aboutsummaryrefslogtreecommitdiff
path: root/gdb/ppc-linux-tdep.c
blob: 9c35fa44109318b9e502d87e017cd87753e7992e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
/* Target-dependent code for GDB, the GNU debugger.

   Copyright (C) 1986-2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "symfile.h"
#include "objfiles.h"
#include "regcache.h"
#include "value.h"
#include "osabi.h"
#include "regset.h"
#include "solib-svr4.h"
#include "solib-spu.h"
#include "solib.h"
#include "solist.h"
#include "ppc-tdep.h"
#include "ppc64-tdep.h"
#include "ppc-linux-tdep.h"
#include "arch/ppc-linux-common.h"
#include "arch/ppc-linux-tdesc.h"
#include "glibc-tdep.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "tramp-frame.h"
#include "observable.h"
#include "auxv.h"
#include "elf/common.h"
#include "elf/ppc64.h"
#include "arch-utils.h"
#include "spu-tdep.h"
#include "xml-syscall.h"
#include "linux-tdep.h"
#include "linux-record.h"
#include "record-full.h"
#include "infrun.h"

#include "stap-probe.h"
#include "ax.h"
#include "ax-gdb.h"
#include "cli/cli-utils.h"
#include "parser-defs.h"
#include "user-regs.h"
#include <ctype.h>
#include "elf-bfd.h"

#include "features/rs6000/powerpc-32l.c"
#include "features/rs6000/powerpc-altivec32l.c"
#include "features/rs6000/powerpc-cell32l.c"
#include "features/rs6000/powerpc-vsx32l.c"
#include "features/rs6000/powerpc-isa205-32l.c"
#include "features/rs6000/powerpc-isa205-altivec32l.c"
#include "features/rs6000/powerpc-isa205-vsx32l.c"
#include "features/rs6000/powerpc-isa205-ppr-dscr-vsx32l.c"
#include "features/rs6000/powerpc-isa207-vsx32l.c"
#include "features/rs6000/powerpc-isa207-htm-vsx32l.c"
#include "features/rs6000/powerpc-64l.c"
#include "features/rs6000/powerpc-altivec64l.c"
#include "features/rs6000/powerpc-cell64l.c"
#include "features/rs6000/powerpc-vsx64l.c"
#include "features/rs6000/powerpc-isa205-64l.c"
#include "features/rs6000/powerpc-isa205-altivec64l.c"
#include "features/rs6000/powerpc-isa205-vsx64l.c"
#include "features/rs6000/powerpc-isa205-ppr-dscr-vsx64l.c"
#include "features/rs6000/powerpc-isa207-vsx64l.c"
#include "features/rs6000/powerpc-isa207-htm-vsx64l.c"
#include "features/rs6000/powerpc-e500l.c"

/* Shared library operations for PowerPC-Linux.  */
static struct target_so_ops powerpc_so_ops;

/* The syscall's XML filename for PPC and PPC64.  */
#define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
#define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"

/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
   in much the same fashion as memory_remove_breakpoint in mem-break.c,
   but is careful not to write back the previous contents if the code
   in question has changed in between inserting the breakpoint and
   removing it.

   Here is the problem that we're trying to solve...

   Once upon a time, before introducing this function to remove
   breakpoints from the inferior, setting a breakpoint on a shared
   library function prior to running the program would not work
   properly.  In order to understand the problem, it is first
   necessary to understand a little bit about dynamic linking on
   this platform.

   A call to a shared library function is accomplished via a bl
   (branch-and-link) instruction whose branch target is an entry
   in the procedure linkage table (PLT).  The PLT in the object
   file is uninitialized.  To gdb, prior to running the program, the
   entries in the PLT are all zeros.

   Once the program starts running, the shared libraries are loaded
   and the procedure linkage table is initialized, but the entries in
   the table are not (necessarily) resolved.  Once a function is
   actually called, the code in the PLT is hit and the function is
   resolved.  In order to better illustrate this, an example is in
   order; the following example is from the gdb testsuite.
	    
	We start the program shmain.

	    [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
	    [...]

	We place two breakpoints, one on shr1 and the other on main.

	    (gdb) b shr1
	    Breakpoint 1 at 0x100409d4
	    (gdb) b main
	    Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.

	Examine the instruction (and the immediatly following instruction)
	upon which the breakpoint was placed.  Note that the PLT entry
	for shr1 contains zeros.

	    (gdb) x/2i 0x100409d4
	    0x100409d4 <shr1>:      .long 0x0
	    0x100409d8 <shr1+4>:    .long 0x0

	Now run 'til main.

	    (gdb) r
	    Starting program: gdb.base/shmain 
	    Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.

	    Breakpoint 2, main ()
		at gdb.base/shmain.c:44
	    44        g = 1;

	Examine the PLT again.  Note that the loading of the shared
	library has initialized the PLT to code which loads a constant
	(which I think is an index into the GOT) into r11 and then
	branchs a short distance to the code which actually does the
	resolving.

	    (gdb) x/2i 0x100409d4
	    0x100409d4 <shr1>:      li      r11,4
	    0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>
	    (gdb) c
	    Continuing.

	    Breakpoint 1, shr1 (x=1)
		at gdb.base/shr1.c:19
	    19        l = 1;

	Now we've hit the breakpoint at shr1.  (The breakpoint was
	reset from the PLT entry to the actual shr1 function after the
	shared library was loaded.) Note that the PLT entry has been
	resolved to contain a branch that takes us directly to shr1.
	(The real one, not the PLT entry.)

	    (gdb) x/2i 0x100409d4
	    0x100409d4 <shr1>:      b       0xffaf76c <shr1>
	    0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>

   The thing to note here is that the PLT entry for shr1 has been
   changed twice.

   Now the problem should be obvious.  GDB places a breakpoint (a
   trap instruction) on the zero value of the PLT entry for shr1.
   Later on, after the shared library had been loaded and the PLT
   initialized, GDB gets a signal indicating this fact and attempts
   (as it always does when it stops) to remove all the breakpoints.

   The breakpoint removal was causing the former contents (a zero
   word) to be written back to the now initialized PLT entry thus
   destroying a portion of the initialization that had occurred only a
   short time ago.  When execution continued, the zero word would be
   executed as an instruction an illegal instruction trap was
   generated instead.  (0 is not a legal instruction.)

   The fix for this problem was fairly straightforward.  The function
   memory_remove_breakpoint from mem-break.c was copied to this file,
   modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
   In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
   function.

   The differences between ppc_linux_memory_remove_breakpoint () and
   memory_remove_breakpoint () are minor.  All that the former does
   that the latter does not is check to make sure that the breakpoint
   location actually contains a breakpoint (trap instruction) prior
   to attempting to write back the old contents.  If it does contain
   a trap instruction, we allow the old contents to be written back.
   Otherwise, we silently do nothing.

   The big question is whether memory_remove_breakpoint () should be
   changed to have the same functionality.  The downside is that more
   traffic is generated for remote targets since we'll have an extra
   fetch of a memory word each time a breakpoint is removed.

   For the time being, we'll leave this self-modifying-code-friendly
   version in ppc-linux-tdep.c, but it ought to be migrated somewhere
   else in the event that some other platform has similar needs with
   regard to removing breakpoints in some potentially self modifying
   code.  */
static int
ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
				    struct bp_target_info *bp_tgt)
{
  CORE_ADDR addr = bp_tgt->reqstd_address;
  const unsigned char *bp;
  int val;
  int bplen;
  gdb_byte old_contents[BREAKPOINT_MAX];

  /* Determine appropriate breakpoint contents and size for this address.  */
  bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);

  /* Make sure we see the memory breakpoints.  */
  scoped_restore restore_memory
    = make_scoped_restore_show_memory_breakpoints (1);
  val = target_read_memory (addr, old_contents, bplen);

  /* If our breakpoint is no longer at the address, this means that the
     program modified the code on us, so it is wrong to put back the
     old value.  */
  if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
    val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);

  return val;
}

/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
   than the 32 bit SYSV R4 ABI structure return convention - all
   structures, no matter their size, are put in memory.  Vectors,
   which were added later, do get returned in a register though.  */

static enum return_value_convention
ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
			struct type *valtype, struct regcache *regcache,
			gdb_byte *readbuf, const gdb_byte *writebuf)
{  
  if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
       || TYPE_CODE (valtype) == TYPE_CODE_UNION)
      && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
	   && TYPE_VECTOR (valtype)))
    return RETURN_VALUE_STRUCT_CONVENTION;
  else
    return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
				      readbuf, writebuf);
}

/* PLT stub in an executable.  */
static const struct ppc_insn_pattern powerpc32_plt_stub[] =
  {
    { 0xffff0000, 0x3d600000, 0 },	/* lis   r11, xxxx	 */
    { 0xffff0000, 0x816b0000, 0 },	/* lwz   r11, xxxx(r11)  */
    { 0xffffffff, 0x7d6903a6, 0 },	/* mtctr r11		 */
    { 0xffffffff, 0x4e800420, 0 },	/* bctr			 */
    {          0,          0, 0 }
  };

/* PLT stubs in a shared library or PIE.
   The first variant is used when the PLT entry is within +/-32k of
   the GOT pointer (r30).  */
static const struct ppc_insn_pattern powerpc32_plt_stub_so_1[] =
  {
    { 0xffff0000, 0x817e0000, 0 },	/* lwz   r11, xxxx(r30)  */
    { 0xffffffff, 0x7d6903a6, 0 },	/* mtctr r11		 */
    { 0xffffffff, 0x4e800420, 0 },	/* bctr			 */
    {          0,          0, 0 }
  };

/* The second variant is used when the PLT entry is more than +/-32k
   from the GOT pointer (r30).  */
static const struct ppc_insn_pattern powerpc32_plt_stub_so_2[] =
  {
    { 0xffff0000, 0x3d7e0000, 0 },	/* addis r11, r30, xxxx  */
    { 0xffff0000, 0x816b0000, 0 },	/* lwz   r11, xxxx(r11)  */
    { 0xffffffff, 0x7d6903a6, 0 },	/* mtctr r11		 */
    { 0xffffffff, 0x4e800420, 0 },	/* bctr			 */
    {          0,          0, 0 }
  };

/* The max number of insns we check using ppc_insns_match_pattern.  */
#define POWERPC32_PLT_CHECK_LEN (ARRAY_SIZE (powerpc32_plt_stub) - 1)

/* Check if PC is in PLT stub.  For non-secure PLT, stub is in .plt
   section.  For secure PLT, stub is in .text and we need to check
   instruction patterns.  */

static int
powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
{
  struct bound_minimal_symbol sym;

  /* Check whether PC is in the dynamic linker.  This also checks
     whether it is in the .plt section, used by non-PIC executables.  */
  if (svr4_in_dynsym_resolve_code (pc))
    return 1;

  /* Check if we are in the resolver.  */
  sym = lookup_minimal_symbol_by_pc (pc);
  if (sym.minsym != NULL
      && (strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
	  || strcmp (MSYMBOL_LINKAGE_NAME (sym.minsym),
		     "__glink_PLTresolve") == 0))
    return 1;

  return 0;
}

/* Follow PLT stub to actual routine.

   When the execution direction is EXEC_REVERSE, scan backward to
   check whether we are in the middle of a PLT stub.  Currently,
   we only look-behind at most 4 instructions (the max length of a PLT
   stub sequence.  */

static CORE_ADDR
ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  unsigned int insnbuf[POWERPC32_PLT_CHECK_LEN];
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR target = 0;
  int scan_limit, i;

  scan_limit = 1;
  /* When reverse-debugging, scan backward to check whether we are
     in the middle of trampoline code.  */
  if (execution_direction == EXEC_REVERSE)
    scan_limit = 4;	/* At most 4 instructions.  */

  for (i = 0; i < scan_limit; i++)
    {
      if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
	{
	  /* Calculate PLT entry address from
	     lis   r11, xxxx
	     lwz   r11, xxxx(r11).  */
	  target = ((ppc_insn_d_field (insnbuf[0]) << 16)
		    + ppc_insn_d_field (insnbuf[1]));
	}
      else if (i < ARRAY_SIZE (powerpc32_plt_stub_so_1) - 1
	       && ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_1,
					   insnbuf))
	{
	  /* Calculate PLT entry address from
	     lwz   r11, xxxx(r30).  */
	  target = (ppc_insn_d_field (insnbuf[0])
		    + get_frame_register_unsigned (frame,
						   tdep->ppc_gp0_regnum + 30));
	}
      else if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so_2,
					insnbuf))
	{
	  /* Calculate PLT entry address from
	     addis r11, r30, xxxx
	     lwz   r11, xxxx(r11).  */
	  target = ((ppc_insn_d_field (insnbuf[0]) << 16)
		    + ppc_insn_d_field (insnbuf[1])
		    + get_frame_register_unsigned (frame,
						   tdep->ppc_gp0_regnum + 30));
	}
      else
	{
	  /* Scan backward one more instruction if it doesn't match.  */
	  pc -= 4;
	  continue;
	}

      target = read_memory_unsigned_integer (target, 4, byte_order);
      return target;
    }

  return 0;
}

/* Wrappers to handle Linux-only registers.  */

static void
ppc_linux_supply_gregset (const struct regset *regset,
			  struct regcache *regcache,
			  int regnum, const void *gregs, size_t len)
{
  const struct ppc_reg_offsets *offsets
    = (const struct ppc_reg_offsets *) regset->regmap;

  ppc_supply_gregset (regset, regcache, regnum, gregs, len);

  if (ppc_linux_trap_reg_p (regcache->arch ()))
    {
      /* "orig_r3" is stored 2 slots after "pc".  */
      if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
	ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, (const gdb_byte *) gregs,
			offsets->pc_offset + 2 * offsets->gpr_size,
			offsets->gpr_size);

      /* "trap" is stored 8 slots after "pc".  */
      if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
	ppc_supply_reg (regcache, PPC_TRAP_REGNUM, (const gdb_byte *) gregs,
			offsets->pc_offset + 8 * offsets->gpr_size,
			offsets->gpr_size);
    }
}

static void
ppc_linux_collect_gregset (const struct regset *regset,
			   const struct regcache *regcache,
			   int regnum, void *gregs, size_t len)
{
  const struct ppc_reg_offsets *offsets
    = (const struct ppc_reg_offsets *) regset->regmap;

  /* Clear areas in the linux gregset not written elsewhere.  */
  if (regnum == -1)
    memset (gregs, 0, len);

  ppc_collect_gregset (regset, regcache, regnum, gregs, len);

  if (ppc_linux_trap_reg_p (regcache->arch ()))
    {
      /* "orig_r3" is stored 2 slots after "pc".  */
      if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
	ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, (gdb_byte *) gregs,
			 offsets->pc_offset + 2 * offsets->gpr_size,
			 offsets->gpr_size);

      /* "trap" is stored 8 slots after "pc".  */
      if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
	ppc_collect_reg (regcache, PPC_TRAP_REGNUM, (gdb_byte *) gregs,
			 offsets->pc_offset + 8 * offsets->gpr_size,
			 offsets->gpr_size);
    }
}

/* Regset descriptions.  */
static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
  {
    /* General-purpose registers.  */
    /* .r0_offset = */ 0,
    /* .gpr_size = */ 4,
    /* .xr_size = */ 4,
    /* .pc_offset = */ 128,
    /* .ps_offset = */ 132,
    /* .cr_offset = */ 152,
    /* .lr_offset = */ 144,
    /* .ctr_offset = */ 140,
    /* .xer_offset = */ 148,
    /* .mq_offset = */ 156,

    /* Floating-point registers.  */
    /* .f0_offset = */ 0,
    /* .fpscr_offset = */ 256,
    /* .fpscr_size = */ 8
  };

static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
  {
    /* General-purpose registers.  */
    /* .r0_offset = */ 0,
    /* .gpr_size = */ 8,
    /* .xr_size = */ 8,
    /* .pc_offset = */ 256,
    /* .ps_offset = */ 264,
    /* .cr_offset = */ 304,
    /* .lr_offset = */ 288,
    /* .ctr_offset = */ 280,
    /* .xer_offset = */ 296,
    /* .mq_offset = */ 312,

    /* Floating-point registers.  */
    /* .f0_offset = */ 0,
    /* .fpscr_offset = */ 256,
    /* .fpscr_size = */ 8
  };

static const struct regset ppc32_linux_gregset = {
  &ppc32_linux_reg_offsets,
  ppc_linux_supply_gregset,
  ppc_linux_collect_gregset
};

static const struct regset ppc64_linux_gregset = {
  &ppc64_linux_reg_offsets,
  ppc_linux_supply_gregset,
  ppc_linux_collect_gregset
};

static const struct regset ppc32_linux_fpregset = {
  &ppc32_linux_reg_offsets,
  ppc_supply_fpregset,
  ppc_collect_fpregset
};

static const struct regcache_map_entry ppc32_le_linux_vrregmap[] =
  {
      { 32, PPC_VR0_REGNUM, 16 },
      { 1, PPC_VSCR_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 1, PPC_VRSAVE_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 0 }
  };

static const struct regcache_map_entry ppc32_be_linux_vrregmap[] =
  {
      { 32, PPC_VR0_REGNUM, 16 },
      { 1, REGCACHE_MAP_SKIP, 12},
      { 1, PPC_VSCR_REGNUM, 4 },
      { 1, PPC_VRSAVE_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 0 }
  };

static const struct regset ppc32_le_linux_vrregset = {
  ppc32_le_linux_vrregmap,
  regcache_supply_regset,
  regcache_collect_regset
};

static const struct regset ppc32_be_linux_vrregset = {
  ppc32_be_linux_vrregmap,
  regcache_supply_regset,
  regcache_collect_regset
};

static const struct regcache_map_entry ppc32_linux_vsxregmap[] =
  {
      { 32, PPC_VSR0_UPPER_REGNUM, 8 },
      { 0 }
  };

static const struct regset ppc32_linux_vsxregset = {
  ppc32_linux_vsxregmap,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Program Priorty Register regmap.  */

static const struct regcache_map_entry ppc32_regmap_ppr[] =
  {
      { 1, PPC_PPR_REGNUM, 8 },
      { 0 }
  };

/* Program Priorty Register regset.  */

const struct regset ppc32_linux_pprregset = {
  ppc32_regmap_ppr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Data Stream Control Register regmap.  */

static const struct regcache_map_entry ppc32_regmap_dscr[] =
  {
      { 1, PPC_DSCR_REGNUM, 8 },
      { 0 }
  };

/* Data Stream Control Register regset.  */

const struct regset ppc32_linux_dscrregset = {
  ppc32_regmap_dscr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Target Address Register regmap.  */

static const struct regcache_map_entry ppc32_regmap_tar[] =
  {
      { 1, PPC_TAR_REGNUM, 8 },
      { 0 }
  };

/* Target Address Register regset.  */

const struct regset ppc32_linux_tarregset = {
  ppc32_regmap_tar,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Event-Based Branching regmap.  */

static const struct regcache_map_entry ppc32_regmap_ebb[] =
  {
      { 1, PPC_EBBRR_REGNUM, 8 },
      { 1, PPC_EBBHR_REGNUM, 8 },
      { 1, PPC_BESCR_REGNUM, 8 },
      { 0 }
  };

/* Event-Based Branching regset.  */

const struct regset ppc32_linux_ebbregset = {
  ppc32_regmap_ebb,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Performance Monitoring Unit regmap.  */

static const struct regcache_map_entry ppc32_regmap_pmu[] =
  {
      { 1, PPC_SIAR_REGNUM, 8 },
      { 1, PPC_SDAR_REGNUM, 8 },
      { 1, PPC_SIER_REGNUM, 8 },
      { 1, PPC_MMCR2_REGNUM, 8 },
      { 1, PPC_MMCR0_REGNUM, 8 },
      { 0 }
  };

/* Performance Monitoring Unit regset.  */

const struct regset ppc32_linux_pmuregset = {
  ppc32_regmap_pmu,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory special-purpose register regmap.  */

static const struct regcache_map_entry ppc32_regmap_tm_spr[] =
  {
      { 1, PPC_TFHAR_REGNUM, 8 },
      { 1, PPC_TEXASR_REGNUM, 8 },
      { 1, PPC_TFIAR_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory special-purpose register regset.  */

const struct regset ppc32_linux_tm_sprregset = {
  ppc32_regmap_tm_spr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Regmaps for the Hardware Transactional Memory checkpointed
   general-purpose regsets for 32-bit, 64-bit big-endian, and 64-bit
   little endian targets.  The ptrace and core file buffers for 64-bit
   targets use 8-byte fields for the 4-byte registers, and the
   position of the register in the fields depends on the endianess.
   The 32-bit regmap is the same for both endian types because the
   fields are all 4-byte long.

   The layout of checkpointed GPR regset is the same as a regular
   struct pt_regs, but we skip all registers that are not actually
   checkpointed by the processor (e.g. msr, nip), except when
   generating a core file.  The 64-bit regset is 48 * 8 bytes long.
   In some 64-bit kernels, the regset for a 32-bit inferior has the
   same length, but all the registers are squeezed in the first half
   (48 * 4 bytes).  The pt_regs struct calls the regular cr ccr, but
   we use ccr for "checkpointed condition register".  Note that CR
   (condition register) field 0 is not checkpointed, but the kernel
   returns all 4 bytes.  The skipped registers should not be touched
   when writing the regset to the inferior (with
   PTRACE_SETREGSET).  */

static const struct regcache_map_entry ppc32_regmap_cgpr[] =
  {
      { 32, PPC_CR0_REGNUM, 4 },
      { 3, REGCACHE_MAP_SKIP, 4 }, /* nip, msr, orig_gpr3.  */
      { 1, PPC_CCTR_REGNUM, 4 },
      { 1, PPC_CLR_REGNUM, 4 },
      { 1, PPC_CXER_REGNUM, 4 },
      { 1, PPC_CCR_REGNUM, 4 },
      { 9, REGCACHE_MAP_SKIP, 4 }, /* All the rest.  */
      { 0 }
  };

static const struct regcache_map_entry ppc64_le_regmap_cgpr[] =
  {
      { 32, PPC_CR0_REGNUM, 8 },
      { 3, REGCACHE_MAP_SKIP, 8 },
      { 1, PPC_CCTR_REGNUM, 8 },
      { 1, PPC_CLR_REGNUM, 8 },
      { 1, PPC_CXER_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 4 }, /* CXER padding.  */
      { 1, PPC_CCR_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding.  */
      { 9, REGCACHE_MAP_SKIP, 8},
      { 0 }
  };

static const struct regcache_map_entry ppc64_be_regmap_cgpr[] =
  {
      { 32, PPC_CR0_REGNUM, 8 },
      { 3, REGCACHE_MAP_SKIP, 8 },
      { 1, PPC_CCTR_REGNUM, 8 },
      { 1, PPC_CLR_REGNUM, 8 },
      { 1, REGCACHE_MAP_SKIP, 4}, /* CXER padding.  */
      { 1, PPC_CXER_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 4}, /* CCR padding.  */
      { 1, PPC_CCR_REGNUM, 4 },
      { 9, REGCACHE_MAP_SKIP, 8},
      { 0 }
  };

/* Regsets for the Hardware Transactional Memory checkpointed
   general-purpose registers for 32-bit, 64-bit big-endian, and 64-bit
   little endian targets.

   Some 64-bit kernels generate a checkpointed gpr note section with
   48*8 bytes for a 32-bit thread, of which only 48*4 are actually
   used, so we set the variable size flag in the corresponding regset
   to accept this case.  */

static const struct regset ppc32_linux_cgprregset = {
  ppc32_regmap_cgpr,
  regcache_supply_regset,
  regcache_collect_regset,
  REGSET_VARIABLE_SIZE
};

static const struct regset ppc64_be_linux_cgprregset = {
  ppc64_be_regmap_cgpr,
  regcache_supply_regset,
  regcache_collect_regset
};

static const struct regset ppc64_le_linux_cgprregset = {
  ppc64_le_regmap_cgpr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory checkpointed floating-point regmap.  */

static const struct regcache_map_entry ppc32_regmap_cfpr[] =
  {
      { 32, PPC_CF0_REGNUM, 8 },
      { 1, PPC_CFPSCR_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory checkpointed floating-point regset.  */

const struct regset ppc32_linux_cfprregset = {
  ppc32_regmap_cfpr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Regmaps for the Hardware Transactional Memory checkpointed vector
   regsets, for big and little endian targets.  The position of the
   4-byte VSCR in its 16-byte field depends on the endianess.  */

static const struct regcache_map_entry ppc32_le_regmap_cvmx[] =
  {
      { 32, PPC_CVR0_REGNUM, 16 },
      { 1, PPC_CVSCR_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 1, PPC_CVRSAVE_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 0 }
  };

static const struct regcache_map_entry ppc32_be_regmap_cvmx[] =
  {
      { 32, PPC_CVR0_REGNUM, 16 },
      { 1, REGCACHE_MAP_SKIP, 12 },
      { 1, PPC_CVSCR_REGNUM, 4 },
      { 1, PPC_CVRSAVE_REGNUM, 4 },
      { 1, REGCACHE_MAP_SKIP, 12},
      { 0 }
  };

/* Hardware Transactional Memory checkpointed vector regsets, for little
   and big endian targets.  */

static const struct regset ppc32_le_linux_cvmxregset = {
  ppc32_le_regmap_cvmx,
  regcache_supply_regset,
  regcache_collect_regset
};

static const struct regset ppc32_be_linux_cvmxregset = {
  ppc32_be_regmap_cvmx,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory checkpointed vector-scalar regmap.  */

static const struct regcache_map_entry ppc32_regmap_cvsx[] =
  {
      { 32, PPC_CVSR0_UPPER_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory checkpointed vector-scalar regset.  */

const struct regset ppc32_linux_cvsxregset = {
  ppc32_regmap_cvsx,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory checkpointed Program Priority Register
   regmap.  */

static const struct regcache_map_entry ppc32_regmap_cppr[] =
  {
      { 1, PPC_CPPR_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory checkpointed Program Priority Register
   regset.  */

const struct regset ppc32_linux_cpprregset = {
  ppc32_regmap_cppr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory checkpointed Data Stream Control
   Register regmap.  */

static const struct regcache_map_entry ppc32_regmap_cdscr[] =
  {
      { 1, PPC_CDSCR_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory checkpointed Data Stream Control
   Register regset.  */

const struct regset ppc32_linux_cdscrregset = {
  ppc32_regmap_cdscr,
  regcache_supply_regset,
  regcache_collect_regset
};

/* Hardware Transactional Memory checkpointed Target Address Register
   regmap.  */

static const struct regcache_map_entry ppc32_regmap_ctar[] =
  {
      { 1, PPC_CTAR_REGNUM, 8 },
      { 0 }
  };

/* Hardware Transactional Memory checkpointed Target Address Register
   regset.  */

const struct regset ppc32_linux_ctarregset = {
  ppc32_regmap_ctar,
  regcache_supply_regset,
  regcache_collect_regset
};

const struct regset *
ppc_linux_gregset (int wordsize)
{
  return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
}

const struct regset *
ppc_linux_fpregset (void)
{
  return &ppc32_linux_fpregset;
}

const struct regset *
ppc_linux_vrregset (struct gdbarch *gdbarch)
{
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    return &ppc32_be_linux_vrregset;
  else
    return &ppc32_le_linux_vrregset;
}

const struct regset *
ppc_linux_vsxregset (void)
{
  return &ppc32_linux_vsxregset;
}

const struct regset *
ppc_linux_cgprregset (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (tdep->wordsize == 4)
    {
      return &ppc32_linux_cgprregset;
    }
  else
    {
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	return &ppc64_be_linux_cgprregset;
      else
	return &ppc64_le_linux_cgprregset;
    }
}

const struct regset *
ppc_linux_cvmxregset (struct gdbarch *gdbarch)
{
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    return &ppc32_be_linux_cvmxregset;
  else
    return &ppc32_le_linux_cvmxregset;
}

/* Collect function used to generate the core note for the
   checkpointed GPR regset.  Here, we don't want to skip the
   "checkpointed" NIP and MSR, so that the note section we generate is
   similar to the one generated by the kernel.  To avoid having to
   define additional registers in GDB which are not actually
   checkpointed in the architecture, we copy TFHAR to the checkpointed
   NIP slot, which is what the kernel does, and copy the regular MSR
   to the checkpointed MSR slot, which will have a similar value in
   most cases.  */

static void
ppc_linux_collect_core_cpgrregset (const struct regset *regset,
				   const struct regcache *regcache,
				   int regnum, void *buf, size_t len)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);

  /* We collect the checkpointed GPRs already defined in the regular
     regmap, then overlay TFHAR/MSR on the checkpointed NIP/MSR
     slots.  */
  cgprregset->collect_regset (cgprregset, regcache, regnum, buf, len);

  /* Check that we are collecting all the registers, which should be
     the case when generating a core file.  */
  if (regnum != -1)
    return;

  /* PT_NIP and PT_MSR are 32 and 33 for powerpc.  Don't redefine
     these symbols since this file can run on clients in other
     architectures where they can already be defined to other
     values.  */
  int pt_offset = 32;

  /* Check that our buffer is long enough to hold two slots at
     pt_offset * wordsize, one for NIP and one for MSR.  */
  gdb_assert ((pt_offset + 2) * tdep->wordsize <= len);

  /* TFHAR is 8 bytes wide, but the NIP slot for a 32-bit thread is
     4-bytes long.  We use raw_collect_integer which handles
     differences in the sizes for the source and destination buffers
     for both endian modes.  */
  (regcache->raw_collect_integer
   (PPC_TFHAR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize,
    tdep->wordsize, false));

  pt_offset = 33;

  (regcache->raw_collect_integer
   (PPC_MSR_REGNUM, ((gdb_byte *) buf) + pt_offset * tdep->wordsize,
    tdep->wordsize, false));
}

/* Iterate over supported core file register note sections. */

static void
ppc_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
					iterate_over_regset_sections_cb *cb,
					void *cb_data,
					const struct regcache *regcache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int have_altivec = tdep->ppc_vr0_regnum != -1;
  int have_vsx = tdep->ppc_vsr0_upper_regnum != -1;
  int have_ppr = tdep->ppc_ppr_regnum != -1;
  int have_dscr = tdep->ppc_dscr_regnum != -1;
  int have_tar = tdep->ppc_tar_regnum != -1;

  if (tdep->wordsize == 4)
    cb (".reg", 48 * 4, 48 * 4, &ppc32_linux_gregset, NULL, cb_data);
  else
    cb (".reg", 48 * 8, 48 * 8, &ppc64_linux_gregset, NULL, cb_data);

  cb (".reg2", 264, 264, &ppc32_linux_fpregset, NULL, cb_data);

  if (have_altivec)
    {
      const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
      cb (".reg-ppc-vmx", PPC_LINUX_SIZEOF_VRREGSET, PPC_LINUX_SIZEOF_VRREGSET,
	  vrregset, "ppc Altivec", cb_data);
    }

  if (have_vsx)
    cb (".reg-ppc-vsx", PPC_LINUX_SIZEOF_VSXREGSET, PPC_LINUX_SIZEOF_VSXREGSET,
	&ppc32_linux_vsxregset, "POWER7 VSX", cb_data);

  if (have_ppr)
    cb (".reg-ppc-ppr", PPC_LINUX_SIZEOF_PPRREGSET,
	PPC_LINUX_SIZEOF_PPRREGSET,
	&ppc32_linux_pprregset, "Priority Program Register", cb_data);

  if (have_dscr)
    cb (".reg-ppc-dscr", PPC_LINUX_SIZEOF_DSCRREGSET,
	PPC_LINUX_SIZEOF_DSCRREGSET,
	&ppc32_linux_dscrregset, "Data Stream Control Register",
	cb_data);

  if (have_tar)
    cb (".reg-ppc-tar", PPC_LINUX_SIZEOF_TARREGSET,
	PPC_LINUX_SIZEOF_TARREGSET,
	&ppc32_linux_tarregset, "Target Address Register", cb_data);

  /* EBB registers are unavailable when ptrace returns ENODATA.  Check
     availability when generating a core file (regcache != NULL).  */
  if (tdep->have_ebb)
    if (regcache == NULL
	|| REG_VALID == regcache->get_register_status (PPC_BESCR_REGNUM))
      cb (".reg-ppc-ebb", PPC_LINUX_SIZEOF_EBBREGSET,
	  PPC_LINUX_SIZEOF_EBBREGSET,
	  &ppc32_linux_ebbregset, "Event-based Branching Registers",
	  cb_data);

  if (tdep->ppc_mmcr0_regnum != -1)
    cb (".reg-ppc-pmu", PPC_LINUX_SIZEOF_PMUREGSET,
	PPC_LINUX_SIZEOF_PMUREGSET,
	&ppc32_linux_pmuregset, "Performance Monitor Registers",
	cb_data);

  if (tdep->have_htm_spr)
    cb (".reg-ppc-tm-spr", PPC_LINUX_SIZEOF_TM_SPRREGSET,
	PPC_LINUX_SIZEOF_TM_SPRREGSET,
	&ppc32_linux_tm_sprregset,
	"Hardware Transactional Memory Special Purpose Registers",
	cb_data);

  /* Checkpointed registers can be unavailable, don't call back if
     we are generating a core file.  */

  if (tdep->have_htm_core)
    {
      /* Only generate the checkpointed GPR core note if we also have
	 access to the HTM SPRs, because we need TFHAR to fill the
	 "checkpointed" NIP slot.  We can read a core file without it
	 since GDB is not aware of this NIP as a visible register.  */
      if (regcache == NULL ||
	  (REG_VALID == regcache->get_register_status (PPC_CR0_REGNUM)
	   && tdep->have_htm_spr))
	{
	  int cgpr_size = (tdep->wordsize == 4?
			   PPC32_LINUX_SIZEOF_CGPRREGSET
			   : PPC64_LINUX_SIZEOF_CGPRREGSET);

	  const struct regset *cgprregset =
	    ppc_linux_cgprregset (gdbarch);

	  if (regcache != NULL)
	    {
	      struct regset core_cgprregset = *cgprregset;

	      core_cgprregset.collect_regset
		= ppc_linux_collect_core_cpgrregset;

	      cb (".reg-ppc-tm-cgpr",
		  cgpr_size, cgpr_size,
		  &core_cgprregset,
		  "Checkpointed General Purpose Registers", cb_data);
	    }
	  else
	    {
	      cb (".reg-ppc-tm-cgpr",
		  cgpr_size, cgpr_size,
		  cgprregset,
		  "Checkpointed General Purpose Registers", cb_data);
	    }
	}
    }

  if (tdep->have_htm_fpu)
    {
      if (regcache == NULL ||
	  REG_VALID == regcache->get_register_status (PPC_CF0_REGNUM))
	cb (".reg-ppc-tm-cfpr", PPC_LINUX_SIZEOF_CFPRREGSET,
	    PPC_LINUX_SIZEOF_CFPRREGSET,
	    &ppc32_linux_cfprregset,
	    "Checkpointed Floating Point Registers", cb_data);
    }

  if (tdep->have_htm_altivec)
    {
      if (regcache == NULL ||
	  REG_VALID == regcache->get_register_status (PPC_CVR0_REGNUM))
	{
	  const struct regset *cvmxregset =
	    ppc_linux_cvmxregset (gdbarch);

	  cb (".reg-ppc-tm-cvmx", PPC_LINUX_SIZEOF_CVMXREGSET,
	      PPC_LINUX_SIZEOF_CVMXREGSET,
	      cvmxregset,
	      "Checkpointed Altivec (VMX) Registers", cb_data);
	}
    }

  if (tdep->have_htm_vsx)
    {
      if (regcache == NULL ||
	  (REG_VALID
	   == regcache->get_register_status (PPC_CVSR0_UPPER_REGNUM)))
	cb (".reg-ppc-tm-cvsx", PPC_LINUX_SIZEOF_CVSXREGSET,
	    PPC_LINUX_SIZEOF_CVSXREGSET,
	    &ppc32_linux_cvsxregset,
	    "Checkpointed VSX Registers", cb_data);
    }

  if (tdep->ppc_cppr_regnum != -1)
    {
      if (regcache == NULL ||
	  REG_VALID == regcache->get_register_status (PPC_CPPR_REGNUM))
	cb (".reg-ppc-tm-cppr", PPC_LINUX_SIZEOF_CPPRREGSET,
	    PPC_LINUX_SIZEOF_CPPRREGSET,
	    &ppc32_linux_cpprregset,
	    "Checkpointed Priority Program Register", cb_data);
    }

  if (tdep->ppc_cdscr_regnum != -1)
    {
      if (regcache == NULL ||
	  REG_VALID == regcache->get_register_status (PPC_CDSCR_REGNUM))
	cb (".reg-ppc-tm-cdscr", PPC_LINUX_SIZEOF_CDSCRREGSET,
	    PPC_LINUX_SIZEOF_CDSCRREGSET,
	    &ppc32_linux_cdscrregset,
	    "Checkpointed Data Stream Control Register", cb_data);
    }

  if (tdep->ppc_ctar_regnum)
    {
      if ( regcache == NULL ||
	   REG_VALID == regcache->get_register_status (PPC_CTAR_REGNUM))
	cb (".reg-ppc-tm-ctar", PPC_LINUX_SIZEOF_CTARREGSET,
	    PPC_LINUX_SIZEOF_CTARREGSET,
	    &ppc32_linux_ctarregset,
	    "Checkpointed Target Address Register", cb_data);
    }
}

static void
ppc_linux_sigtramp_cache (struct frame_info *this_frame,
			  struct trad_frame_cache *this_cache,
			  CORE_ADDR func, LONGEST offset,
			  int bias)
{
  CORE_ADDR base;
  CORE_ADDR regs;
  CORE_ADDR gpregs;
  CORE_ADDR fpregs;
  int i;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  base = get_frame_register_unsigned (this_frame,
				      gdbarch_sp_regnum (gdbarch));
  if (bias > 0 && get_frame_pc (this_frame) != func)
    /* See below, some signal trampolines increment the stack as their
       first instruction, need to compensate for that.  */
    base -= bias;

  /* Find the address of the register buffer pointer.  */
  regs = base + offset;
  /* Use that to find the address of the corresponding register
     buffers.  */
  gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
  fpregs = gpregs + 48 * tdep->wordsize;

  /* General purpose.  */
  for (i = 0; i < 32; i++)
    {
      int regnum = i + tdep->ppc_gp0_regnum;
      trad_frame_set_reg_addr (this_cache,
			       regnum, gpregs + i * tdep->wordsize);
    }
  trad_frame_set_reg_addr (this_cache,
			   gdbarch_pc_regnum (gdbarch),
			   gpregs + 32 * tdep->wordsize);
  trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
			   gpregs + 35 * tdep->wordsize);
  trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
			   gpregs + 36 * tdep->wordsize);
  trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
			   gpregs + 37 * tdep->wordsize);
  trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
			   gpregs + 38 * tdep->wordsize);

  if (ppc_linux_trap_reg_p (gdbarch))
    {
      trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
			       gpregs + 34 * tdep->wordsize);
      trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
			       gpregs + 40 * tdep->wordsize);
    }

  if (ppc_floating_point_unit_p (gdbarch))
    {
      /* Floating point registers.  */
      for (i = 0; i < 32; i++)
	{
	  int regnum = i + gdbarch_fp0_regnum (gdbarch);
	  trad_frame_set_reg_addr (this_cache, regnum,
				   fpregs + i * tdep->wordsize);
	}
      trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
                         fpregs + 32 * tdep->wordsize);
    }
  trad_frame_set_id (this_cache, frame_id_build (base, func));
}

static void
ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
				  struct frame_info *this_frame,
				  struct trad_frame_cache *this_cache,
				  CORE_ADDR func)
{
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
			    0xd0 /* Offset to ucontext_t.  */
			    + 0x30 /* Offset to .reg.  */,
			    0);
}

static void
ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
				  struct frame_info *this_frame,
				  struct trad_frame_cache *this_cache,
				  CORE_ADDR func)
{
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
			    0x80 /* Offset to ucontext_t.  */
			    + 0xe0 /* Offset to .reg.  */,
			    128);
}

static void
ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
				   struct frame_info *this_frame,
				   struct trad_frame_cache *this_cache,
				   CORE_ADDR func)
{
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
			    0x40 /* Offset to ucontext_t.  */
			    + 0x1c /* Offset to .reg.  */,
			    0);
}

static void
ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
				   struct frame_info *this_frame,
				   struct trad_frame_cache *this_cache,
				   CORE_ADDR func)
{
  ppc_linux_sigtramp_cache (this_frame, this_cache, func,
			    0x80 /* Offset to struct sigcontext.  */
			    + 0x38 /* Offset to .reg.  */,
			    128);
}

static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
  SIGTRAMP_FRAME,
  4,
  { 
    { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */
    { 0x44000002, ULONGEST_MAX }, /* sc */
    { TRAMP_SENTINEL_INSN },
  },
  ppc32_linux_sigaction_cache_init
};
static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
  SIGTRAMP_FRAME,
  4,
  {
    { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */
    { 0x380000ac, ULONGEST_MAX }, /* li r0, 172 */
    { 0x44000002, ULONGEST_MAX }, /* sc */
    { TRAMP_SENTINEL_INSN },
  },
  ppc64_linux_sigaction_cache_init
};
static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
  SIGTRAMP_FRAME,
  4,
  { 
    { 0x38000077, ULONGEST_MAX }, /* li r0,119 */
    { 0x44000002, ULONGEST_MAX }, /* sc */
    { TRAMP_SENTINEL_INSN },
  },
  ppc32_linux_sighandler_cache_init
};
static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
  SIGTRAMP_FRAME,
  4,
  { 
    { 0x38210080, ULONGEST_MAX }, /* addi r1,r1,128 */
    { 0x38000077, ULONGEST_MAX }, /* li r0,119 */
    { 0x44000002, ULONGEST_MAX }, /* sc */
    { TRAMP_SENTINEL_INSN },
  },
  ppc64_linux_sighandler_cache_init
};

/* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable.  */
int
ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
{
  /* If we do not have a target description with registers, then
     the special registers will not be included in the register set.  */
  if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return 0;

  /* If we do, then it is safe to check the size.  */
  return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
         && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
}

/* Return the current system call's number present in the
   r0 register.  When the function fails, it returns -1.  */
static LONGEST
ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
			      thread_info *thread)
{
  struct regcache *regcache = get_thread_regcache (thread);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* Make sure we're in a 32- or 64-bit machine */
  gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);

  /* The content of a register */
  gdb::byte_vector buf (tdep->wordsize);

  /* Getting the system call number from the register.
     When dealing with PowerPC architecture, this information
     is stored at 0th register.  */
  regcache->cooked_read (tdep->ppc_gp0_regnum, buf.data ());

  return extract_signed_integer (buf.data (), tdep->wordsize, byte_order);
}

/* PPC process record-replay */

static struct linux_record_tdep ppc_linux_record_tdep;
static struct linux_record_tdep ppc64_linux_record_tdep;

/* ppc_canonicalize_syscall maps from the native PowerPC Linux set of
   syscall ids into a canonical set of syscall ids used by process
   record.  (See arch/powerpc/include/uapi/asm/unistd.h in kernel tree.)
   Return -1 if this system call is not supported by process record.
   Otherwise, return the syscall number for preocess reocrd of given
   SYSCALL.  */

static enum gdb_syscall
ppc_canonicalize_syscall (int syscall)
{
  int result = -1;

  if (syscall <= 165)
    result = syscall;
  else if (syscall >= 167 && syscall <= 190)	/* Skip query_module 166 */
    result = syscall + 1;
  else if (syscall >= 192 && syscall <= 197)	/* mmap2 */
    result = syscall;
  else if (syscall == 208)			/* tkill */
    result = gdb_sys_tkill;
  else if (syscall >= 207 && syscall <= 220)	/* gettid */
    result = syscall + 224 - 207;
  else if (syscall >= 234 && syscall <= 239)	/* exit_group */
    result = syscall + 252 - 234;
  else if (syscall >= 240 && syscall <= 248)	/* timer_create */
    result = syscall += 259 - 240;
  else if (syscall >= 250 && syscall <= 251)	/* tgkill */
    result = syscall + 270 - 250;
  else if (syscall == 336)
    result = gdb_sys_recv;
  else if (syscall == 337)
    result = gdb_sys_recvfrom;
  else if (syscall == 342)
    result = gdb_sys_recvmsg;

  return (enum gdb_syscall) result;
}

/* Record registers which might be clobbered during system call.
   Return 0 if successful.  */

static int
ppc_linux_syscall_record (struct regcache *regcache)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  ULONGEST scnum;
  enum gdb_syscall syscall_gdb;
  int ret;

  regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum, &scnum);
  syscall_gdb = ppc_canonicalize_syscall (scnum);

  if (syscall_gdb < 0)
    {
      printf_unfiltered (_("Process record and replay target doesn't "
			   "support syscall number %d\n"), (int) scnum);
      return 0;
    }

  if (syscall_gdb == gdb_sys_sigreturn
      || syscall_gdb == gdb_sys_rt_sigreturn)
   {
     int i, j;
     int regsets[] = { tdep->ppc_gp0_regnum,
		       tdep->ppc_fp0_regnum,
		       tdep->ppc_vr0_regnum,
		       tdep->ppc_vsr0_upper_regnum };

     for (j = 0; j < 4; j++)
       {
	 if (regsets[j] == -1)
	   continue;
	 for (i = 0; i < 32; i++)
	   {
	     if (record_full_arch_list_add_reg (regcache, regsets[j] + i))
	       return -1;
	   }
       }

     if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
       return -1;
     if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
       return -1;
     if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
       return -1;
     if (record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum))
       return -1;

     return 0;
   }

  if (tdep->wordsize == 8)
    ret = record_linux_system_call (syscall_gdb, regcache,
				    &ppc64_linux_record_tdep);
  else
    ret = record_linux_system_call (syscall_gdb, regcache,
				    &ppc_linux_record_tdep);

  if (ret != 0)
    return ret;

  /* Record registers clobbered during syscall.  */
  for (int i = 3; i <= 12; i++)
    {
      if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
	return -1;
    }
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + 0))
    return -1;
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
    return -1;
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
    return -1;
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
    return -1;

  return 0;
}

/* Record registers which might be clobbered during signal handling.
   Return 0 if successful.  */

static int
ppc_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache,
			 enum gdb_signal signal)
{
  /* See handle_rt_signal64 in arch/powerpc/kernel/signal_64.c
	 handle_rt_signal32 in arch/powerpc/kernel/signal_32.c
	 arch/powerpc/include/asm/ptrace.h
     for details.  */
  const int SIGNAL_FRAMESIZE = 128;
  const int sizeof_rt_sigframe = 1440 * 2 + 8 * 2 + 4 * 6 + 8 + 8 + 128 + 512;
  ULONGEST sp;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;

  for (i = 3; i <= 12; i++)
    {
      if (record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i))
	return -1;
    }

  if (record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum))
    return -1;
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum))
    return -1;
  if (record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum))
    return -1;
  if (record_full_arch_list_add_reg (regcache, gdbarch_pc_regnum (gdbarch)))
    return -1;
  if (record_full_arch_list_add_reg (regcache, gdbarch_sp_regnum (gdbarch)))
    return -1;

  /* Record the change in the stack.
     frame-size = sizeof (struct rt_sigframe) + SIGNAL_FRAMESIZE  */
  regcache_raw_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), &sp);
  sp -= SIGNAL_FRAMESIZE;
  sp -= sizeof_rt_sigframe;

  if (record_full_arch_list_add_mem (sp, SIGNAL_FRAMESIZE + sizeof_rt_sigframe))
    return -1;

  if (record_full_arch_list_add_end ())
    return -1;

  return 0;
}

static void
ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = regcache->arch ();

  regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);

  /* Set special TRAP register to -1 to prevent the kernel from
     messing with the PC we just installed, if we happen to be
     within an interrupted system call that the kernel wants to
     restart.

     Note that after we return from the dummy call, the TRAP and
     ORIG_R3 registers will be automatically restored, and the
     kernel continues to restart the system call at this point.  */
  if (ppc_linux_trap_reg_p (gdbarch))
    regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
}

static int
ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
{
  return startswith (bfd_section_name (abfd, asect), "SPU/");
}

static const struct target_desc *
ppc_linux_core_read_description (struct gdbarch *gdbarch,
				 struct target_ops *target,
				 bfd *abfd)
{
  struct ppc_linux_features features = ppc_linux_no_features;
  asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
  asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
  asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
  asection *section = bfd_get_section_by_name (abfd, ".reg");
  asection *ppr = bfd_get_section_by_name (abfd, ".reg-ppc-ppr");
  asection *dscr = bfd_get_section_by_name (abfd, ".reg-ppc-dscr");
  asection *tar = bfd_get_section_by_name (abfd, ".reg-ppc-tar");
  asection *pmu = bfd_get_section_by_name (abfd, ".reg-ppc-pmu");
  asection *htmspr = bfd_get_section_by_name (abfd, ".reg-ppc-tm-spr");

  if (! section)
    return NULL;

  switch (bfd_section_size (abfd, section))
    {
    case 48 * 4:
      features.wordsize = 4;
      break;
    case 48 * 8:
      features.wordsize = 8;
      break;
    default:
      return NULL;
    }

  if (cell)
    features.cell = true;

  if (altivec)
    features.altivec = true;

  if (vsx)
    features.vsx = true;

  CORE_ADDR hwcap;

  if (target_auxv_search (target, AT_HWCAP, &hwcap) != 1)
    hwcap = 0;

  features.isa205 = ppc_linux_has_isa205 (hwcap);

  if (ppr && dscr)
    {
      features.ppr_dscr = true;

      /* We don't require the EBB note section to be present in the
	 core file to select isa207 because these registers could have
	 been unavailable when the core file was created.  They will
	 be in the tdep but will show as unavailable.  */
      if (tar && pmu)
	{
	  features.isa207 = true;
	  if (htmspr)
	    features.htm = true;
	}
    }

  return ppc_linux_match_description (features);
}


/* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
   gdbarch.h.  This implementation is used for the ELFv2 ABI only.  */

static void
ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
{
  elf_symbol_type *elf_sym = (elf_symbol_type *)sym;

  /* If the symbol is marked as having a local entry point, set a target
     flag in the msymbol.  We currently only support local entry point
     offsets of 8 bytes, which is the only entry point offset ever used
     by current compilers.  If/when other offsets are ever used, we will
     have to use additional target flag bits to store them.  */
  switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
    {
    default:
      break;
    case 8:
      MSYMBOL_TARGET_FLAG_1 (msym) = 1;
      break;
    }
}

/* Implementation of `gdbarch_skip_entrypoint', as defined in
   gdbarch.h.  This implementation is used for the ELFv2 ABI only.  */

static CORE_ADDR
ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct bound_minimal_symbol fun;
  int local_entry_offset = 0;

  fun = lookup_minimal_symbol_by_pc (pc);
  if (fun.minsym == NULL)
    return pc;

  /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
     offset values are encoded.  */
  if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
    local_entry_offset = 8;

  if (BMSYMBOL_VALUE_ADDRESS (fun) <= pc
      && pc < BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset)
    return BMSYMBOL_VALUE_ADDRESS (fun) + local_entry_offset;

  return pc;
}

/* Implementation of `gdbarch_stap_is_single_operand', as defined in
   gdbarch.h.  */

static int
ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
{
  return (*s == 'i' /* Literal number.  */
	  || (isdigit (*s) && s[1] == '('
	      && isdigit (s[2])) /* Displacement.  */
	  || (*s == '(' && isdigit (s[1])) /* Register indirection.  */
	  || isdigit (*s)); /* Register value.  */
}

/* Implementation of `gdbarch_stap_parse_special_token', as defined in
   gdbarch.h.  */

static int
ppc_stap_parse_special_token (struct gdbarch *gdbarch,
			      struct stap_parse_info *p)
{
  if (isdigit (*p->arg))
    {
      /* This temporary pointer is needed because we have to do a lookahead.
	  We could be dealing with a register displacement, and in such case
	  we would not need to do anything.  */
      const char *s = p->arg;
      char *regname;
      int len;
      struct stoken str;

      while (isdigit (*s))
	++s;

      if (*s == '(')
	{
	  /* It is a register displacement indeed.  Returning 0 means we are
	     deferring the treatment of this case to the generic parser.  */
	  return 0;
	}

      len = s - p->arg;
      regname = (char *) alloca (len + 2);
      regname[0] = 'r';

      strncpy (regname + 1, p->arg, len);
      ++len;
      regname[len] = '\0';

      if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
	error (_("Invalid register name `%s' on expression `%s'."),
	       regname, p->saved_arg);

      write_exp_elt_opcode (&p->pstate, OP_REGISTER);
      str.ptr = regname;
      str.length = len;
      write_exp_string (&p->pstate, str);
      write_exp_elt_opcode (&p->pstate, OP_REGISTER);

      p->arg = s;
    }
  else
    {
      /* All the other tokens should be handled correctly by the generic
	 parser.  */
      return 0;
    }

  return 1;
}

/* Cell/B.E. active SPE context tracking support.  */

static struct objfile *spe_context_objfile = NULL;
static CORE_ADDR spe_context_lm_addr = 0;
static CORE_ADDR spe_context_offset = 0;

static ptid_t spe_context_cache_ptid;
static CORE_ADDR spe_context_cache_address;

/* Hook into inferior_created, solib_loaded, and solib_unloaded observers
   to track whether we've loaded a version of libspe2 (as static or dynamic
   library) that provides the __spe_current_active_context variable.  */
static void
ppc_linux_spe_context_lookup (struct objfile *objfile)
{
  struct bound_minimal_symbol sym;

  if (!objfile)
    {
      spe_context_objfile = NULL;
      spe_context_lm_addr = 0;
      spe_context_offset = 0;
      spe_context_cache_ptid = minus_one_ptid;
      spe_context_cache_address = 0;
      return;
    }

  sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
  if (sym.minsym)
    {
      spe_context_objfile = objfile;
      spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
      spe_context_offset = MSYMBOL_VALUE_RAW_ADDRESS (sym.minsym);
      spe_context_cache_ptid = minus_one_ptid;
      spe_context_cache_address = 0;
      return;
    }
}

static void
ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
{
  struct objfile *objfile;

  ppc_linux_spe_context_lookup (NULL);
  ALL_OBJFILES (objfile)
    ppc_linux_spe_context_lookup (objfile);
}

static void
ppc_linux_spe_context_solib_loaded (struct so_list *so)
{
  if (strstr (so->so_original_name, "/libspe") != NULL)
    {
      solib_read_symbols (so, 0);
      ppc_linux_spe_context_lookup (so->objfile);
    }
}

static void
ppc_linux_spe_context_solib_unloaded (struct so_list *so)
{
  if (so->objfile == spe_context_objfile)
    ppc_linux_spe_context_lookup (NULL);
}

/* Retrieve contents of the N'th element in the current thread's
   linked SPE context list into ID and NPC.  Return the address of
   said context element, or 0 if not found.  */
static CORE_ADDR
ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
		       int n, int *id, unsigned int *npc)
{
  CORE_ADDR spe_context = 0;
  gdb_byte buf[16];
  int i;

  /* Quick exit if we have not found __spe_current_active_context.  */
  if (!spe_context_objfile)
    return 0;

  /* Look up cached address of thread-local variable.  */
  if (spe_context_cache_ptid != inferior_ptid)
    {
      struct target_ops *target = current_top_target ();

      TRY
	{
	  /* We do not call target_translate_tls_address here, because
	     svr4_fetch_objfile_link_map may invalidate the frame chain,
	     which must not do while inside a frame sniffer.

	     Instead, we have cached the lm_addr value, and use that to
	     directly call the target's to_get_thread_local_address.  */
	  spe_context_cache_address
	    = target->get_thread_local_address (inferior_ptid,
						spe_context_lm_addr,
						spe_context_offset);
	  spe_context_cache_ptid = inferior_ptid;
	}

      CATCH (ex, RETURN_MASK_ERROR)
	{
	  return 0;
	}
      END_CATCH
    }

  /* Read variable value.  */
  if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
    spe_context = extract_unsigned_integer (buf, wordsize, byte_order);

  /* Cyle through to N'th linked list element.  */
  for (i = 0; i < n && spe_context; i++)
    if (target_read_memory (spe_context + align_up (12, wordsize),
			    buf, wordsize) == 0)
      spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
    else
      spe_context = 0;

  /* Read current context.  */
  if (spe_context
      && target_read_memory (spe_context, buf, 12) != 0)
    spe_context = 0;

  /* Extract data elements.  */
  if (spe_context)
    {
      if (id)
	*id = extract_signed_integer (buf, 4, byte_order);
      if (npc)
	*npc = extract_unsigned_integer (buf + 4, 4, byte_order);
    }

  return spe_context;
}


/* Cell/B.E. cross-architecture unwinder support.  */

struct ppu2spu_cache
{
  struct frame_id frame_id;
  readonly_detached_regcache *regcache;
};

static struct gdbarch *
ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
{
  struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
  return cache->regcache->arch ();
}

static void
ppu2spu_this_id (struct frame_info *this_frame,
		 void **this_cache, struct frame_id *this_id)
{
  struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
  *this_id = cache->frame_id;
}

static struct value *
ppu2spu_prev_register (struct frame_info *this_frame,
		       void **this_cache, int regnum)
{
  struct ppu2spu_cache *cache = (struct ppu2spu_cache *) *this_cache;
  struct gdbarch *gdbarch = cache->regcache->arch ();
  gdb_byte *buf;

  buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));

  cache->regcache->cooked_read (regnum, buf);
  return frame_unwind_got_bytes (this_frame, regnum, buf);
}

struct ppu2spu_data
{
  struct gdbarch *gdbarch;
  int id;
  unsigned int npc;
  gdb_byte gprs[128*16];
};

static enum register_status
ppu2spu_unwind_register (ppu2spu_data *data, int regnum, gdb_byte *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);

  if (regnum >= 0 && regnum < SPU_NUM_GPRS)
    memcpy (buf, data->gprs + 16*regnum, 16);
  else if (regnum == SPU_ID_REGNUM)
    store_unsigned_integer (buf, 4, byte_order, data->id);
  else if (regnum == SPU_PC_REGNUM)
    store_unsigned_integer (buf, 4, byte_order, data->npc);
  else
    return REG_UNAVAILABLE;

  return REG_VALID;
}

static int
ppu2spu_sniffer (const struct frame_unwind *self,
		 struct frame_info *this_frame, void **this_prologue_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct ppu2spu_data data;
  struct frame_info *fi;
  CORE_ADDR base, func, backchain, spe_context;
  gdb_byte buf[8];
  int n = 0;

  /* Count the number of SPU contexts already in the frame chain.  */
  for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
    if (get_frame_type (fi) == ARCH_FRAME
	&& gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
      n++;

  base = get_frame_sp (this_frame);
  func = get_frame_pc (this_frame);
  if (target_read_memory (base, buf, tdep->wordsize))
    return 0;
  backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);

  spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
				       n, &data.id, &data.npc);
  if (spe_context && base <= spe_context && spe_context < backchain)
    {
      char annex[32];

      /* Find gdbarch for SPU.  */
      struct gdbarch_info info;
      gdbarch_info_init (&info);
      info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
      info.byte_order = BFD_ENDIAN_BIG;
      info.osabi = GDB_OSABI_LINUX;
      info.id = &data.id;
      data.gdbarch = gdbarch_find_by_info (info);
      if (!data.gdbarch)
	return 0;

      xsnprintf (annex, sizeof annex, "%d/regs", data.id);
      if (target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
		       data.gprs, 0, sizeof data.gprs)
	  == sizeof data.gprs)
	{
	  auto cooked_read = [&data] (int regnum, gdb_byte *out_buf)
	    {
	      return ppu2spu_unwind_register (&data, regnum, out_buf);
	    };
	  struct ppu2spu_cache *cache
	    = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
	  std::unique_ptr<readonly_detached_regcache> regcache
	    (new readonly_detached_regcache (data.gdbarch, cooked_read));

	  cache->frame_id = frame_id_build (base, func);
	  cache->regcache = regcache.release ();
	  *this_prologue_cache = cache;
	  return 1;
	}
    }

  return 0;
}

static void
ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
{
  struct ppu2spu_cache *cache = (struct ppu2spu_cache *) this_cache;
  delete cache->regcache;
}

static const struct frame_unwind ppu2spu_unwind = {
  ARCH_FRAME,
  default_frame_unwind_stop_reason,
  ppu2spu_this_id,
  ppu2spu_prev_register,
  NULL,
  ppu2spu_sniffer,
  ppu2spu_dealloc_cache,
  ppu2spu_prev_arch,
};

/* Initialize linux_record_tdep if not initialized yet.
   WORDSIZE is 4 or 8 for 32- or 64-bit PowerPC Linux respectively.
   Sizes of data structures are initialized accordingly.  */

static void
ppc_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
			    int wordsize)
{
  /* Simply return if it had been initialized.  */
  if (record_tdep->size_pointer != 0)
    return;

  /* These values are the size of the type that will be used in a system
     call.  They are obtained from Linux Kernel source.  */

  if (wordsize == 8)
    {
      record_tdep->size_pointer = 8;
      record_tdep->size__old_kernel_stat = 32;
      record_tdep->size_tms = 32;
      record_tdep->size_loff_t = 8;
      record_tdep->size_flock = 32;
      record_tdep->size_oldold_utsname = 45;
      record_tdep->size_ustat = 32;
      record_tdep->size_old_sigaction = 32;
      record_tdep->size_old_sigset_t = 8;
      record_tdep->size_rlimit = 16;
      record_tdep->size_rusage = 144;
      record_tdep->size_timeval = 16;
      record_tdep->size_timezone = 8;
      record_tdep->size_old_gid_t = 4;
      record_tdep->size_old_uid_t = 4;
      record_tdep->size_fd_set = 128;
      record_tdep->size_old_dirent = 280;
      record_tdep->size_statfs = 120;
      record_tdep->size_statfs64 = 120;
      record_tdep->size_sockaddr = 16;
      record_tdep->size_int = 4;
      record_tdep->size_long = 8;
      record_tdep->size_ulong = 8;
      record_tdep->size_msghdr = 56;
      record_tdep->size_itimerval = 32;
      record_tdep->size_stat = 144;
      record_tdep->size_old_utsname = 325;
      record_tdep->size_sysinfo = 112;
      record_tdep->size_msqid_ds = 120;
      record_tdep->size_shmid_ds = 112;
      record_tdep->size_new_utsname = 390;
      record_tdep->size_timex = 208;
      record_tdep->size_mem_dqinfo = 24;
      record_tdep->size_if_dqblk = 72;
      record_tdep->size_fs_quota_stat = 80;
      record_tdep->size_timespec = 16;
      record_tdep->size_pollfd = 8;
      record_tdep->size_NFS_FHSIZE = 32;
      record_tdep->size_knfsd_fh = 132;
      record_tdep->size_TASK_COMM_LEN = 16;
      record_tdep->size_sigaction = 32;
      record_tdep->size_sigset_t = 8;
      record_tdep->size_siginfo_t = 128;
      record_tdep->size_cap_user_data_t = 8;
      record_tdep->size_stack_t = 24;
      record_tdep->size_off_t = 8;
      record_tdep->size_stat64 = 104;
      record_tdep->size_gid_t = 4;
      record_tdep->size_uid_t = 4;
      record_tdep->size_PAGE_SIZE = 0x10000;	/* 64KB */
      record_tdep->size_flock64 = 32;
      record_tdep->size_io_event = 32;
      record_tdep->size_iocb = 64;
      record_tdep->size_epoll_event = 16;
      record_tdep->size_itimerspec = 32;
      record_tdep->size_mq_attr = 64;
      record_tdep->size_termios = 44;
      record_tdep->size_pid_t = 4;
      record_tdep->size_winsize = 8;
      record_tdep->size_serial_struct = 72;
      record_tdep->size_serial_icounter_struct = 80;
      record_tdep->size_size_t = 8;
      record_tdep->size_iovec = 16;
      record_tdep->size_time_t = 8;
    }
  else if (wordsize == 4)
    {
      record_tdep->size_pointer = 4;
      record_tdep->size__old_kernel_stat = 32;
      record_tdep->size_tms = 16;
      record_tdep->size_loff_t = 8;
      record_tdep->size_flock = 16;
      record_tdep->size_oldold_utsname = 45;
      record_tdep->size_ustat = 20;
      record_tdep->size_old_sigaction = 16;
      record_tdep->size_old_sigset_t = 4;
      record_tdep->size_rlimit = 8;
      record_tdep->size_rusage = 72;
      record_tdep->size_timeval = 8;
      record_tdep->size_timezone = 8;
      record_tdep->size_old_gid_t = 4;
      record_tdep->size_old_uid_t = 4;
      record_tdep->size_fd_set = 128;
      record_tdep->size_old_dirent = 268;
      record_tdep->size_statfs = 64;
      record_tdep->size_statfs64 = 88;
      record_tdep->size_sockaddr = 16;
      record_tdep->size_int = 4;
      record_tdep->size_long = 4;
      record_tdep->size_ulong = 4;
      record_tdep->size_msghdr = 28;
      record_tdep->size_itimerval = 16;
      record_tdep->size_stat = 88;
      record_tdep->size_old_utsname = 325;
      record_tdep->size_sysinfo = 64;
      record_tdep->size_msqid_ds = 68;
      record_tdep->size_shmid_ds = 60;
      record_tdep->size_new_utsname = 390;
      record_tdep->size_timex = 128;
      record_tdep->size_mem_dqinfo = 24;
      record_tdep->size_if_dqblk = 72;
      record_tdep->size_fs_quota_stat = 80;
      record_tdep->size_timespec = 8;
      record_tdep->size_pollfd = 8;
      record_tdep->size_NFS_FHSIZE = 32;
      record_tdep->size_knfsd_fh = 132;
      record_tdep->size_TASK_COMM_LEN = 16;
      record_tdep->size_sigaction = 20;
      record_tdep->size_sigset_t = 8;
      record_tdep->size_siginfo_t = 128;
      record_tdep->size_cap_user_data_t = 4;
      record_tdep->size_stack_t = 12;
      record_tdep->size_off_t = 4;
      record_tdep->size_stat64 = 104;
      record_tdep->size_gid_t = 4;
      record_tdep->size_uid_t = 4;
      record_tdep->size_PAGE_SIZE = 0x10000;	/* 64KB */
      record_tdep->size_flock64 = 32;
      record_tdep->size_io_event = 32;
      record_tdep->size_iocb = 64;
      record_tdep->size_epoll_event = 16;
      record_tdep->size_itimerspec = 16;
      record_tdep->size_mq_attr = 32;
      record_tdep->size_termios = 44;
      record_tdep->size_pid_t = 4;
      record_tdep->size_winsize = 8;
      record_tdep->size_serial_struct = 60;
      record_tdep->size_serial_icounter_struct = 80;
      record_tdep->size_size_t = 4;
      record_tdep->size_iovec = 8;
      record_tdep->size_time_t = 4;
    }
  else
    internal_error (__FILE__, __LINE__, _("unexpected wordsize"));

  /* These values are the second argument of system call "sys_fcntl"
     and "sys_fcntl64".  They are obtained from Linux Kernel source.  */
  record_tdep->fcntl_F_GETLK = 5;
  record_tdep->fcntl_F_GETLK64 = 12;
  record_tdep->fcntl_F_SETLK64 = 13;
  record_tdep->fcntl_F_SETLKW64 = 14;

  record_tdep->arg1 = PPC_R0_REGNUM + 3;
  record_tdep->arg2 = PPC_R0_REGNUM + 4;
  record_tdep->arg3 = PPC_R0_REGNUM + 5;
  record_tdep->arg4 = PPC_R0_REGNUM + 6;
  record_tdep->arg5 = PPC_R0_REGNUM + 7;
  record_tdep->arg6 = PPC_R0_REGNUM + 8;

  /* These values are the second argument of system call "sys_ioctl".
     They are obtained from Linux Kernel source.
     See arch/powerpc/include/uapi/asm/ioctls.h.  */
  record_tdep->ioctl_TCGETS = 0x403c7413;
  record_tdep->ioctl_TCSETS = 0x803c7414;
  record_tdep->ioctl_TCSETSW = 0x803c7415;
  record_tdep->ioctl_TCSETSF = 0x803c7416;
  record_tdep->ioctl_TCGETA = 0x40147417;
  record_tdep->ioctl_TCSETA = 0x80147418;
  record_tdep->ioctl_TCSETAW = 0x80147419;
  record_tdep->ioctl_TCSETAF = 0x8014741c;
  record_tdep->ioctl_TCSBRK = 0x2000741d;
  record_tdep->ioctl_TCXONC = 0x2000741e;
  record_tdep->ioctl_TCFLSH = 0x2000741f;
  record_tdep->ioctl_TIOCEXCL = 0x540c;
  record_tdep->ioctl_TIOCNXCL = 0x540d;
  record_tdep->ioctl_TIOCSCTTY = 0x540e;
  record_tdep->ioctl_TIOCGPGRP = 0x40047477;
  record_tdep->ioctl_TIOCSPGRP = 0x80047476;
  record_tdep->ioctl_TIOCOUTQ = 0x40047473;
  record_tdep->ioctl_TIOCSTI = 0x5412;
  record_tdep->ioctl_TIOCGWINSZ = 0x40087468;
  record_tdep->ioctl_TIOCSWINSZ = 0x80087467;
  record_tdep->ioctl_TIOCMGET = 0x5415;
  record_tdep->ioctl_TIOCMBIS = 0x5416;
  record_tdep->ioctl_TIOCMBIC = 0x5417;
  record_tdep->ioctl_TIOCMSET = 0x5418;
  record_tdep->ioctl_TIOCGSOFTCAR = 0x5419;
  record_tdep->ioctl_TIOCSSOFTCAR = 0x541a;
  record_tdep->ioctl_FIONREAD = 0x4004667f;
  record_tdep->ioctl_TIOCINQ = 0x4004667f;
  record_tdep->ioctl_TIOCLINUX = 0x541c;
  record_tdep->ioctl_TIOCCONS = 0x541d;
  record_tdep->ioctl_TIOCGSERIAL = 0x541e;
  record_tdep->ioctl_TIOCSSERIAL = 0x541f;
  record_tdep->ioctl_TIOCPKT = 0x5420;
  record_tdep->ioctl_FIONBIO = 0x8004667e;
  record_tdep->ioctl_TIOCNOTTY = 0x5422;
  record_tdep->ioctl_TIOCSETD = 0x5423;
  record_tdep->ioctl_TIOCGETD = 0x5424;
  record_tdep->ioctl_TCSBRKP = 0x5425;
  record_tdep->ioctl_TIOCSBRK = 0x5427;
  record_tdep->ioctl_TIOCCBRK = 0x5428;
  record_tdep->ioctl_TIOCGSID = 0x5429;
  record_tdep->ioctl_TIOCGPTN = 0x40045430;
  record_tdep->ioctl_TIOCSPTLCK = 0x80045431;
  record_tdep->ioctl_FIONCLEX = 0x20006602;
  record_tdep->ioctl_FIOCLEX = 0x20006601;
  record_tdep->ioctl_FIOASYNC = 0x8004667d;
  record_tdep->ioctl_TIOCSERCONFIG = 0x5453;
  record_tdep->ioctl_TIOCSERGWILD = 0x5454;
  record_tdep->ioctl_TIOCSERSWILD = 0x5455;
  record_tdep->ioctl_TIOCGLCKTRMIOS = 0x5456;
  record_tdep->ioctl_TIOCSLCKTRMIOS = 0x5457;
  record_tdep->ioctl_TIOCSERGSTRUCT = 0x5458;
  record_tdep->ioctl_TIOCSERGETLSR = 0x5459;
  record_tdep->ioctl_TIOCSERGETMULTI = 0x545a;
  record_tdep->ioctl_TIOCSERSETMULTI = 0x545b;
  record_tdep->ioctl_TIOCMIWAIT = 0x545c;
  record_tdep->ioctl_TIOCGICOUNT = 0x545d;
  record_tdep->ioctl_FIOQSIZE = 0x40086680;
}

/* Return a floating-point format for a floating-point variable of
   length LEN in bits.  If non-NULL, NAME is the name of its type.
   If no suitable type is found, return NULL.  */

const struct floatformat **
ppc_floatformat_for_type (struct gdbarch *gdbarch,
                          const char *name, int len)
{
  if (len == 128 && name)
    {
      if (strcmp (name, "__float128") == 0
	  || strcmp (name, "_Float128") == 0
	  || strcmp (name, "_Float64x") == 0
	  || strcmp (name, "complex _Float128") == 0
	  || strcmp (name, "complex _Float64x") == 0)
	return floatformats_ia64_quad;

      if (strcmp (name, "__ibm128") == 0)
	return floatformats_ibm_long_double;
    }

  return default_floatformat_for_type (gdbarch, name, len);
}

static void
ppc_linux_init_abi (struct gdbarch_info info,
                    struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct tdesc_arch_data *tdesc_data = info.tdesc_data;
  static const char *const stap_integer_prefixes[] = { "i", NULL };
  static const char *const stap_register_indirection_prefixes[] = { "(",
								    NULL };
  static const char *const stap_register_indirection_suffixes[] = { ")",
								    NULL };

  linux_init_abi (info, gdbarch);

  /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
     128-bit, they can be either IBM long double or IEEE quad long double.
     The 64-bit long double case will be detected automatically using
     the size specified in debug info.  We use a .gnu.attribute flag
     to distinguish between the IBM long double and IEEE quad cases.  */
  set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
  if (tdep->long_double_abi == POWERPC_LONG_DOUBLE_IEEE128)
    set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
  else
    set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);

  /* Support for floating-point data type variants.  */
  set_gdbarch_floatformat_for_type (gdbarch, ppc_floatformat_for_type);

  /* Handle inferior calls during interrupted system calls.  */
  set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);

  /* Get the syscall number from the arch's register.  */
  set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);

  /* SystemTap functions.  */
  set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
  set_gdbarch_stap_register_indirection_prefixes (gdbarch,
					  stap_register_indirection_prefixes);
  set_gdbarch_stap_register_indirection_suffixes (gdbarch,
					  stap_register_indirection_suffixes);
  set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
  set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
  set_gdbarch_stap_parse_special_token (gdbarch,
					ppc_stap_parse_special_token);

  if (tdep->wordsize == 4)
    {
      /* Until November 2001, gcc did not comply with the 32 bit SysV
	 R4 ABI requirement that structures less than or equal to 8
	 bytes should be returned in registers.  Instead GCC was using
	 the AIX/PowerOpen ABI - everything returned in memory
	 (well ignoring vectors that is).  When this was corrected, it
	 wasn't fixed for GNU/Linux native platform.  Use the
	 PowerOpen struct convention.  */
      set_gdbarch_return_value (gdbarch, ppc_linux_return_value);

      set_gdbarch_memory_remove_breakpoint (gdbarch,
                                            ppc_linux_memory_remove_breakpoint);

      /* Shared library handling.  */
      set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
      set_solib_svr4_fetch_link_map_offsets
        (gdbarch, svr4_ilp32_fetch_link_map_offsets);

      /* Setting the correct XML syscall filename.  */
      set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC);

      /* Trampolines.  */
      tramp_frame_prepend_unwinder (gdbarch,
				    &ppc32_linux_sigaction_tramp_frame);
      tramp_frame_prepend_unwinder (gdbarch,
				    &ppc32_linux_sighandler_tramp_frame);

      /* BFD target for core files.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
	set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
      else
	set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");

      if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
	{
	  powerpc_so_ops = svr4_so_ops;
	  /* Override dynamic resolve function.  */
	  powerpc_so_ops.in_dynsym_resolve_code =
	    powerpc_linux_in_dynsym_resolve_code;
	}
      set_solib_ops (gdbarch, &powerpc_so_ops);

      set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
    }
  
  if (tdep->wordsize == 8)
    {
      if (tdep->elf_abi == POWERPC_ELF_V1)
	{
	  /* Handle PPC GNU/Linux 64-bit function pointers (which are really
	     function descriptors).  */
	  set_gdbarch_convert_from_func_ptr_addr
	    (gdbarch, ppc64_convert_from_func_ptr_addr);

	  set_gdbarch_elf_make_msymbol_special
	    (gdbarch, ppc64_elf_make_msymbol_special);
	}
      else
	{
	  set_gdbarch_elf_make_msymbol_special
	    (gdbarch, ppc_elfv2_elf_make_msymbol_special);

	  set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
	}

      /* Shared library handling.  */
      set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
      set_solib_svr4_fetch_link_map_offsets
        (gdbarch, svr4_lp64_fetch_link_map_offsets);

      /* Setting the correct XML syscall filename.  */
      set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_PPC64);

      /* Trampolines.  */
      tramp_frame_prepend_unwinder (gdbarch,
				    &ppc64_linux_sigaction_tramp_frame);
      tramp_frame_prepend_unwinder (gdbarch,
				    &ppc64_linux_sighandler_tramp_frame);

      /* BFD target for core files.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
	set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
      else
	set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
    }

  set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
  set_gdbarch_iterate_over_regset_sections (gdbarch,
					    ppc_linux_iterate_over_regset_sections);

  /* Enable TLS support.  */
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
                                             svr4_fetch_objfile_link_map);

  if (tdesc_data)
    {
      const struct tdesc_feature *feature;

      /* If we have target-described registers, then we can safely
         reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
	 (whether they are described or not).  */
      gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
      set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);

      /* If they are present, then assign them to the reserved number.  */
      feature = tdesc_find_feature (info.target_desc,
                                    "org.gnu.gdb.power.linux");
      if (feature != NULL)
	{
	  tdesc_numbered_register (feature, tdesc_data,
				   PPC_ORIG_R3_REGNUM, "orig_r3");
	  tdesc_numbered_register (feature, tdesc_data,
				   PPC_TRAP_REGNUM, "trap");
	}
    }

  /* Enable Cell/B.E. if supported by the target.  */
  if (tdesc_compatible_p (info.target_desc,
			  bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
    {
      /* Cell/B.E. multi-architecture support.  */
      set_spu_solib_ops (gdbarch);

      /* Cell/B.E. cross-architecture unwinder support.  */
      frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);

      /* We need to support more than "addr_bit" significant address bits
         in order to support SPUADDR_ADDR encoded values.  */
      set_gdbarch_significant_addr_bit (gdbarch, 64);
    }

  set_gdbarch_displaced_step_location (gdbarch,
				       linux_displaced_step_location);

  /* Support reverse debugging.  */
  set_gdbarch_process_record (gdbarch, ppc_process_record);
  set_gdbarch_process_record_signal (gdbarch, ppc_linux_record_signal);
  tdep->ppc_syscall_record = ppc_linux_syscall_record;

  ppc_init_linux_record_tdep (&ppc_linux_record_tdep, 4);
  ppc_init_linux_record_tdep (&ppc64_linux_record_tdep, 8);
}

void
_initialize_ppc_linux_tdep (void)
{
  /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
     64-bit PowerPC, and the older rs6k.  */
  gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
                         ppc_linux_init_abi);
  gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
                         ppc_linux_init_abi);
  gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
                         ppc_linux_init_abi);

  /* Attach to observers to track __spe_current_active_context.  */
  gdb::observers::inferior_created.attach (ppc_linux_spe_context_inferior_created);
  gdb::observers::solib_loaded.attach (ppc_linux_spe_context_solib_loaded);
  gdb::observers::solib_unloaded.attach (ppc_linux_spe_context_solib_unloaded);

  /* Initialize the Linux target descriptions.  */
  initialize_tdesc_powerpc_32l ();
  initialize_tdesc_powerpc_altivec32l ();
  initialize_tdesc_powerpc_cell32l ();
  initialize_tdesc_powerpc_vsx32l ();
  initialize_tdesc_powerpc_isa205_32l ();
  initialize_tdesc_powerpc_isa205_altivec32l ();
  initialize_tdesc_powerpc_isa205_vsx32l ();
  initialize_tdesc_powerpc_isa205_ppr_dscr_vsx32l ();
  initialize_tdesc_powerpc_isa207_vsx32l ();
  initialize_tdesc_powerpc_isa207_htm_vsx32l ();
  initialize_tdesc_powerpc_64l ();
  initialize_tdesc_powerpc_altivec64l ();
  initialize_tdesc_powerpc_cell64l ();
  initialize_tdesc_powerpc_vsx64l ();
  initialize_tdesc_powerpc_isa205_64l ();
  initialize_tdesc_powerpc_isa205_altivec64l ();
  initialize_tdesc_powerpc_isa205_vsx64l ();
  initialize_tdesc_powerpc_isa205_ppr_dscr_vsx64l ();
  initialize_tdesc_powerpc_isa207_vsx64l ();
  initialize_tdesc_powerpc_isa207_htm_vsx64l ();
  initialize_tdesc_powerpc_e500l ();
}