1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
|
/* Target-dependent code for GDB, the GNU debugger.
Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "symfile.h"
#include "objfiles.h"
#include "regcache.h"
#include "value.h"
#include "osabi.h"
#include "regset.h"
#include "solib-svr4.h"
#include "solib-spu.h"
#include "solib.h"
#include "solist.h"
#include "ppc-tdep.h"
#include "ppc-linux-tdep.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "tramp-frame.h"
#include "observer.h"
#include "auxv.h"
#include "elf/common.h"
#include "exceptions.h"
#include "arch-utils.h"
#include "spu-tdep.h"
#include "xml-syscall.h"
#include "features/rs6000/powerpc-32l.c"
#include "features/rs6000/powerpc-altivec32l.c"
#include "features/rs6000/powerpc-cell32l.c"
#include "features/rs6000/powerpc-vsx32l.c"
#include "features/rs6000/powerpc-isa205-32l.c"
#include "features/rs6000/powerpc-isa205-altivec32l.c"
#include "features/rs6000/powerpc-isa205-vsx32l.c"
#include "features/rs6000/powerpc-64l.c"
#include "features/rs6000/powerpc-altivec64l.c"
#include "features/rs6000/powerpc-cell64l.c"
#include "features/rs6000/powerpc-vsx64l.c"
#include "features/rs6000/powerpc-isa205-64l.c"
#include "features/rs6000/powerpc-isa205-altivec64l.c"
#include "features/rs6000/powerpc-isa205-vsx64l.c"
#include "features/rs6000/powerpc-e500l.c"
/* The syscall's XML filename for PPC and PPC64. */
#define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
#define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
in much the same fashion as memory_remove_breakpoint in mem-break.c,
but is careful not to write back the previous contents if the code
in question has changed in between inserting the breakpoint and
removing it.
Here is the problem that we're trying to solve...
Once upon a time, before introducing this function to remove
breakpoints from the inferior, setting a breakpoint on a shared
library function prior to running the program would not work
properly. In order to understand the problem, it is first
necessary to understand a little bit about dynamic linking on
this platform.
A call to a shared library function is accomplished via a bl
(branch-and-link) instruction whose branch target is an entry
in the procedure linkage table (PLT). The PLT in the object
file is uninitialized. To gdb, prior to running the program, the
entries in the PLT are all zeros.
Once the program starts running, the shared libraries are loaded
and the procedure linkage table is initialized, but the entries in
the table are not (necessarily) resolved. Once a function is
actually called, the code in the PLT is hit and the function is
resolved. In order to better illustrate this, an example is in
order; the following example is from the gdb testsuite.
We start the program shmain.
[kev@arroyo testsuite]$ ../gdb gdb.base/shmain
[...]
We place two breakpoints, one on shr1 and the other on main.
(gdb) b shr1
Breakpoint 1 at 0x100409d4
(gdb) b main
Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
Examine the instruction (and the immediatly following instruction)
upon which the breakpoint was placed. Note that the PLT entry
for shr1 contains zeros.
(gdb) x/2i 0x100409d4
0x100409d4 <shr1>: .long 0x0
0x100409d8 <shr1+4>: .long 0x0
Now run 'til main.
(gdb) r
Starting program: gdb.base/shmain
Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
Breakpoint 2, main ()
at gdb.base/shmain.c:44
44 g = 1;
Examine the PLT again. Note that the loading of the shared
library has initialized the PLT to code which loads a constant
(which I think is an index into the GOT) into r11 and then
branchs a short distance to the code which actually does the
resolving.
(gdb) x/2i 0x100409d4
0x100409d4 <shr1>: li r11,4
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
(gdb) c
Continuing.
Breakpoint 1, shr1 (x=1)
at gdb.base/shr1.c:19
19 l = 1;
Now we've hit the breakpoint at shr1. (The breakpoint was
reset from the PLT entry to the actual shr1 function after the
shared library was loaded.) Note that the PLT entry has been
resolved to contain a branch that takes us directly to shr1.
(The real one, not the PLT entry.)
(gdb) x/2i 0x100409d4
0x100409d4 <shr1>: b 0xffaf76c <shr1>
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
The thing to note here is that the PLT entry for shr1 has been
changed twice.
Now the problem should be obvious. GDB places a breakpoint (a
trap instruction) on the zero value of the PLT entry for shr1.
Later on, after the shared library had been loaded and the PLT
initialized, GDB gets a signal indicating this fact and attempts
(as it always does when it stops) to remove all the breakpoints.
The breakpoint removal was causing the former contents (a zero
word) to be written back to the now initialized PLT entry thus
destroying a portion of the initialization that had occurred only a
short time ago. When execution continued, the zero word would be
executed as an instruction an an illegal instruction trap was
generated instead. (0 is not a legal instruction.)
The fix for this problem was fairly straightforward. The function
memory_remove_breakpoint from mem-break.c was copied to this file,
modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
function.
The differences between ppc_linux_memory_remove_breakpoint () and
memory_remove_breakpoint () are minor. All that the former does
that the latter does not is check to make sure that the breakpoint
location actually contains a breakpoint (trap instruction) prior
to attempting to write back the old contents. If it does contain
a trap instruction, we allow the old contents to be written back.
Otherwise, we silently do nothing.
The big question is whether memory_remove_breakpoint () should be
changed to have the same functionality. The downside is that more
traffic is generated for remote targets since we'll have an extra
fetch of a memory word each time a breakpoint is removed.
For the time being, we'll leave this self-modifying-code-friendly
version in ppc-linux-tdep.c, but it ought to be migrated somewhere
else in the event that some other platform has similar needs with
regard to removing breakpoints in some potentially self modifying
code. */
static int
ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
struct bp_target_info *bp_tgt)
{
CORE_ADDR addr = bp_tgt->placed_address;
const unsigned char *bp;
int val;
int bplen;
gdb_byte old_contents[BREAKPOINT_MAX];
struct cleanup *cleanup;
/* Determine appropriate breakpoint contents and size for this address. */
bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
if (bp == NULL)
error (_("Software breakpoints not implemented for this target."));
/* Make sure we see the memory breakpoints. */
cleanup = make_show_memory_breakpoints_cleanup (1);
val = target_read_memory (addr, old_contents, bplen);
/* If our breakpoint is no longer at the address, this means that the
program modified the code on us, so it is wrong to put back the
old value */
if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
do_cleanups (cleanup);
return val;
}
/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
than the 32 bit SYSV R4 ABI structure return convention - all
structures, no matter their size, are put in memory. Vectors,
which were added later, do get returned in a register though. */
static enum return_value_convention
ppc_linux_return_value (struct gdbarch *gdbarch, struct type *func_type,
struct type *valtype, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|| TYPE_CODE (valtype) == TYPE_CODE_UNION)
&& !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
&& TYPE_VECTOR (valtype)))
return RETURN_VALUE_STRUCT_CONVENTION;
else
return ppc_sysv_abi_return_value (gdbarch, func_type, valtype, regcache,
readbuf, writebuf);
}
/* Macros for matching instructions. Note that, since all the
operands are masked off before they're or-ed into the instruction,
you can use -1 to make masks. */
#define insn_d(opcd, rts, ra, d) \
((((opcd) & 0x3f) << 26) \
| (((rts) & 0x1f) << 21) \
| (((ra) & 0x1f) << 16) \
| ((d) & 0xffff))
#define insn_ds(opcd, rts, ra, d, xo) \
((((opcd) & 0x3f) << 26) \
| (((rts) & 0x1f) << 21) \
| (((ra) & 0x1f) << 16) \
| ((d) & 0xfffc) \
| ((xo) & 0x3))
#define insn_xfx(opcd, rts, spr, xo) \
((((opcd) & 0x3f) << 26) \
| (((rts) & 0x1f) << 21) \
| (((spr) & 0x1f) << 16) \
| (((spr) & 0x3e0) << 6) \
| (((xo) & 0x3ff) << 1))
/* Read a PPC instruction from memory. PPC instructions are always
big-endian, no matter what endianness the program is running in, so
we can't use read_memory_integer or one of its friends here. */
static unsigned int
read_insn (CORE_ADDR pc)
{
unsigned char buf[4];
read_memory (pc, buf, 4);
return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
}
/* An instruction to match. */
struct insn_pattern
{
unsigned int mask; /* mask the insn with this... */
unsigned int data; /* ...and see if it matches this. */
int optional; /* If non-zero, this insn may be absent. */
};
/* Return non-zero if the instructions at PC match the series
described in PATTERN, or zero otherwise. PATTERN is an array of
'struct insn_pattern' objects, terminated by an entry whose mask is
zero.
When the match is successful, fill INSN[i] with what PATTERN[i]
matched. If PATTERN[i] is optional, and the instruction wasn't
present, set INSN[i] to 0 (which is not a valid PPC instruction).
INSN should have as many elements as PATTERN. Note that, if
PATTERN contains optional instructions which aren't present in
memory, then INSN will have holes, so INSN[i] isn't necessarily the
i'th instruction in memory. */
static int
insns_match_pattern (CORE_ADDR pc,
struct insn_pattern *pattern,
unsigned int *insn)
{
int i;
for (i = 0; pattern[i].mask; i++)
{
insn[i] = read_insn (pc);
if ((insn[i] & pattern[i].mask) == pattern[i].data)
pc += 4;
else if (pattern[i].optional)
insn[i] = 0;
else
return 0;
}
return 1;
}
/* Return the 'd' field of the d-form instruction INSN, properly
sign-extended. */
static CORE_ADDR
insn_d_field (unsigned int insn)
{
return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
}
/* Return the 'ds' field of the ds-form instruction INSN, with the two
zero bits concatenated at the right, and properly
sign-extended. */
static CORE_ADDR
insn_ds_field (unsigned int insn)
{
return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
}
/* If DESC is the address of a 64-bit PowerPC GNU/Linux function
descriptor, return the descriptor's entry point. */
static CORE_ADDR
ppc64_desc_entry_point (struct gdbarch *gdbarch, CORE_ADDR desc)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
/* The first word of the descriptor is the entry point. */
return (CORE_ADDR) read_memory_unsigned_integer (desc, 8, byte_order);
}
/* Pattern for the standard linkage function. These are built by
build_plt_stub in elf64-ppc.c, whose GLINK argument is always
zero. */
static struct insn_pattern ppc64_standard_linkage1[] =
{
/* addis r12, r2, <any> */
{ insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
/* std r2, 40(r1) */
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
/* ld r11, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
/* addis r12, r12, 1 <optional> */
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
/* ld r2, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
/* addis r12, r12, 1 <optional> */
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
/* mtctr r11 */
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
/* ld r11, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
/* bctr */
{ -1, 0x4e800420, 0 },
{ 0, 0, 0 }
};
#define PPC64_STANDARD_LINKAGE1_LEN \
(sizeof (ppc64_standard_linkage1) / sizeof (ppc64_standard_linkage1[0]))
static struct insn_pattern ppc64_standard_linkage2[] =
{
/* addis r12, r2, <any> */
{ insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
/* std r2, 40(r1) */
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
/* ld r11, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
/* addi r12, r12, <any> <optional> */
{ insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
/* mtctr r11 */
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
/* ld r2, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
/* ld r11, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
/* bctr */
{ -1, 0x4e800420, 0 },
{ 0, 0, 0 }
};
#define PPC64_STANDARD_LINKAGE2_LEN \
(sizeof (ppc64_standard_linkage2) / sizeof (ppc64_standard_linkage2[0]))
static struct insn_pattern ppc64_standard_linkage3[] =
{
/* std r2, 40(r1) */
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
/* ld r11, <any>(r2) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
/* addi r2, r2, <any> <optional> */
{ insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
/* mtctr r11 */
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
/* ld r11, <any>(r2) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
/* ld r2, <any>(r2) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
/* bctr */
{ -1, 0x4e800420, 0 },
{ 0, 0, 0 }
};
#define PPC64_STANDARD_LINKAGE3_LEN \
(sizeof (ppc64_standard_linkage3) / sizeof (ppc64_standard_linkage3[0]))
/* When the dynamic linker is doing lazy symbol resolution, the first
call to a function in another object will go like this:
- The user's function calls the linkage function:
100007c4: 4b ff fc d5 bl 10000498
100007c8: e8 41 00 28 ld r2,40(r1)
- The linkage function loads the entry point (and other stuff) from
the function descriptor in the PLT, and jumps to it:
10000498: 3d 82 00 00 addis r12,r2,0
1000049c: f8 41 00 28 std r2,40(r1)
100004a0: e9 6c 80 98 ld r11,-32616(r12)
100004a4: e8 4c 80 a0 ld r2,-32608(r12)
100004a8: 7d 69 03 a6 mtctr r11
100004ac: e9 6c 80 a8 ld r11,-32600(r12)
100004b0: 4e 80 04 20 bctr
- But since this is the first time that PLT entry has been used, it
sends control to its glink entry. That loads the number of the
PLT entry and jumps to the common glink0 code:
10000c98: 38 00 00 00 li r0,0
10000c9c: 4b ff ff dc b 10000c78
- The common glink0 code then transfers control to the dynamic
linker's fixup code:
10000c78: e8 41 00 28 ld r2,40(r1)
10000c7c: 3d 82 00 00 addis r12,r2,0
10000c80: e9 6c 80 80 ld r11,-32640(r12)
10000c84: e8 4c 80 88 ld r2,-32632(r12)
10000c88: 7d 69 03 a6 mtctr r11
10000c8c: e9 6c 80 90 ld r11,-32624(r12)
10000c90: 4e 80 04 20 bctr
Eventually, this code will figure out how to skip all of this,
including the dynamic linker. At the moment, we just get through
the linkage function. */
/* If the current thread is about to execute a series of instructions
at PC matching the ppc64_standard_linkage pattern, and INSN is the result
from that pattern match, return the code address to which the
standard linkage function will send them. (This doesn't deal with
dynamic linker lazy symbol resolution stubs.) */
static CORE_ADDR
ppc64_standard_linkage1_target (struct frame_info *frame,
CORE_ADDR pc, unsigned int *insn)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* The address of the function descriptor this linkage function
references. */
CORE_ADDR desc
= ((CORE_ADDR) get_frame_register_unsigned (frame,
tdep->ppc_gp0_regnum + 2)
+ (insn_d_field (insn[0]) << 16)
+ insn_ds_field (insn[2]));
/* The first word of the descriptor is the entry point. Return that. */
return ppc64_desc_entry_point (gdbarch, desc);
}
static struct core_regset_section ppc_linux_vsx_regset_sections[] =
{
{ ".reg", 268 },
{ ".reg2", 264 },
{ ".reg-ppc-vmx", 544 },
{ ".reg-ppc-vsx", 256 },
{ NULL, 0}
};
static struct core_regset_section ppc_linux_vmx_regset_sections[] =
{
{ ".reg", 268 },
{ ".reg2", 264 },
{ ".reg-ppc-vmx", 544 },
{ NULL, 0}
};
static struct core_regset_section ppc_linux_fp_regset_sections[] =
{
{ ".reg", 268 },
{ ".reg2", 264 },
{ NULL, 0}
};
static CORE_ADDR
ppc64_standard_linkage2_target (struct frame_info *frame,
CORE_ADDR pc, unsigned int *insn)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* The address of the function descriptor this linkage function
references. */
CORE_ADDR desc
= ((CORE_ADDR) get_frame_register_unsigned (frame,
tdep->ppc_gp0_regnum + 2)
+ (insn_d_field (insn[0]) << 16)
+ insn_ds_field (insn[2]));
/* The first word of the descriptor is the entry point. Return that. */
return ppc64_desc_entry_point (gdbarch, desc);
}
static CORE_ADDR
ppc64_standard_linkage3_target (struct frame_info *frame,
CORE_ADDR pc, unsigned int *insn)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* The address of the function descriptor this linkage function
references. */
CORE_ADDR desc
= ((CORE_ADDR) get_frame_register_unsigned (frame,
tdep->ppc_gp0_regnum + 2)
+ insn_ds_field (insn[1]));
/* The first word of the descriptor is the entry point. Return that. */
return ppc64_desc_entry_point (gdbarch, desc);
}
/* Given that we've begun executing a call trampoline at PC, return
the entry point of the function the trampoline will go to. */
static CORE_ADDR
ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
unsigned int ppc64_standard_linkage1_insn[PPC64_STANDARD_LINKAGE1_LEN];
unsigned int ppc64_standard_linkage2_insn[PPC64_STANDARD_LINKAGE2_LEN];
unsigned int ppc64_standard_linkage3_insn[PPC64_STANDARD_LINKAGE3_LEN];
CORE_ADDR target;
if (insns_match_pattern (pc, ppc64_standard_linkage1,
ppc64_standard_linkage1_insn))
pc = ppc64_standard_linkage1_target (frame, pc,
ppc64_standard_linkage1_insn);
else if (insns_match_pattern (pc, ppc64_standard_linkage2,
ppc64_standard_linkage2_insn))
pc = ppc64_standard_linkage2_target (frame, pc,
ppc64_standard_linkage2_insn);
else if (insns_match_pattern (pc, ppc64_standard_linkage3,
ppc64_standard_linkage3_insn))
pc = ppc64_standard_linkage3_target (frame, pc,
ppc64_standard_linkage3_insn);
else
return 0;
/* The PLT descriptor will either point to the already resolved target
address, or else to a glink stub. As the latter carry synthetic @plt
symbols, find_solib_trampoline_target should be able to resolve them. */
target = find_solib_trampoline_target (frame, pc);
return target? target : pc;
}
/* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
GNU/Linux.
Usually a function pointer's representation is simply the address
of the function. On GNU/Linux on the PowerPC however, a function
pointer may be a pointer to a function descriptor.
For PPC64, a function descriptor is a TOC entry, in a data section,
which contains three words: the first word is the address of the
function, the second word is the TOC pointer (r2), and the third word
is the static chain value.
Throughout GDB it is currently assumed that a function pointer contains
the address of the function, which is not easy to fix. In addition, the
conversion of a function address to a function pointer would
require allocation of a TOC entry in the inferior's memory space,
with all its drawbacks. To be able to call C++ virtual methods in
the inferior (which are called via function pointers),
find_function_addr uses this function to get the function address
from a function pointer.
If ADDR points at what is clearly a function descriptor, transform
it into the address of the corresponding function, if needed. Be
conservative, otherwise GDB will do the transformation on any
random addresses such as occur when there is no symbol table. */
static CORE_ADDR
ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
CORE_ADDR addr,
struct target_ops *targ)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct target_section *s = target_section_by_addr (targ, addr);
/* Check if ADDR points to a function descriptor. */
if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
{
/* There may be relocations that need to be applied to the .opd
section. Unfortunately, this function may be called at a time
where these relocations have not yet been performed -- this can
happen for example shortly after a library has been loaded with
dlopen, but ld.so has not yet applied the relocations.
To cope with both the case where the relocation has been applied,
and the case where it has not yet been applied, we do *not* read
the (maybe) relocated value from target memory, but we instead
read the non-relocated value from the BFD, and apply the relocation
offset manually.
This makes the assumption that all .opd entries are always relocated
by the same offset the section itself was relocated. This should
always be the case for GNU/Linux executables and shared libraries.
Note that other kind of object files (e.g. those added via
add-symbol-files) will currently never end up here anyway, as this
function accesses *target* sections only; only the main exec and
shared libraries are ever added to the target. */
gdb_byte buf[8];
int res;
res = bfd_get_section_contents (s->bfd, s->the_bfd_section,
&buf, addr - s->addr, 8);
if (res != 0)
return extract_unsigned_integer (buf, 8, byte_order)
- bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
}
return addr;
}
/* Wrappers to handle Linux-only registers. */
static void
ppc_linux_supply_gregset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
const struct ppc_reg_offsets *offsets = regset->descr;
ppc_supply_gregset (regset, regcache, regnum, gregs, len);
if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
{
/* "orig_r3" is stored 2 slots after "pc". */
if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
offsets->pc_offset + 2 * offsets->gpr_size,
offsets->gpr_size);
/* "trap" is stored 8 slots after "pc". */
if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
offsets->pc_offset + 8 * offsets->gpr_size,
offsets->gpr_size);
}
}
static void
ppc_linux_collect_gregset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
const struct ppc_reg_offsets *offsets = regset->descr;
/* Clear areas in the linux gregset not written elsewhere. */
if (regnum == -1)
memset (gregs, 0, len);
ppc_collect_gregset (regset, regcache, regnum, gregs, len);
if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
{
/* "orig_r3" is stored 2 slots after "pc". */
if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
offsets->pc_offset + 2 * offsets->gpr_size,
offsets->gpr_size);
/* "trap" is stored 8 slots after "pc". */
if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
offsets->pc_offset + 8 * offsets->gpr_size,
offsets->gpr_size);
}
}
/* Regset descriptions. */
static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
{
/* General-purpose registers. */
/* .r0_offset = */ 0,
/* .gpr_size = */ 4,
/* .xr_size = */ 4,
/* .pc_offset = */ 128,
/* .ps_offset = */ 132,
/* .cr_offset = */ 152,
/* .lr_offset = */ 144,
/* .ctr_offset = */ 140,
/* .xer_offset = */ 148,
/* .mq_offset = */ 156,
/* Floating-point registers. */
/* .f0_offset = */ 0,
/* .fpscr_offset = */ 256,
/* .fpscr_size = */ 8,
/* AltiVec registers. */
/* .vr0_offset = */ 0,
/* .vscr_offset = */ 512 + 12,
/* .vrsave_offset = */ 528
};
static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
{
/* General-purpose registers. */
/* .r0_offset = */ 0,
/* .gpr_size = */ 8,
/* .xr_size = */ 8,
/* .pc_offset = */ 256,
/* .ps_offset = */ 264,
/* .cr_offset = */ 304,
/* .lr_offset = */ 288,
/* .ctr_offset = */ 280,
/* .xer_offset = */ 296,
/* .mq_offset = */ 312,
/* Floating-point registers. */
/* .f0_offset = */ 0,
/* .fpscr_offset = */ 256,
/* .fpscr_size = */ 8,
/* AltiVec registers. */
/* .vr0_offset = */ 0,
/* .vscr_offset = */ 512 + 12,
/* .vrsave_offset = */ 528
};
static const struct regset ppc32_linux_gregset = {
&ppc32_linux_reg_offsets,
ppc_linux_supply_gregset,
ppc_linux_collect_gregset,
NULL
};
static const struct regset ppc64_linux_gregset = {
&ppc64_linux_reg_offsets,
ppc_linux_supply_gregset,
ppc_linux_collect_gregset,
NULL
};
static const struct regset ppc32_linux_fpregset = {
&ppc32_linux_reg_offsets,
ppc_supply_fpregset,
ppc_collect_fpregset,
NULL
};
static const struct regset ppc32_linux_vrregset = {
&ppc32_linux_reg_offsets,
ppc_supply_vrregset,
ppc_collect_vrregset,
NULL
};
static const struct regset ppc32_linux_vsxregset = {
&ppc32_linux_reg_offsets,
ppc_supply_vsxregset,
ppc_collect_vsxregset,
NULL
};
const struct regset *
ppc_linux_gregset (int wordsize)
{
return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
}
const struct regset *
ppc_linux_fpregset (void)
{
return &ppc32_linux_fpregset;
}
static const struct regset *
ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
const char *sect_name, size_t sect_size)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
if (strcmp (sect_name, ".reg") == 0)
{
if (tdep->wordsize == 4)
return &ppc32_linux_gregset;
else
return &ppc64_linux_gregset;
}
if (strcmp (sect_name, ".reg2") == 0)
return &ppc32_linux_fpregset;
if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
return &ppc32_linux_vrregset;
if (strcmp (sect_name, ".reg-ppc-vsx") == 0)
return &ppc32_linux_vsxregset;
return NULL;
}
static void
ppc_linux_sigtramp_cache (struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func, LONGEST offset,
int bias)
{
CORE_ADDR base;
CORE_ADDR regs;
CORE_ADDR gpregs;
CORE_ADDR fpregs;
int i;
struct gdbarch *gdbarch = get_frame_arch (this_frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
base = get_frame_register_unsigned (this_frame,
gdbarch_sp_regnum (gdbarch));
if (bias > 0 && get_frame_pc (this_frame) != func)
/* See below, some signal trampolines increment the stack as their
first instruction, need to compensate for that. */
base -= bias;
/* Find the address of the register buffer pointer. */
regs = base + offset;
/* Use that to find the address of the corresponding register
buffers. */
gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
fpregs = gpregs + 48 * tdep->wordsize;
/* General purpose. */
for (i = 0; i < 32; i++)
{
int regnum = i + tdep->ppc_gp0_regnum;
trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
}
trad_frame_set_reg_addr (this_cache,
gdbarch_pc_regnum (gdbarch),
gpregs + 32 * tdep->wordsize);
trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
gpregs + 35 * tdep->wordsize);
trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
gpregs + 36 * tdep->wordsize);
trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
gpregs + 37 * tdep->wordsize);
trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
gpregs + 38 * tdep->wordsize);
if (ppc_linux_trap_reg_p (gdbarch))
{
trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
gpregs + 34 * tdep->wordsize);
trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
gpregs + 40 * tdep->wordsize);
}
if (ppc_floating_point_unit_p (gdbarch))
{
/* Floating point registers. */
for (i = 0; i < 32; i++)
{
int regnum = i + gdbarch_fp0_regnum (gdbarch);
trad_frame_set_reg_addr (this_cache, regnum,
fpregs + i * tdep->wordsize);
}
trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
fpregs + 32 * tdep->wordsize);
}
trad_frame_set_id (this_cache, frame_id_build (base, func));
}
static void
ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
0xd0 /* Offset to ucontext_t. */
+ 0x30 /* Offset to .reg. */,
0);
}
static void
ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
0x80 /* Offset to ucontext_t. */
+ 0xe0 /* Offset to .reg. */,
128);
}
static void
ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
0x40 /* Offset to ucontext_t. */
+ 0x1c /* Offset to .reg. */,
0);
}
static void
ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
ppc_linux_sigtramp_cache (this_frame, this_cache, func,
0x80 /* Offset to struct sigcontext. */
+ 0x38 /* Offset to .reg. */,
128);
}
static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
SIGTRAMP_FRAME,
4,
{
{ 0x380000ac, -1 }, /* li r0, 172 */
{ 0x44000002, -1 }, /* sc */
{ TRAMP_SENTINEL_INSN },
},
ppc32_linux_sigaction_cache_init
};
static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
SIGTRAMP_FRAME,
4,
{
{ 0x38210080, -1 }, /* addi r1,r1,128 */
{ 0x380000ac, -1 }, /* li r0, 172 */
{ 0x44000002, -1 }, /* sc */
{ TRAMP_SENTINEL_INSN },
},
ppc64_linux_sigaction_cache_init
};
static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
SIGTRAMP_FRAME,
4,
{
{ 0x38000077, -1 }, /* li r0,119 */
{ 0x44000002, -1 }, /* sc */
{ TRAMP_SENTINEL_INSN },
},
ppc32_linux_sighandler_cache_init
};
static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
SIGTRAMP_FRAME,
4,
{
{ 0x38210080, -1 }, /* addi r1,r1,128 */
{ 0x38000077, -1 }, /* li r0,119 */
{ 0x44000002, -1 }, /* sc */
{ TRAMP_SENTINEL_INSN },
},
ppc64_linux_sighandler_cache_init
};
/* Address to use for displaced stepping. When debugging a stand-alone
SPU executable, entry_point_address () will point to an SPU local-store
address and is thus not usable as displaced stepping location. We use
the auxiliary vector to determine the PowerPC-side entry point address
instead. */
static CORE_ADDR ppc_linux_entry_point_addr = 0;
static void
ppc_linux_inferior_created (struct target_ops *target, int from_tty)
{
ppc_linux_entry_point_addr = 0;
}
static CORE_ADDR
ppc_linux_displaced_step_location (struct gdbarch *gdbarch)
{
if (ppc_linux_entry_point_addr == 0)
{
CORE_ADDR addr;
/* Determine entry point from target auxiliary vector. */
if (target_auxv_search (¤t_target, AT_ENTRY, &addr) <= 0)
error (_("Cannot find AT_ENTRY auxiliary vector entry."));
/* Make certain that the address points at real code, and not a
function descriptor. */
addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
¤t_target);
/* Inferior calls also use the entry point as a breakpoint location.
We don't want displaced stepping to interfere with those
breakpoints, so leave space. */
ppc_linux_entry_point_addr = addr + 2 * PPC_INSN_SIZE;
}
return ppc_linux_entry_point_addr;
}
/* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
int
ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
{
/* If we do not have a target description with registers, then
the special registers will not be included in the register set. */
if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
return 0;
/* If we do, then it is safe to check the size. */
return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
&& register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
}
/* Return the current system call's number present in the
r0 register. When the function fails, it returns -1. */
static LONGEST
ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
ptid_t ptid)
{
struct regcache *regcache = get_thread_regcache (ptid);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct cleanup *cleanbuf;
/* The content of a register */
gdb_byte *buf;
/* The result */
LONGEST ret;
/* Make sure we're in a 32- or 64-bit machine */
gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte));
cleanbuf = make_cleanup (xfree, buf);
/* Getting the system call number from the register.
When dealing with PowerPC architecture, this information
is stored at 0th register. */
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf);
ret = extract_signed_integer (buf, tdep->wordsize, byte_order);
do_cleanups (cleanbuf);
return ret;
}
static void
ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
/* Set special TRAP register to -1 to prevent the kernel from
messing with the PC we just installed, if we happen to be
within an interrupted system call that the kernel wants to
restart.
Note that after we return from the dummy call, the TRAP and
ORIG_R3 registers will be automatically restored, and the
kernel continues to restart the system call at this point. */
if (ppc_linux_trap_reg_p (gdbarch))
regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
}
static int
ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
{
return strncmp (bfd_section_name (abfd, asect), "SPU/", 4) == 0;
}
static const struct target_desc *
ppc_linux_core_read_description (struct gdbarch *gdbarch,
struct target_ops *target,
bfd *abfd)
{
asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
asection *section = bfd_get_section_by_name (abfd, ".reg");
if (! section)
return NULL;
switch (bfd_section_size (abfd, section))
{
case 48 * 4:
if (cell)
return tdesc_powerpc_cell32l;
else if (vsx)
return tdesc_powerpc_vsx32l;
else if (altivec)
return tdesc_powerpc_altivec32l;
else
return tdesc_powerpc_32l;
case 48 * 8:
if (cell)
return tdesc_powerpc_cell64l;
else if (vsx)
return tdesc_powerpc_vsx64l;
else if (altivec)
return tdesc_powerpc_altivec64l;
else
return tdesc_powerpc_64l;
default:
return NULL;
}
}
/* Cell/B.E. active SPE context tracking support. */
static struct objfile *spe_context_objfile = NULL;
static CORE_ADDR spe_context_lm_addr = 0;
static CORE_ADDR spe_context_offset = 0;
static ptid_t spe_context_cache_ptid;
static CORE_ADDR spe_context_cache_address;
/* Hook into inferior_created, solib_loaded, and solib_unloaded observers
to track whether we've loaded a version of libspe2 (as static or dynamic
library) that provides the __spe_current_active_context variable. */
static void
ppc_linux_spe_context_lookup (struct objfile *objfile)
{
struct minimal_symbol *sym;
if (!objfile)
{
spe_context_objfile = NULL;
spe_context_lm_addr = 0;
spe_context_offset = 0;
spe_context_cache_ptid = minus_one_ptid;
spe_context_cache_address = 0;
return;
}
sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
if (sym)
{
spe_context_objfile = objfile;
spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
spe_context_offset = SYMBOL_VALUE_ADDRESS (sym);
spe_context_cache_ptid = minus_one_ptid;
spe_context_cache_address = 0;
return;
}
}
static void
ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
{
struct objfile *objfile;
ppc_linux_spe_context_lookup (NULL);
ALL_OBJFILES (objfile)
ppc_linux_spe_context_lookup (objfile);
}
static void
ppc_linux_spe_context_solib_loaded (struct so_list *so)
{
if (strstr (so->so_original_name, "/libspe") != NULL)
{
solib_read_symbols (so, so->from_tty ? SYMFILE_VERBOSE : 0);
ppc_linux_spe_context_lookup (so->objfile);
}
}
static void
ppc_linux_spe_context_solib_unloaded (struct so_list *so)
{
if (so->objfile == spe_context_objfile)
ppc_linux_spe_context_lookup (NULL);
}
/* Retrieve contents of the N'th element in the current thread's
linked SPE context list into ID and NPC. Return the address of
said context element, or 0 if not found. */
static CORE_ADDR
ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
int n, int *id, unsigned int *npc)
{
CORE_ADDR spe_context = 0;
gdb_byte buf[16];
int i;
/* Quick exit if we have not found __spe_current_active_context. */
if (!spe_context_objfile)
return 0;
/* Look up cached address of thread-local variable. */
if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
{
struct target_ops *target = ¤t_target;
volatile struct gdb_exception ex;
while (target && !target->to_get_thread_local_address)
target = find_target_beneath (target);
if (!target)
return 0;
TRY_CATCH (ex, RETURN_MASK_ERROR)
{
/* We do not call target_translate_tls_address here, because
svr4_fetch_objfile_link_map may invalidate the frame chain,
which must not do while inside a frame sniffer.
Instead, we have cached the lm_addr value, and use that to
directly call the target's to_get_thread_local_address. */
spe_context_cache_address
= target->to_get_thread_local_address (target, inferior_ptid,
spe_context_lm_addr,
spe_context_offset);
spe_context_cache_ptid = inferior_ptid;
}
if (ex.reason < 0)
return 0;
}
/* Read variable value. */
if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
/* Cyle through to N'th linked list element. */
for (i = 0; i < n && spe_context; i++)
if (target_read_memory (spe_context + align_up (12, wordsize),
buf, wordsize) == 0)
spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
else
spe_context = 0;
/* Read current context. */
if (spe_context
&& target_read_memory (spe_context, buf, 12) != 0)
spe_context = 0;
/* Extract data elements. */
if (spe_context)
{
if (id)
*id = extract_signed_integer (buf, 4, byte_order);
if (npc)
*npc = extract_unsigned_integer (buf + 4, 4, byte_order);
}
return spe_context;
}
/* Cell/B.E. cross-architecture unwinder support. */
struct ppu2spu_cache
{
struct frame_id frame_id;
struct regcache *regcache;
};
static struct gdbarch *
ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
{
struct ppu2spu_cache *cache = *this_cache;
return get_regcache_arch (cache->regcache);
}
static void
ppu2spu_this_id (struct frame_info *this_frame,
void **this_cache, struct frame_id *this_id)
{
struct ppu2spu_cache *cache = *this_cache;
*this_id = cache->frame_id;
}
static struct value *
ppu2spu_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
struct ppu2spu_cache *cache = *this_cache;
struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
gdb_byte *buf;
buf = alloca (register_size (gdbarch, regnum));
regcache_cooked_read (cache->regcache, regnum, buf);
return frame_unwind_got_bytes (this_frame, regnum, buf);
}
struct ppu2spu_data
{
struct gdbarch *gdbarch;
int id;
unsigned int npc;
gdb_byte gprs[128*16];
};
static int
ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
{
struct ppu2spu_data *data = src;
enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
if (regnum >= 0 && regnum < SPU_NUM_GPRS)
memcpy (buf, data->gprs + 16*regnum, 16);
else if (regnum == SPU_ID_REGNUM)
store_unsigned_integer (buf, 4, byte_order, data->id);
else if (regnum == SPU_PC_REGNUM)
store_unsigned_integer (buf, 4, byte_order, data->npc);
else
return 0;
return 1;
}
static int
ppu2spu_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame, void **this_prologue_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct ppu2spu_data data;
struct frame_info *fi;
CORE_ADDR base, func, backchain, spe_context;
gdb_byte buf[8];
int n = 0;
/* Count the number of SPU contexts already in the frame chain. */
for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
if (get_frame_type (fi) == ARCH_FRAME
&& gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
n++;
base = get_frame_sp (this_frame);
func = get_frame_pc (this_frame);
if (target_read_memory (base, buf, tdep->wordsize))
return 0;
backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
n, &data.id, &data.npc);
if (spe_context && base <= spe_context && spe_context < backchain)
{
char annex[32];
/* Find gdbarch for SPU. */
struct gdbarch_info info;
gdbarch_info_init (&info);
info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
info.byte_order = BFD_ENDIAN_BIG;
info.osabi = GDB_OSABI_LINUX;
info.tdep_info = (void *) &data.id;
data.gdbarch = gdbarch_find_by_info (info);
if (!data.gdbarch)
return 0;
xsnprintf (annex, sizeof annex, "%d/regs", data.id);
if (target_read (¤t_target, TARGET_OBJECT_SPU, annex,
data.gprs, 0, sizeof data.gprs)
== sizeof data.gprs)
{
struct ppu2spu_cache *cache
= FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
struct regcache *regcache = regcache_xmalloc (data.gdbarch);
struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
regcache_save (regcache, ppu2spu_unwind_register, &data);
discard_cleanups (cleanups);
cache->frame_id = frame_id_build (base, func);
cache->regcache = regcache;
*this_prologue_cache = cache;
return 1;
}
}
return 0;
}
static void
ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
{
struct ppu2spu_cache *cache = this_cache;
regcache_xfree (cache->regcache);
}
static const struct frame_unwind ppu2spu_unwind = {
ARCH_FRAME,
ppu2spu_this_id,
ppu2spu_prev_register,
NULL,
ppu2spu_sniffer,
ppu2spu_dealloc_cache,
ppu2spu_prev_arch,
};
static void
ppc_linux_init_abi (struct gdbarch_info info,
struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
/* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
128-bit, they are IBM long double, not IEEE quad long double as
in the System V ABI PowerPC Processor Supplement. We can safely
let them default to 128-bit, since the debug info will give the
size of type actually used in each case. */
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
/* Handle inferior calls during interrupted system calls. */
set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
/* Get the syscall number from the arch's register. */
set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
if (tdep->wordsize == 4)
{
/* Until November 2001, gcc did not comply with the 32 bit SysV
R4 ABI requirement that structures less than or equal to 8
bytes should be returned in registers. Instead GCC was using
the the AIX/PowerOpen ABI - everything returned in memory
(well ignoring vectors that is). When this was corrected, it
wasn't fixed for GNU/Linux native platform. Use the
PowerOpen struct convention. */
set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
set_gdbarch_memory_remove_breakpoint (gdbarch,
ppc_linux_memory_remove_breakpoint);
/* Shared library handling. */
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
/* Setting the correct XML syscall filename. */
set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC);
/* Trampolines. */
tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
/* BFD target for core files. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
else
set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
}
if (tdep->wordsize == 8)
{
/* Handle PPC GNU/Linux 64-bit function pointers (which are really
function descriptors). */
set_gdbarch_convert_from_func_ptr_addr
(gdbarch, ppc64_linux_convert_from_func_ptr_addr);
/* Shared library handling. */
set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_lp64_fetch_link_map_offsets);
/* Setting the correct XML syscall filename. */
set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC64);
/* Trampolines. */
tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
/* BFD target for core files. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
else
set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
}
set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
/* Supported register sections. */
if (tdesc_find_feature (info.target_desc,
"org.gnu.gdb.power.vsx"))
set_gdbarch_core_regset_sections (gdbarch, ppc_linux_vsx_regset_sections);
else if (tdesc_find_feature (info.target_desc,
"org.gnu.gdb.power.altivec"))
set_gdbarch_core_regset_sections (gdbarch, ppc_linux_vmx_regset_sections);
else
set_gdbarch_core_regset_sections (gdbarch, ppc_linux_fp_regset_sections);
/* Enable TLS support. */
set_gdbarch_fetch_tls_load_module_address (gdbarch,
svr4_fetch_objfile_link_map);
if (tdesc_data)
{
const struct tdesc_feature *feature;
/* If we have target-described registers, then we can safely
reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
(whether they are described or not). */
gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
/* If they are present, then assign them to the reserved number. */
feature = tdesc_find_feature (info.target_desc,
"org.gnu.gdb.power.linux");
if (feature != NULL)
{
tdesc_numbered_register (feature, tdesc_data,
PPC_ORIG_R3_REGNUM, "orig_r3");
tdesc_numbered_register (feature, tdesc_data,
PPC_TRAP_REGNUM, "trap");
}
}
/* Enable Cell/B.E. if supported by the target. */
if (tdesc_compatible_p (info.target_desc,
bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
{
/* Cell/B.E. multi-architecture support. */
set_spu_solib_ops (gdbarch);
/* Cell/B.E. cross-architecture unwinder support. */
frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
/* The default displaced_step_at_entry_point doesn't work for
SPU stand-alone executables. */
set_gdbarch_displaced_step_location (gdbarch,
ppc_linux_displaced_step_location);
}
}
/* Provide a prototype to silence -Wmissing-prototypes. */
extern initialize_file_ftype _initialize_ppc_linux_tdep;
void
_initialize_ppc_linux_tdep (void)
{
/* Register for all sub-familes of the POWER/PowerPC: 32-bit and
64-bit PowerPC, and the older rs6k. */
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
ppc_linux_init_abi);
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
ppc_linux_init_abi);
gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
ppc_linux_init_abi);
/* Attach to inferior_created observer. */
observer_attach_inferior_created (ppc_linux_inferior_created);
/* Attach to observers to track __spe_current_active_context. */
observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
/* Initialize the Linux target descriptions. */
initialize_tdesc_powerpc_32l ();
initialize_tdesc_powerpc_altivec32l ();
initialize_tdesc_powerpc_cell32l ();
initialize_tdesc_powerpc_vsx32l ();
initialize_tdesc_powerpc_isa205_32l ();
initialize_tdesc_powerpc_isa205_altivec32l ();
initialize_tdesc_powerpc_isa205_vsx32l ();
initialize_tdesc_powerpc_64l ();
initialize_tdesc_powerpc_altivec64l ();
initialize_tdesc_powerpc_cell64l ();
initialize_tdesc_powerpc_vsx64l ();
initialize_tdesc_powerpc_isa205_64l ();
initialize_tdesc_powerpc_isa205_altivec64l ();
initialize_tdesc_powerpc_isa205_vsx64l ();
initialize_tdesc_powerpc_e500l ();
}
|