      struct type *wctype = lookup_typename (current_language,
						     "wchar_t", NULL, 0);
	      struct type *valtype;
	      const gdb_byte *bytes;

	      valtype = value_type (val_args[i]);
	      if (valtype->length () != wctype->length ()
		  || valtype->code () != TYPE_CODE_INT)
		error (_("expected wchar_t argument for %%lc"));

	      bytes = value_contents (val_args[i]).data ();

	      auto_obstack output;

	      convert_between_encodings (target_wide_charset (gdbarch),
					 host_charset (),
					 bytes, valtype->length (),
					 valtype->length (),
					 &output, translit_char);
	      obstack_grow_str0 (&output, "");

	      DIAGNOSTIC_PUSH
	      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
		gdb_printf (stream, current_substring,
			    obstack_base (&output));
	      DIAGNOSTIC_POP
	    }
	    break;
	  case long_long_arg:
#ifdef PRINTF_HAS_LONG_LONG
	    {
	      long long val = value_as_long (val_args[i]);

	      DIAGNOSTIC_PUSH
	      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
		gdb_printf (stream, current_substring, val);
	      DIAGNOSTIC_POP
	      break;
	    }
#else
	    error (_("long long not supported in printf"));
#endif
	  case int_arg:
	    {
	      int val = value_as_long (val_args[i]);

	      DIAGNOSTIC_PUSH
	      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
		gdb_printf (stream, current_substring, val);
	      DIAGNOSTIC_POP
	      break;
	    }
	  case long_arg:
	    {
	      long val = value_as_long (val_args[i]);

	      DIAGNOSTIC_PUSH
	      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
		gdb_printf (stream, current_substring, val);
	      DIAGNOSTIC_POP
	      break;
	    }
	  case size_t_arg:
	    {
	      size_t val = value_as_long (val_args[i]);

	      DIAGNOSTIC_PUSH
	      DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
		gdb_printf (stream, current_substring, val);
	      DIAGNOSTIC_POP
	      break;
	    }
	  /* Handles floating-point values.  */
	  case double_arg:
	  case long_double_arg:
	  case dec32float_arg:
	  case dec64float_arg:
	  case dec128float_arg:
	    printf_floating (stream, current_substring, val_args[i],
			     piece.argclass);
	    break;
	  case ptr_arg:
	    printf_pointer (stream, current_substring, val_args[i]);
	    break;
	  case literal_piece:
	    /* Print a portion of the format string that has no
	       directives.  Note that this will not include any
	       ordinary %-specs, but it might include "%%".  That is
	       why we use gdb_printf and not gdb_puts here.
	       Also, we pass a dummy argument because some platforms
	       have modified GCC to include -Wformat-security by
	       default, which will warn here if there is no
	       argument.  */
	    DIAGNOSTIC_PUSH
	    DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
	      gdb_printf (stream, current_substring, 0);
	    DIAGNOSTIC_POP
	    break;
	  default:
	    internal_error (__FILE__, __LINE__,
			    _("failed internal consistency check"));
	  }
	/* Maybe advance to the next argument.  */
	if (piece.argclass != literal_piece)
	  ++i;
      }
  }
}

/* Implement the "printf" command.  */

static void
printf_command (const char *arg, int from_tty)
{
  ui_printf (arg, gdb_stdout);
  gdb_stdout->reset_style ();
  gdb_stdout->wrap_here (0);
  gdb_stdout->flush ();
}

/* Implement the "eval" command.  */

static void
eval_command (const char *arg, int from_tty)
{
  string_file stb;

  ui_printf (arg, &stb);

  std::string expanded = insert_user_defined_cmd_args (stb.c_str ());

  execute_command (expanded.c_str (), from_tty);
}

/* Convenience function for error checking in memory-tag commands.  */

static void
show_addr_not_tagged (CORE_ADDR address)
{
  error (_("Address %s not in a region mapped with a memory tagging flag."),
	 paddress (target_gdbarch (), address));
}

/* Convenience function for error checking in memory-tag commands.  */

static void
show_memory_tagging_unsupported (void)
{
  error (_("Memory tagging not supported or disabled by the current"
	   " architecture."));
}

/* Implement the "memory-tag" prefix command.  */

static void
memory_tag_command (const char *arg, int from_tty)
{
  help_list (memory_tag_list, "memory-tag ", all_commands, gdb_stdout);
}

/* Helper for print-logical-tag and print-allocation-tag.  */

static void
memory_tag_print_tag_command (const char *args, enum memtag_type tag_type)
{
  if (args == nullptr)
    error_no_arg (_("address or pointer"));

  /* Parse args into a value.  If the value is a pointer or an address,
     then fetch the logical or allocation tag.  */
  value_print_options print_opts;

  struct value *val = process_print_command_args (args, &print_opts, true);

  /* If the address is not in a region memory mapped with a memory tagging
     flag, it is no use trying to access/manipulate its allocation tag.

     It is OK to manipulate the logical tag though.  */
  if (tag_type == memtag_type::allocation
      && !gdbarch_tagged_address_p (target_gdbarch (), val))
    show_addr_not_tagged (value_as_address (val));

  struct value *tag_value
    = gdbarch_get_memtag (target_gdbarch (), val, tag_type);
  std::string tag = gdbarch_memtag_to_string (target_gdbarch (), tag_value);

  if (tag.empty ())
    gdb_printf (_("%s tag unavailable.\n"),
		tag_type
		== memtag_type::logical? "Logical" : "Allocation");

  struct value *v_tag = process_print_command_args (tag.c_str (),
						    &print_opts,
						    true);
  print_opts.output_format = 'x';
  print_value (v_tag, print_opts);
}

/* Implement the "memory-tag print-logical-tag" command.  */

static void
memory_tag_print_logical_tag_command (const char *args, int from_tty)
{
  if (!target_supports_memory_tagging ())
    show_memory_tagging_unsupported ();

  memory_tag_print_tag_command (args, memtag_type::logical);
}

/* Implement the "memory-tag print-allocation-tag" command.  */

static void
memory_tag_print_allocation_tag_command (const char *args, int from_tty)
{
  if (!target_supports_memory_tagging ())
    show_memory_tagging_unsupported ();

  memory_tag_print_tag_command (args, memtag_type::allocation);
}

/* Parse ARGS and extract ADDR and TAG.
   ARGS should have format <expression> <tag bytes>.  */

static void
parse_with_logical_tag_input (const char *args, struct value **val,
			      gdb::byte_vector &tags,
			      value_print_options *print_opts)
{
  /* Fetch the address.  */
  std::string address_string = extract_string_maybe_quoted (&args);

  /* Parse the address into a value.  */
  *val = process_print_command_args (address_string.c_str (), print_opts,
				     true);

  /* Fetch the tag bytes.  */
  std::string tag_string = extract_string_maybe_quoted (&args);

  /* Validate the input.  */
  if (address_string.empty () || tag_string.empty ())
    error (_("Missing arguments."));

  if (tag_string.length () != 2)
    error (_("Error parsing tags argument. The tag should be 2 digits."));

  tags = hex2bin (tag_string.c_str ());
}

/* Implement the "memory-tag with-logical-tag" command.  */

static void
memory_tag_with_logical_tag_command (const char *args, int from_tty)
{
  if (!target_supports_memory_tagging ())
    show_memory_tagging_unsupported ();

  if (args == nullptr)
    error_no_arg (_("<address> <tag>"));

  gdb::byte_vector tags;
  struct value *val;
  value_print_options print_opts;

  /* Parse the input.  */
  parse_with_logical_tag_input (args, &val, tags, &print_opts);

  /* Setting the logical tag is just a local operation that does not touch
     any memory from the target.  Given an input value, we modify the value
     to include the appropriate tag.

     For this reason we need to cast the argument value to a
     (void *) pointer.  This is so we have the right type for the gdbarch
     hook to manipulate the value and insert the tag.

     Otherwise, this would fail if, for example, GDB parsed the argument value
     into an int-sized value and the pointer value has a type of greater
     length.  */

  /* Cast to (void *).  */
  val = value_cast (builtin_type (target_gdbarch ())->builtin_data_ptr,
		    val);

  /* Length doesn't matter for a logical tag.  Pass 0.  */
  if (!gdbarch_set_memtags (target_gdbarch (), val, 0, tags,
			    memtag_type::logical))
    gdb_printf (_("Could not update the logical tag data.\n"));
  else
    {
      /* Always print it in hex format.  */
      print_opts.output_format = 'x';
      print_value (val, print_opts);
    }
}

/* Parse ARGS and extract ADDR, LENGTH and TAGS.  */

static void
parse_set_allocation_tag_input (const char *args, struct value **val,
				size_t *length, gdb::byte_vector &tags)
{
  /* Fetch the address.  */
  std::string address_string = extract_string_maybe_quoted (&args);

  /* Parse the address into a value.  */
  value_print_options print_opts;
  *val = process_print_command_args (address_string.c_str (), &print_opts,
				     true);

  /* Fetch the length.  */
  std::string length_string = extract_string_maybe_quoted (&args);

  /* Fetch the tag bytes.  */
  std::string tags_string = extract_string_maybe_quoted (&args);

  /* Validate the input.  */
  if (address_string.empty () || length_string.empty () || tags_string.empty ())
    error (_("Missing arguments."));

  errno = 0;
  const char *trailer = nullptr;
  LONGEST parsed_length = strtoulst (length_string.c_str (), &trailer, 10);

  if (errno != 0 || (trailer != nullptr && trailer[0] != '\0'))
    error (_("Error parsing length argument."));

  if (parsed_length <= 0)
    error (_("Invalid zero or negative length."));

  *length = parsed_length;

  if (tags_string.length () % 2)
    error (_("Error parsing tags argument. Tags should be 2 digits per byte."));

  tags = hex2bin (tags_string.c_str ());

  /* If the address is not in a region memory mapped with a memory tagging
     flag, it is no use trying to access/manipulate its allocation tag.  */
  if (!gdbarch_tagged_address_p (target_gdbarch (), *val))
    show_addr_not_tagged (value_as_address (*val));
}

/* Implement the "memory-tag set-allocation-tag" command.
   ARGS should be in the format <address> <length> <tags>.  */

static void
memory_tag_set_allocation_tag_command (const char *args, int from_tty)
{
  if (!target_supports_memory_tagging ())
    show_memory_tagging_unsupported ();

  if (args == nullptr)
    error_no_arg (_("<starting address> <length> <tag bytes>"));

  gdb::byte_vector tags;
  size_t length = 0;
  struct value *val;

  /* Parse the input.  */
  parse_set_allocation_tag_input (args, &val, &length, tags);

  if (!gdbarch_set_memtags (target_gdbarch (), val, length, tags,
			    memtag_type::allocation))
    gdb_printf (_("Could not update the allocation tag(s).\n"));
  else
    gdb_printf (_("Allocation tag(s) updated successfully.\n"));
}

/* Implement the "memory-tag check" command.  */

static void
memory_tag_check_command (const char *args, int from_tty)
{
  if (!target_supports_memory_tagging ())
    show_memory_tagging_unsupported ();

  if (args == nullptr)
    error (_("Argument required (address or pointer)"));

  /* Parse the expression into a value.  If the value is an address or
     pointer, then check its logical tag against the allocation tag.  */
  value_print_options print_opts;

  struct value *val = process_print_command_args (args, &print_opts, true);

  /* If the address is not in a region memory mapped with a memory tagging
     flag, it is no use trying to access/manipulate its allocation tag.  */
  if (!gdbarch_tagged_address_p (target_gdbarch (), val))
    show_addr_not_tagged (value_as_address (val));

  CORE_ADDR addr = value_as_address (val);

  /* Check if the tag is valid.  */
  if (!gdbarch_memtag_matches_p (target_gdbarch (), val))
    {
      struct value *tag
	= gdbarch_get_memtag (target_gdbarch (), val, memtag_type::logical);
      std::string ltag
	= gdbarch_memtag_to_string (target_gdbarch (), tag);

      tag = gdbarch_get_memtag (target_gdbarch (), val,
				memtag_type::allocation);
      std::string atag
	= gdbarch_memtag_to_string (target_gdbarch (), tag);

      gdb_printf (_("Logical tag (%s) does not match"
		    " the allocation tag (%s) for address %s.\n"),
		  ltag.c_str (), atag.c_str (),
		  paddress (target_gdbarch (), addr));
    }
  else
    {
      struct value *tag
	= gdbarch_get_memtag (target_gdbarch (), val, memtag_type::logical);
      std::string ltag
	= gdbarch_memtag_to_string (target_gdbarch (), tag);

      gdb_printf (_("Memory tags for address %s match (%s).\n"),
		  paddress (target_gdbarch (), addr), ltag.c_str ());
    }
}

void _initialize_printcmd ();
void
_initialize_printcmd ()
{
  struct cmd_list_element *c;

  current_display_number = -1;

  gdb::observers::free_objfile.attach (clear_dangling_display_expressions,
				       "printcmd");

  add_info ("address", info_address_command,
	    _("Describe where symbol SYM is stored.\n\
Usage: info address SYM"));

  add_info ("symbol", info_symbol_command, _("\
Describe what symbol is at location ADDR.\n\
Usage: info symbol ADDR\n\
Only for symbols with fixed locations (global or static scope)."));

  c = add_com ("x", class_vars, x_command, _("\
Examine memory: x/FMT ADDRESS.\n\
ADDRESS is an expression for the memory address to examine.\n\
FMT is a repeat count followed by a format letter and a size letter.\n\
Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
  t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
  and z(hex, zero padded on the left).\n\
Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
The specified number of objects of the specified size are printed\n\
according to the format.  If a negative number is specified, memory is\n\
examined backward from the address.\n\n\
Defaults for format and size letters are those previously used.\n\
Default count is 1.  Default address is following last thing printed\n\
with this command or \"print\"."));
  set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);

  add_info ("display", info_display_command, _("\
Expressions to display when program stops, with code numbers.\n\
Usage: info display"));

  add_cmd ("undisplay", class_vars, undisplay_command, _("\
Cancel some expressions to be displayed when program stops.\n\
Usage: undisplay [NUM]...\n\
Arguments are the code numbers of the expressions to stop displaying.\n\
No argument means cancel all automatic-display expressions.\n\
\"delete display\" has the same effect as this command.\n\
Do \"info display\" to see current list of code numbers."),
	   &cmdlist);

  c = add_com ("display", class_vars, display_command, _("\
Print value of expression EXP each time the program stops.\n\
Usage: display[/FMT] EXP\n\
/FMT may be used before EXP as in the \"print\" command.\n\
/FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
as in the \"x\" command, and then EXP is used to get the address to examine\n\
and examining is done as in the \"x\" command.\n\n\
With no argument, display all currently requested auto-display expressions.\n\
Use \"undisplay\" to cancel display requests previously made."));
  set_cmd_completer_handle_brkchars (c, display_and_x_command_completer);

  add_cmd ("display", class_vars, enable_display_command, _("\
Enable some expressions to be displayed when program stops.\n\
Usage: enable display [NUM]...\n\
Arguments are the code numbers of the expressions to resume displaying.\n\
No argument means enable all automatic-display expressions.\n\
Do \"info display\" to see current list of code numbers."), &enablelist);

  add_cmd ("display", class_vars, disable_display_command, _("\
Disable some expressions to be displayed when program stops.\n\
Usage: disable display [NUM]...\n\
Arguments are the code numbers of the expressions to stop displaying.\n\
No argument means disable all automatic-display expressions.\n\
Do \"info display\" to see current list of code numbers."), &disablelist);

  add_cmd ("display", class_vars, undisplay_command, _("\
Cancel some expressions to be displayed when program stops.\n\
Usage: delete display [NUM]...\n\
Arguments are the code numbers of the expressions to stop displaying.\n\
No argument means cancel all automatic-display expressions.\n\
Do \"info display\" to see current list of code numbers."), &deletelist);

  add_com ("printf", class_vars, printf_command, _("\
Formatted printing, like the C \"printf\" function.\n\
Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
This supports most C printf format specifications, like %s, %d, etc."));

  add_com ("output", class_vars, output_command, _("\
Like \"print\" but don't put in value history and don't print newline.\n\
Usage: output EXP\n\
This is useful in user-defined commands."));

  add_prefix_cmd ("set", class_vars, set_command, _("\
Evaluate expression EXP and assign result to variable VAR.\n\
Usage: set VAR = EXP\n\
This uses assignment syntax appropriate for the current language\n\
(VAR = EXP or VAR := EXP for example).\n\
VAR may be a debugger \"convenience\" variable (names starting\n\
with $), a register (a few standard names starting with $), or an actual\n\
variable in the program being debugged.  EXP is any valid expression.\n\
Use \"set variable\" for variables with names identical to set subcommands.\n\
\n\
With a subcommand, this command modifies parts of the gdb environment.\n\
You can see these environment settings with the \"show\" command."),
		  &setlist, 1, &cmdlist);

  /* "call" is the same as "set", but handy for dbx users to call fns.  */
  c = add_com ("call", class_vars, call_command, _("\
Call a function in the program.\n\
Usage: call EXP\n\
The argument is the function name and arguments, in the notation of the\n\
current working language.  The result is printed and saved in the value\n\
history, if it is not void."));
  set_cmd_completer_handle_brkchars (c, print_command_completer);

  cmd_list_element *set_variable_cmd
    = add_cmd ("variable", class_vars, set_command, _("\
Evaluate expression EXP and assign result to variable VAR.\n\
Usage: set variable VAR = EXP\n\
This uses assignment syntax appropriate for the current language\n\
(VAR = EXP or VAR := EXP for example).\n\
VAR may be a debugger \"convenience\" variable (names starting\n\
with $), a register (a few standard names starting with $), or an actual\n\
variable in the program being debugged.  EXP is any valid expression.\n\
This may usually be abbreviated to simply \"set\"."),
	       &setlist);
  add_alias_cmd ("var", set_variable_cmd, class_vars, 0, &setlist);

  const auto print_opts = make_value_print_options_def_group (nullptr);

  static const std::string print_help = gdb::option::build_help (_("\
Print value of expression EXP.\n\
Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
\n\
Options:\n\
%OPTIONS%\n\
\n\
Note: because this command accepts arbitrary expressions, if you\n\
specify any command option, you must use a double dash (\"--\")\n\
to mark the end of option processing.  E.g.: \"print -o -- myobj\".\n\
\n\
Variables accessible are those of the lexical environment of the selected\n\
stack frame, plus all those whose scope is global or an entire file.\n\
\n\
$NUM gets previous value number NUM.  $ and $$ are the last two values.\n\
$$NUM refers to NUM'th value back from the last one.\n\
Names starting with $ refer to registers (with the values they would have\n\
if the program were to return to the stack frame now selected, restoring\n\
all registers saved by frames farther in) or else to debugger\n\
\"convenience\" variables (any such name not a known register).\n\
Use assignment expressions to give values to convenience variables.\n\
\n\
{TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
@ is a binary operator for treating consecutive data objects\n\
anywhere in memory as an array.  FOO@NUM gives an array whose first\n\
element is FOO, whose second element is stored in the space following\n\
where FOO is stored, etc.  FOO must be an expression whose value\n\
resides in memory.\n\
\n\
EXP may be preceded with /FMT, where FMT is a format letter\n\
but no count or size letter (see \"x\" command)."),
					      print_opts);

  cmd_list_element *print_cmd
    = add_com ("print", class_vars, print_command, print_help.c_str ());
  set_cmd_completer_handle_brkchars (print_cmd, print_command_completer);
  add_com_alias ("p", print_cmd, class_vars, 1);
  add_com_alias ("inspect", print_cmd, class_vars, 1);

  add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
			    &max_symbolic_offset, _("\
Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
Tell GDB to only display the symbolic form of an address if the\n\
offset between the closest earlier symbol and the address is less than\n\
the specified maximum offset.  The default is \"unlimited\", which tells GDB\n\
to always print the symbolic form of an address if any symbol precedes\n\
it.  Zero is equivalent to \"unlimited\"."),
			    NULL,
			    show_max_symbolic_offset,
			    &setprintlist, &showprintlist);
  add_setshow_boolean_cmd ("symbol-filename", no_class,
			   &print_symbol_filename, _("\
Set printing of source filename and line number with <SYMBOL>."), _("\
Show printing of source filename and line number with <SYMBOL>."), NULL,
			   NULL,
			   show_print_symbol_filename,
			   &setprintlist, &showprintlist);

  add_com ("eval", no_class, eval_command, _("\
Construct a GDB command and then evaluate it.\n\
Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
Convert the arguments to a string as \"printf\" would, but then\n\
treat this string as a command line, and evaluate it."));

  /* Memory tagging commands.  */
  add_prefix_cmd ("memory-tag", class_vars, memory_tag_command, _("\
Generic command for printing and manipulating memory tag properties."),
		  &memory_tag_list, 0, &cmdlist);
  add_cmd ("print-logical-tag", class_vars,
	   memory_tag_print_logical_tag_command,
	   ("Print the logical tag from POINTER.\n\
Usage: memory-tag print-logical-tag <POINTER>.\n\
<POINTER> is an expression that evaluates to a pointer.\n\
Print the logical tag contained in POINTER.  The tag interpretation is\n\
architecture-specific."),
	   &memory_tag_list);
  add_cmd ("print-allocation-tag", class_vars,
	   memory_tag_print_allocation_tag_command,
	   _("Print the allocation tag for ADDRESS.\n\
Usage: memory-tag print-allocation-tag <ADDRESS>.\n\
<ADDRESS> is an expression that evaluates to a memory address.\n\
Print the allocation tag associated with the memory address ADDRESS.\n\
The tag interpretation is architecture-specific."),
	   &memory_tag_list);
  add_cmd ("with-logical-tag", class_vars, memory_tag_with_logical_tag_command,
	   _("Print a POINTER with a specific logical TAG.\n\
Usage: memory-tag with-logical-tag <POINTER> <TAG>\n\
<POINTER> is an expression that evaluates to a pointer.\n\
<TAG> is a sequence of hex bytes that is interpreted by the architecture\n\
as a single memory tag."),
	   &memory_tag_list);
  add_cmd ("set-allocation-tag", class_vars,
	   memory_tag_set_allocation_tag_command,
	   _("Set the allocation tag(s) for a memory range.\n\
Usage: memory-tag set-allocation-tag <ADDRESS> <LENGTH> <TAG_BYTES>\n\
<ADDRESS> is an expression that evaluates to a memory address\n\
<LENGTH> is the number of bytes that is added to <ADDRESS> to calculate\n\
the memory range.\n\
<TAG_BYTES> is a sequence of hex bytes that is interpreted by the\n\
architecture as one or more memory tags.\n\
Sets the tags of the memory range [ADDRESS, ADDRESS + LENGTH)\n\
to TAG_BYTES.\n\
\n\
If the number of tags is greater than or equal to the number of tag granules\n\
in the [ADDRESS, ADDRESS + LENGTH) range, only the tags up to the\n\
number of tag granules are updated.\n\
\n\
If the number of tags is less than the number of tag granules, then the\n\
command is a fill operation.  The TAG_BYTES are interpreted as a pattern\n\
that gets repeated until the number of tag granules in the memory range\n\
[ADDRESS, ADDRESS + LENGTH) is updated."),
	   &memory_tag_list);
  add_cmd ("check", class_vars, memory_tag_check_command,
	   _("Validate a pointer's logical tag against the allocation tag.\n\
Usage: memory-tag check <POINTER>\n\
<POINTER> is an expression that evaluates to a pointer\n\
Fetch the logical and allocation tags for POINTER and compare them\n\
for equality.  If the tags do not match, print additional information about\n\
the tag mismatch."),
	   &memory_tag_list);
}