aboutsummaryrefslogtreecommitdiff
path: root/gdb/ppc-linux-nat.c
blob: 27c73c217ee4e7b1b6164d58a589302d101ea279 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
/* PPC GNU/Linux native support.

   Copyright (C) 1988-2018 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "observable.h"
#include "frame.h"
#include "inferior.h"
#include "gdbthread.h"
#include "gdbcore.h"
#include "regcache.h"
#include "regset.h"
#include "target.h"
#include "linux-nat.h"
#include <sys/types.h>
#include <signal.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <sys/uio.h>
#include "gdb_wait.h"
#include <fcntl.h>
#include <sys/procfs.h>
#include "nat/gdb_ptrace.h"
#include "inf-ptrace.h"

/* Prototypes for supply_gregset etc.  */
#include "gregset.h"
#include "ppc-tdep.h"
#include "ppc-linux-tdep.h"

/* Required when using the AUXV.  */
#include "elf/common.h"
#include "auxv.h"

#include "arch/ppc-linux-common.h"
#include "arch/ppc-linux-tdesc.h"
#include "nat/ppc-linux.h"

/* Similarly for the hardware watchpoint support.  These requests are used
   when the PowerPC HWDEBUG ptrace interface is not available.  */
#ifndef PTRACE_GET_DEBUGREG
#define PTRACE_GET_DEBUGREG    25
#endif
#ifndef PTRACE_SET_DEBUGREG
#define PTRACE_SET_DEBUGREG    26
#endif
#ifndef PTRACE_GETSIGINFO
#define PTRACE_GETSIGINFO    0x4202
#endif

/* These requests are used when the PowerPC HWDEBUG ptrace interface is
   available.  It exposes the debug facilities of PowerPC processors, as well
   as additional features of BookE processors, such as ranged breakpoints and
   watchpoints and hardware-accelerated condition evaluation.  */
#ifndef PPC_PTRACE_GETHWDBGINFO

/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG 
   ptrace interface is not present in ptrace.h, so we'll have to pretty much
   include it all here so that the code at least compiles on older systems.  */
#define PPC_PTRACE_GETHWDBGINFO 0x89
#define PPC_PTRACE_SETHWDEBUG   0x88
#define PPC_PTRACE_DELHWDEBUG   0x87

struct ppc_debug_info
{
        uint32_t version;               /* Only version 1 exists to date.  */
        uint32_t num_instruction_bps;
        uint32_t num_data_bps;
        uint32_t num_condition_regs;
        uint32_t data_bp_alignment;
        uint32_t sizeof_condition;      /* size of the DVC register.  */
        uint64_t features;
};

/* Features will have bits indicating whether there is support for:  */
#define PPC_DEBUG_FEATURE_INSN_BP_RANGE         0x1
#define PPC_DEBUG_FEATURE_INSN_BP_MASK          0x2
#define PPC_DEBUG_FEATURE_DATA_BP_RANGE         0x4
#define PPC_DEBUG_FEATURE_DATA_BP_MASK          0x8

struct ppc_hw_breakpoint
{
        uint32_t version;               /* currently, version must be 1 */
        uint32_t trigger_type;          /* only some combinations allowed */
        uint32_t addr_mode;             /* address match mode */
        uint32_t condition_mode;        /* break/watchpoint condition flags */
        uint64_t addr;                  /* break/watchpoint address */
        uint64_t addr2;                 /* range end or mask */
        uint64_t condition_value;       /* contents of the DVC register */
};

/* Trigger type.  */
#define PPC_BREAKPOINT_TRIGGER_EXECUTE  0x1
#define PPC_BREAKPOINT_TRIGGER_READ     0x2
#define PPC_BREAKPOINT_TRIGGER_WRITE    0x4
#define PPC_BREAKPOINT_TRIGGER_RW       0x6

/* Address mode.  */
#define PPC_BREAKPOINT_MODE_EXACT               0x0
#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE     0x1
#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE     0x2
#define PPC_BREAKPOINT_MODE_MASK                0x3

/* Condition mode.  */
#define PPC_BREAKPOINT_CONDITION_NONE   0x0
#define PPC_BREAKPOINT_CONDITION_AND    0x1
#define PPC_BREAKPOINT_CONDITION_EXACT  0x1
#define PPC_BREAKPOINT_CONDITION_OR     0x2
#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
#define PPC_BREAKPOINT_CONDITION_BE_SHIFT       16
#define PPC_BREAKPOINT_CONDITION_BE(n)  \
        (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
#endif /* PPC_PTRACE_GETHWDBGINFO */

/* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
   watchpoint (up to 512 bytes).  */
#ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
#define PPC_DEBUG_FEATURE_DATA_BP_DAWR	0x10
#endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */

/* Similarly for the general-purpose (gp0 -- gp31)
   and floating-point registers (fp0 -- fp31).  */
#ifndef PTRACE_GETREGS
#define PTRACE_GETREGS 12
#endif
#ifndef PTRACE_SETREGS
#define PTRACE_SETREGS 13
#endif
#ifndef PTRACE_GETFPREGS
#define PTRACE_GETFPREGS 14
#endif
#ifndef PTRACE_SETFPREGS
#define PTRACE_SETFPREGS 15
#endif

/* This oddity is because the Linux kernel defines elf_vrregset_t as
   an array of 33 16 bytes long elements.  I.e. it leaves out vrsave.
   However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
   the vrsave as an extra 4 bytes at the end.  I opted for creating a
   flat array of chars, so that it is easier to manipulate for gdb.

   There are 32 vector registers 16 bytes longs, plus a VSCR register
   which is only 4 bytes long, but is fetched as a 16 bytes
   quantity.  Up to here we have the elf_vrregset_t structure.
   Appended to this there is space for the VRSAVE register: 4 bytes.
   Even though this vrsave register is not included in the regset
   typedef, it is handled by the ptrace requests.

   The layout is like this (where x is the actual value of the vscr reg): */

/* *INDENT-OFF* */
/*
Big-Endian:
   |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
   <------->     <-------><-------><->
     VR0           VR31     VSCR    VRSAVE
Little-Endian:
   |.|.|.|.|.....|.|.|.|.||X|.|.|.||.|
   <------->     <-------><-------><->
     VR0           VR31     VSCR    VRSAVE
*/
/* *INDENT-ON* */

typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET];

/* This is the layout of the POWER7 VSX registers and the way they overlap
   with the existing FPR and VMX registers.

                    VSR doubleword 0               VSR doubleword 1
           ----------------------------------------------------------------
   VSR[0]  |             FPR[0]            |                              |
           ----------------------------------------------------------------
   VSR[1]  |             FPR[1]            |                              |
           ----------------------------------------------------------------
           |              ...              |                              |
           |              ...              |                              |
           ----------------------------------------------------------------
   VSR[30] |             FPR[30]           |                              |
           ----------------------------------------------------------------
   VSR[31] |             FPR[31]           |                              |
           ----------------------------------------------------------------
   VSR[32] |                             VR[0]                            |
           ----------------------------------------------------------------
   VSR[33] |                             VR[1]                            |
           ----------------------------------------------------------------
           |                              ...                             |
           |                              ...                             |
           ----------------------------------------------------------------
   VSR[62] |                             VR[30]                           |
           ----------------------------------------------------------------
   VSR[63] |                             VR[31]                           |
          ----------------------------------------------------------------

   VSX has 64 128bit registers.  The first 32 registers overlap with
   the FP registers (doubleword 0) and hence extend them with additional
   64 bits (doubleword 1).  The other 32 regs overlap with the VMX
   registers.  */
typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET];

/* On PPC processors that support the Signal Processing Extension
   (SPE) APU, the general-purpose registers are 64 bits long.
   However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
   ptrace calls only access the lower half of each register, to allow
   them to behave the same way they do on non-SPE systems.  There's a
   separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
   read and write the top halves of all the general-purpose registers
   at once, along with some SPE-specific registers.

   GDB itself continues to claim the general-purpose registers are 32
   bits long.  It has unnamed raw registers that hold the upper halves
   of the gprs, and the full 64-bit SIMD views of the registers,
   'ev0' -- 'ev31', are pseudo-registers that splice the top and
   bottom halves together.

   This is the structure filled in by PTRACE_GETEVRREGS and written to
   the inferior's registers by PTRACE_SETEVRREGS.  */
struct gdb_evrregset_t
{
  unsigned long evr[32];
  unsigned long long acc;
  unsigned long spefscr;
};

/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
   PTRACE_SETVSXREGS requests, for reading and writing the VSX
   POWER7 registers 0 through 31.  Zero if we've tried one of them and
   gotten an error.  Note that VSX registers 32 through 63 overlap
   with VR registers 0 through 31.  */
int have_ptrace_getsetvsxregs = 1;

/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
   PTRACE_SETVRREGS requests, for reading and writing the Altivec
   registers.  Zero if we've tried one of them and gotten an
   error.  */
int have_ptrace_getvrregs = 1;

/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
   PTRACE_SETEVRREGS requests, for reading and writing the SPE
   registers.  Zero if we've tried one of them and gotten an
   error.  */
int have_ptrace_getsetevrregs = 1;

/* Non-zero if our kernel may support the PTRACE_GETREGS and
   PTRACE_SETREGS requests, for reading and writing the
   general-purpose registers.  Zero if we've tried one of
   them and gotten an error.  */
int have_ptrace_getsetregs = 1;

/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
   PTRACE_SETFPREGS requests, for reading and writing the
   floating-pointers registers.  Zero if we've tried one of
   them and gotten an error.  */
int have_ptrace_getsetfpregs = 1;

struct ppc_linux_nat_target final : public linux_nat_target
{
  /* Add our register access methods.  */
  void fetch_registers (struct regcache *, int) override;
  void store_registers (struct regcache *, int) override;

  /* Add our breakpoint/watchpoint methods.  */
  int can_use_hw_breakpoint (enum bptype, int, int) override;

  int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
    override;

  int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
    override;

  int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;

  int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
			 struct expression *) override;

  int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
			 struct expression *) override;

  int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
    override;

  int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
    override;

  bool stopped_by_watchpoint () override;

  bool stopped_data_address (CORE_ADDR *) override;

  bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;

  bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
    override;

  int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;

  int ranged_break_num_registers () override;

  const struct target_desc *read_description ()  override;

  int auxv_parse (gdb_byte **readptr,
		  gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
    override;

  /* Override linux_nat_target low methods.  */
  void low_new_thread (struct lwp_info *lp) override;
};

static ppc_linux_nat_target the_ppc_linux_nat_target;

/* *INDENT-OFF* */
/* registers layout, as presented by the ptrace interface:
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
/* *INDENT_ON * */

static int
ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
{
  int u_addr = -1;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
     interface, and not the wordsize of the program's ABI.  */
  int wordsize = sizeof (long);

  /* General purpose registers occupy 1 slot each in the buffer.  */
  if (regno >= tdep->ppc_gp0_regnum 
      && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
    u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);

  /* Floating point regs: eight bytes each in both 32- and 64-bit
     ptrace interfaces.  Thus, two slots each in 32-bit interface, one
     slot each in 64-bit interface.  */
  if (tdep->ppc_fp0_regnum >= 0
      && regno >= tdep->ppc_fp0_regnum
      && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
    u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);

  /* UISA special purpose registers: 1 slot each.  */
  if (regno == gdbarch_pc_regnum (gdbarch))
    u_addr = PT_NIP * wordsize;
  if (regno == tdep->ppc_lr_regnum)
    u_addr = PT_LNK * wordsize;
  if (regno == tdep->ppc_cr_regnum)
    u_addr = PT_CCR * wordsize;
  if (regno == tdep->ppc_xer_regnum)
    u_addr = PT_XER * wordsize;
  if (regno == tdep->ppc_ctr_regnum)
    u_addr = PT_CTR * wordsize;
#ifdef PT_MQ
  if (regno == tdep->ppc_mq_regnum)
    u_addr = PT_MQ * wordsize;
#endif
  if (regno == tdep->ppc_ps_regnum)
    u_addr = PT_MSR * wordsize;
  if (regno == PPC_ORIG_R3_REGNUM)
    u_addr = PT_ORIG_R3 * wordsize;
  if (regno == PPC_TRAP_REGNUM)
    u_addr = PT_TRAP * wordsize;
  if (tdep->ppc_fpscr_regnum >= 0
      && regno == tdep->ppc_fpscr_regnum)
    {
      /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
	 kernel headers incorrectly contained the 32-bit definition of
	 PT_FPSCR.  For the 32-bit definition, floating-point
	 registers occupy two 32-bit "slots", and the FPSCR lives in
	 the second half of such a slot-pair (hence +1).  For 64-bit,
	 the FPSCR instead occupies the full 64-bit 2-word-slot and
	 hence no adjustment is necessary.  Hack around this.  */
      if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
	u_addr = (48 + 32) * wordsize;
      /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
	 slot and not just its second word.  The PT_FPSCR supplied when
	 GDB is compiled as a 32-bit app doesn't reflect this.  */
      else if (wordsize == 4 && register_size (gdbarch, regno) == 8
	       && PT_FPSCR == (48 + 2*32 + 1))
	u_addr = (48 + 2*32) * wordsize;
      else
	u_addr = PT_FPSCR * wordsize;
    }
  return u_addr;
}

/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
   registers set mechanism, as opposed to the interface for all the
   other registers, that stores/fetches each register individually.  */
static void
fetch_vsx_registers (struct regcache *regcache, int tid, int regno)
{
  int ret;
  gdb_vsxregset_t regs;
  const struct regset *vsxregset = ppc_linux_vsxregset ();

  ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
  if (ret < 0)
    {
      if (errno == EIO)
	{
	  have_ptrace_getsetvsxregs = 0;
	  return;
	}
      perror_with_name (_("Unable to fetch VSX registers"));
    }

  vsxregset->supply_regset (vsxregset, regcache, regno, &regs,
			    PPC_LINUX_SIZEOF_VSXREGSET);
}

/* The Linux kernel ptrace interface for AltiVec registers uses the
   registers set mechanism, as opposed to the interface for all the
   other registers, that stores/fetches each register individually.  */
static void
fetch_altivec_registers (struct regcache *regcache, int tid,
			 int regno)
{
  int ret;
  gdb_vrregset_t regs;
  struct gdbarch *gdbarch = regcache->arch ();
  const struct regset *vrregset = ppc_linux_vrregset (gdbarch);

  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  if (ret < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getvrregs = 0;
          return;
        }
      perror_with_name (_("Unable to fetch AltiVec registers"));
    }

  vrregset->supply_regset (vrregset, regcache, regno, &regs,
			   PPC_LINUX_SIZEOF_VRREGSET);
}

/* Fetch the top 32 bits of TID's general-purpose registers and the
   SPE-specific registers, and place the results in EVRREGSET.  If we
   don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
   zeros.

   All the logic to deal with whether or not the PTRACE_GETEVRREGS and
   PTRACE_SETEVRREGS requests are supported is isolated here, and in
   set_spe_registers.  */
static void
get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
{
  if (have_ptrace_getsetevrregs)
    {
      if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
        return;
      else
        {
          /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
             we just return zeros.  */
          if (errno == EIO)
            have_ptrace_getsetevrregs = 0;
          else
            /* Anything else needs to be reported.  */
            perror_with_name (_("Unable to fetch SPE registers"));
        }
    }

  memset (evrregset, 0, sizeof (*evrregset));
}

/* Supply values from TID for SPE-specific raw registers: the upper
   halves of the GPRs, the accumulator, and the spefscr.  REGNO must
   be the number of an upper half register, acc, spefscr, or -1 to
   supply the values of all registers.  */
static void
fetch_spe_register (struct regcache *regcache, int tid, int regno)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdb_evrregset_t evrregs;

  gdb_assert (sizeof (evrregs.evr[0])
              == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
  gdb_assert (sizeof (evrregs.acc)
              == register_size (gdbarch, tdep->ppc_acc_regnum));
  gdb_assert (sizeof (evrregs.spefscr)
              == register_size (gdbarch, tdep->ppc_spefscr_regnum));

  get_spe_registers (tid, &evrregs);

  if (regno == -1)
    {
      int i;

      for (i = 0; i < ppc_num_gprs; i++)
        regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]);
    }
  else if (tdep->ppc_ev0_upper_regnum <= regno
           && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    regcache->raw_supply (regno,
			  &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);

  if (regno == -1
      || regno == tdep->ppc_acc_regnum)
    regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc);

  if (regno == -1
      || regno == tdep->ppc_spefscr_regnum)
    regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
}

/* Use ptrace to fetch all registers from the register set with note
   type REGSET_ID, size REGSIZE, and layout described by REGSET, from
   process/thread TID and supply their values to REGCACHE.  If ptrace
   returns ENODATA to indicate the regset is unavailable, mark the
   registers as unavailable in REGCACHE.  */

static void
fetch_regset (struct regcache *regcache, int tid,
	      int regset_id, int regsetsize, const struct regset *regset)
{
  void *buf = alloca (regsetsize);
  struct iovec iov;

  iov.iov_base = buf;
  iov.iov_len = regsetsize;

  if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
    {
      if (errno == ENODATA)
	regset->supply_regset (regset, regcache, -1, NULL, regsetsize);
      else
	perror_with_name (_("Couldn't get register set"));
    }
  else
    regset->supply_regset (regset, regcache, -1, buf, regsetsize);
}

/* Use ptrace to store register REGNUM of the regset with note type
   REGSET_ID, size REGSETSIZE, and layout described by REGSET, from
   REGCACHE back to process/thread TID.  If REGNUM is -1 all registers
   in the set are collected and stored.  */

static void
store_regset (const struct regcache *regcache, int tid, int regnum,
	      int regset_id, int regsetsize, const struct regset *regset)
{
  void *buf = alloca (regsetsize);
  struct iovec iov;

  iov.iov_base = buf;
  iov.iov_len = regsetsize;

  /* Make sure that the buffer that will be stored has up to date values
     for the registers that won't be collected.  */
  if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
    perror_with_name (_("Couldn't get register set"));

  regset->collect_regset (regset, regcache, regnum, buf, regsetsize);

  if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0)
    perror_with_name (_("Couldn't set register set"));
}

/* Check whether the kernel provides a register set with number
   REGSET_ID of size REGSETSIZE for process/thread TID.  */

static bool
check_regset (int tid, int regset_id, int regsetsize)
{
  void *buf = alloca (regsetsize);
  struct iovec iov;

  iov.iov_base = buf;
  iov.iov_len = regsetsize;

  if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0
      || errno == ENODATA)
    return true;
  else
    return false;
}

static void
fetch_register (struct regcache *regcache, int tid, int regno)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
  int bytes_transferred;
  gdb_byte buf[PPC_MAX_REGISTER_SIZE];

  if (altivec_register_p (gdbarch, regno))
    {
      /* If this is the first time through, or if it is not the first
         time through, and we have comfirmed that there is kernel
         support for such a ptrace request, then go and fetch the
         register.  */
      if (have_ptrace_getvrregs)
       {
         fetch_altivec_registers (regcache, tid, regno);
         return;
       }
     /* If we have discovered that there is no ptrace support for
        AltiVec registers, fall through and return zeroes, because
        regaddr will be -1 in this case.  */
    }
  else if (vsx_register_p (gdbarch, regno))
    {
      if (have_ptrace_getsetvsxregs)
	{
	  fetch_vsx_registers (regcache, tid, regno);
	  return;
	}
    }
  else if (spe_register_p (gdbarch, regno))
    {
      fetch_spe_register (regcache, tid, regno);
      return;
    }
  else if (regno == PPC_DSCR_REGNUM)
    {
      gdb_assert (tdep->ppc_dscr_regnum != -1);

      fetch_regset (regcache, tid, NT_PPC_DSCR,
		    PPC_LINUX_SIZEOF_DSCRREGSET,
		    &ppc32_linux_dscrregset);
      return;
    }
  else if (regno == PPC_PPR_REGNUM)
    {
      gdb_assert (tdep->ppc_ppr_regnum != -1);

      fetch_regset (regcache, tid, NT_PPC_PPR,
		    PPC_LINUX_SIZEOF_PPRREGSET,
		    &ppc32_linux_pprregset);
      return;
    }

  if (regaddr == -1)
    {
      memset (buf, '\0', register_size (gdbarch, regno));   /* Supply zeroes */
      regcache->raw_supply (regno, buf);
      return;
    }

  /* Read the raw register using sizeof(long) sized chunks.  On a
     32-bit platform, 64-bit floating-point registers will require two
     transfers.  */
  for (bytes_transferred = 0;
       bytes_transferred < register_size (gdbarch, regno);
       bytes_transferred += sizeof (long))
    {
      long l;

      errno = 0;
      l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
      regaddr += sizeof (long);
      if (errno != 0)
	{
          char message[128];
	  xsnprintf (message, sizeof (message), "reading register %s (#%d)",
		     gdbarch_register_name (gdbarch, regno), regno);
	  perror_with_name (message);
	}
      memcpy (&buf[bytes_transferred], &l, sizeof (l));
    }

  /* Now supply the register.  Keep in mind that the regcache's idea
     of the register's size may not be a multiple of sizeof
     (long).  */
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
    {
      /* Little-endian values are always found at the left end of the
         bytes transferred.  */
      regcache->raw_supply (regno, buf);
    }
  else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
      /* Big-endian values are found at the right end of the bytes
         transferred.  */
      size_t padding = (bytes_transferred - register_size (gdbarch, regno));
      regcache->raw_supply (regno, buf + padding);
    }
  else 
    internal_error (__FILE__, __LINE__,
                    _("fetch_register: unexpected byte order: %d"),
                    gdbarch_byte_order (gdbarch));
}

/* This function actually issues the request to ptrace, telling
   it to get all general-purpose registers and put them into the
   specified regset.
   
   If the ptrace request does not exist, this function returns 0
   and properly sets the have_ptrace_* flag.  If the request fails,
   this function calls perror_with_name.  Otherwise, if the request
   succeeds, then the regcache gets filled and 1 is returned.  */
static int
fetch_all_gp_regs (struct regcache *regcache, int tid)
{
  gdb_gregset_t gregset;

  if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getsetregs = 0;
          return 0;
        }
      perror_with_name (_("Couldn't get general-purpose registers."));
    }

  supply_gregset (regcache, (const gdb_gregset_t *) &gregset);

  return 1;
}

/* This is a wrapper for the fetch_all_gp_regs function.  It is
   responsible for verifying if this target has the ptrace request
   that can be used to fetch all general-purpose registers at one
   shot.  If it doesn't, then we should fetch them using the
   old-fashioned way, which is to iterate over the registers and
   request them one by one.  */
static void
fetch_gp_regs (struct regcache *regcache, int tid)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;

  if (have_ptrace_getsetregs)
    if (fetch_all_gp_regs (regcache, tid))
      return;

  /* If we've hit this point, it doesn't really matter which
     architecture we are using.  We just need to read the
     registers in the "old-fashioned way".  */
  for (i = 0; i < ppc_num_gprs; i++)
    fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
}

/* This function actually issues the request to ptrace, telling
   it to get all floating-point registers and put them into the
   specified regset.
   
   If the ptrace request does not exist, this function returns 0
   and properly sets the have_ptrace_* flag.  If the request fails,
   this function calls perror_with_name.  Otherwise, if the request
   succeeds, then the regcache gets filled and 1 is returned.  */
static int
fetch_all_fp_regs (struct regcache *regcache, int tid)
{
  gdb_fpregset_t fpregs;

  if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getsetfpregs = 0;
          return 0;
        }
      perror_with_name (_("Couldn't get floating-point registers."));
    }

  supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);

  return 1;
}

/* This is a wrapper for the fetch_all_fp_regs function.  It is
   responsible for verifying if this target has the ptrace request
   that can be used to fetch all floating-point registers at one
   shot.  If it doesn't, then we should fetch them using the
   old-fashioned way, which is to iterate over the registers and
   request them one by one.  */
static void
fetch_fp_regs (struct regcache *regcache, int tid)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;

  if (have_ptrace_getsetfpregs)
    if (fetch_all_fp_regs (regcache, tid))
      return;
 
  /* If we've hit this point, it doesn't really matter which
     architecture we are using.  We just need to read the
     registers in the "old-fashioned way".  */
  for (i = 0; i < ppc_num_fprs; i++)
    fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
}

static void 
fetch_ppc_registers (struct regcache *regcache, int tid)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  fetch_gp_regs (regcache, tid);
  if (tdep->ppc_fp0_regnum >= 0)
    fetch_fp_regs (regcache, tid);
  fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
  if (tdep->ppc_ps_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_ps_regnum);
  if (tdep->ppc_cr_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_cr_regnum);
  if (tdep->ppc_lr_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_lr_regnum);
  if (tdep->ppc_ctr_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
  if (tdep->ppc_xer_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_xer_regnum);
  if (tdep->ppc_mq_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_mq_regnum);
  if (ppc_linux_trap_reg_p (gdbarch))
    {
      fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
      fetch_register (regcache, tid, PPC_TRAP_REGNUM);
    }
  if (tdep->ppc_fpscr_regnum != -1)
    fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
  if (have_ptrace_getvrregs)
    if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
      fetch_altivec_registers (regcache, tid, -1);
  if (have_ptrace_getsetvsxregs)
    if (tdep->ppc_vsr0_upper_regnum != -1)
      fetch_vsx_registers (regcache, tid, -1);
  if (tdep->ppc_ev0_upper_regnum >= 0)
    fetch_spe_register (regcache, tid, -1);
  if (tdep->ppc_ppr_regnum != -1)
    fetch_regset (regcache, tid, NT_PPC_PPR,
		  PPC_LINUX_SIZEOF_PPRREGSET,
		  &ppc32_linux_pprregset);
  if (tdep->ppc_dscr_regnum != -1)
    fetch_regset (regcache, tid, NT_PPC_DSCR,
		  PPC_LINUX_SIZEOF_DSCRREGSET,
		  &ppc32_linux_dscrregset);
}

/* Fetch registers from the child process.  Fetch all registers if
   regno == -1, otherwise fetch all general registers or all floating
   point registers depending upon the value of regno.  */
void
ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
{
  pid_t tid = get_ptrace_pid (regcache->ptid ());

  if (regno == -1)
    fetch_ppc_registers (regcache, tid);
  else 
    fetch_register (regcache, tid, regno);
}

static void
store_vsx_registers (const struct regcache *regcache, int tid, int regno)
{
  int ret;
  gdb_vsxregset_t regs;
  const struct regset *vsxregset = ppc_linux_vsxregset ();

  ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
  if (ret < 0)
    {
      if (errno == EIO)
	{
	  have_ptrace_getsetvsxregs = 0;
	  return;
	}
      perror_with_name (_("Unable to fetch VSX registers"));
    }

  vsxregset->collect_regset (vsxregset, regcache, regno, &regs,
			     PPC_LINUX_SIZEOF_VSXREGSET);

  ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
  if (ret < 0)
    perror_with_name (_("Unable to store VSX registers"));
}

static void
store_altivec_registers (const struct regcache *regcache, int tid,
			 int regno)
{
  int ret;
  gdb_vrregset_t regs;
  struct gdbarch *gdbarch = regcache->arch ();
  const struct regset *vrregset = ppc_linux_vrregset (gdbarch);

  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  if (ret < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getvrregs = 0;
          return;
        }
      perror_with_name (_("Unable to fetch AltiVec registers"));
    }

  vrregset->collect_regset (vrregset, regcache, regno, &regs,
			    PPC_LINUX_SIZEOF_VRREGSET);

  ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
  if (ret < 0)
    perror_with_name (_("Unable to store AltiVec registers"));
}

/* Assuming TID referrs to an SPE process, set the top halves of TID's
   general-purpose registers and its SPE-specific registers to the
   values in EVRREGSET.  If we don't support PTRACE_SETEVRREGS, do
   nothing.

   All the logic to deal with whether or not the PTRACE_GETEVRREGS and
   PTRACE_SETEVRREGS requests are supported is isolated here, and in
   get_spe_registers.  */
static void
set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
{
  if (have_ptrace_getsetevrregs)
    {
      if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
        return;
      else
        {
          /* EIO means that the PTRACE_SETEVRREGS request isn't
             supported; we fail silently, and don't try the call
             again.  */
          if (errno == EIO)
            have_ptrace_getsetevrregs = 0;
          else
            /* Anything else needs to be reported.  */
            perror_with_name (_("Unable to set SPE registers"));
        }
    }
}

/* Write GDB's value for the SPE-specific raw register REGNO to TID.
   If REGNO is -1, write the values of all the SPE-specific
   registers.  */
static void
store_spe_register (const struct regcache *regcache, int tid, int regno)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdb_evrregset_t evrregs;

  gdb_assert (sizeof (evrregs.evr[0])
              == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
  gdb_assert (sizeof (evrregs.acc)
              == register_size (gdbarch, tdep->ppc_acc_regnum));
  gdb_assert (sizeof (evrregs.spefscr)
              == register_size (gdbarch, tdep->ppc_spefscr_regnum));

  if (regno == -1)
    /* Since we're going to write out every register, the code below
       should store to every field of evrregs; if that doesn't happen,
       make it obvious by initializing it with suspicious values.  */
    memset (&evrregs, 42, sizeof (evrregs));
  else
    /* We can only read and write the entire EVR register set at a
       time, so to write just a single register, we do a
       read-modify-write maneuver.  */
    get_spe_registers (tid, &evrregs);

  if (regno == -1)
    {
      int i;

      for (i = 0; i < ppc_num_gprs; i++)
	regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i,
			       &evrregs.evr[i]);
    }
  else if (tdep->ppc_ev0_upper_regnum <= regno
           && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    regcache->raw_collect (regno,
			   &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);

  if (regno == -1
      || regno == tdep->ppc_acc_regnum)
    regcache->raw_collect (tdep->ppc_acc_regnum,
			   &evrregs.acc);

  if (regno == -1
      || regno == tdep->ppc_spefscr_regnum)
    regcache->raw_collect (tdep->ppc_spefscr_regnum,
			   &evrregs.spefscr);

  /* Write back the modified register set.  */
  set_spe_registers (tid, &evrregs);
}

static void
store_register (const struct regcache *regcache, int tid, int regno)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
  int i;
  size_t bytes_to_transfer;
  gdb_byte buf[PPC_MAX_REGISTER_SIZE];

  if (altivec_register_p (gdbarch, regno))
    {
      store_altivec_registers (regcache, tid, regno);
      return;
    }
  else if (vsx_register_p (gdbarch, regno))
    {
      store_vsx_registers (regcache, tid, regno);
      return;
    }
  else if (spe_register_p (gdbarch, regno))
    {
      store_spe_register (regcache, tid, regno);
      return;
    }
  else if (regno == PPC_DSCR_REGNUM)
    {
      gdb_assert (tdep->ppc_dscr_regnum != -1);

      store_regset (regcache, tid, regno, NT_PPC_DSCR,
		    PPC_LINUX_SIZEOF_DSCRREGSET,
		    &ppc32_linux_dscrregset);
      return;
    }
  else if (regno == PPC_PPR_REGNUM)
    {
      gdb_assert (tdep->ppc_ppr_regnum != -1);

      store_regset (regcache, tid, regno, NT_PPC_PPR,
		    PPC_LINUX_SIZEOF_PPRREGSET,
		    &ppc32_linux_pprregset);
      return;
    }

  if (regaddr == -1)
    return;

  /* First collect the register.  Keep in mind that the regcache's
     idea of the register's size may not be a multiple of sizeof
     (long).  */
  memset (buf, 0, sizeof buf);
  bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
    {
      /* Little-endian values always sit at the left end of the buffer.  */
      regcache->raw_collect (regno, buf);
    }
  else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
      /* Big-endian values sit at the right end of the buffer.  */
      size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
      regcache->raw_collect (regno, buf + padding);
    }

  for (i = 0; i < bytes_to_transfer; i += sizeof (long))
    {
      long l;

      memcpy (&l, &buf[i], sizeof (l));
      errno = 0;
      ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
      regaddr += sizeof (long);

      if (errno == EIO 
          && (regno == tdep->ppc_fpscr_regnum
	      || regno == PPC_ORIG_R3_REGNUM
	      || regno == PPC_TRAP_REGNUM))
	{
	  /* Some older kernel versions don't allow fpscr, orig_r3
	     or trap to be written.  */
	  continue;
	}

      if (errno != 0)
	{
          char message[128];
	  xsnprintf (message, sizeof (message), "writing register %s (#%d)",
		     gdbarch_register_name (gdbarch, regno), regno);
	  perror_with_name (message);
	}
    }
}

/* This function actually issues the request to ptrace, telling
   it to store all general-purpose registers present in the specified
   regset.
   
   If the ptrace request does not exist, this function returns 0
   and properly sets the have_ptrace_* flag.  If the request fails,
   this function calls perror_with_name.  Otherwise, if the request
   succeeds, then the regcache is stored and 1 is returned.  */
static int
store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
{
  gdb_gregset_t gregset;

  if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getsetregs = 0;
          return 0;
        }
      perror_with_name (_("Couldn't get general-purpose registers."));
    }

  fill_gregset (regcache, &gregset, regno);

  if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getsetregs = 0;
          return 0;
        }
      perror_with_name (_("Couldn't set general-purpose registers."));
    }

  return 1;
}

/* This is a wrapper for the store_all_gp_regs function.  It is
   responsible for verifying if this target has the ptrace request
   that can be used to store all general-purpose registers at one
   shot.  If it doesn't, then we should store them using the
   old-fashioned way, which is to iterate over the registers and
   store them one by one.  */
static void
store_gp_regs (const struct regcache *regcache, int tid, int regno)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;

  if (have_ptrace_getsetregs)
    if (store_all_gp_regs (regcache, tid, regno))
      return;

  /* If we hit this point, it doesn't really matter which
     architecture we are using.  We just need to store the
     registers in the "old-fashioned way".  */
  for (i = 0; i < ppc_num_gprs; i++)
    store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
}

/* This function actually issues the request to ptrace, telling
   it to store all floating-point registers present in the specified
   regset.
   
   If the ptrace request does not exist, this function returns 0
   and properly sets the have_ptrace_* flag.  If the request fails,
   this function calls perror_with_name.  Otherwise, if the request
   succeeds, then the regcache is stored and 1 is returned.  */
static int
store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
{
  gdb_fpregset_t fpregs;

  if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getsetfpregs = 0;
          return 0;
        }
      perror_with_name (_("Couldn't get floating-point registers."));
    }

  fill_fpregset (regcache, &fpregs, regno);

  if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getsetfpregs = 0;
          return 0;
        }
      perror_with_name (_("Couldn't set floating-point registers."));
    }

  return 1;
}

/* This is a wrapper for the store_all_fp_regs function.  It is
   responsible for verifying if this target has the ptrace request
   that can be used to store all floating-point registers at one
   shot.  If it doesn't, then we should store them using the
   old-fashioned way, which is to iterate over the registers and
   store them one by one.  */
static void
store_fp_regs (const struct regcache *regcache, int tid, int regno)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;

  if (have_ptrace_getsetfpregs)
    if (store_all_fp_regs (regcache, tid, regno))
      return;

  /* If we hit this point, it doesn't really matter which
     architecture we are using.  We just need to store the
     registers in the "old-fashioned way".  */
  for (i = 0; i < ppc_num_fprs; i++)
    store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
}

static void
store_ppc_registers (const struct regcache *regcache, int tid)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
  store_gp_regs (regcache, tid, -1);
  if (tdep->ppc_fp0_regnum >= 0)
    store_fp_regs (regcache, tid, -1);
  store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
  if (tdep->ppc_ps_regnum != -1)
    store_register (regcache, tid, tdep->ppc_ps_regnum);
  if (tdep->ppc_cr_regnum != -1)
    store_register (regcache, tid, tdep->ppc_cr_regnum);
  if (tdep->ppc_lr_regnum != -1)
    store_register (regcache, tid, tdep->ppc_lr_regnum);
  if (tdep->ppc_ctr_regnum != -1)
    store_register (regcache, tid, tdep->ppc_ctr_regnum);
  if (tdep->ppc_xer_regnum != -1)
    store_register (regcache, tid, tdep->ppc_xer_regnum);
  if (tdep->ppc_mq_regnum != -1)
    store_register (regcache, tid, tdep->ppc_mq_regnum);
  if (tdep->ppc_fpscr_regnum != -1)
    store_register (regcache, tid, tdep->ppc_fpscr_regnum);
  if (ppc_linux_trap_reg_p (gdbarch))
    {
      store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
      store_register (regcache, tid, PPC_TRAP_REGNUM);
    }
  if (have_ptrace_getvrregs)
    if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
      store_altivec_registers (regcache, tid, -1);
  if (have_ptrace_getsetvsxregs)
    if (tdep->ppc_vsr0_upper_regnum != -1)
      store_vsx_registers (regcache, tid, -1);
  if (tdep->ppc_ev0_upper_regnum >= 0)
    store_spe_register (regcache, tid, -1);
  if (tdep->ppc_ppr_regnum != -1)
    store_regset (regcache, tid, -1, NT_PPC_PPR,
		  PPC_LINUX_SIZEOF_PPRREGSET,
		  &ppc32_linux_pprregset);
  if (tdep->ppc_dscr_regnum != -1)
    store_regset (regcache, tid, -1, NT_PPC_DSCR,
		  PPC_LINUX_SIZEOF_DSCRREGSET,
		  &ppc32_linux_dscrregset);
}

/* Fetch the AT_HWCAP entry from the aux vector.  */
static CORE_ADDR
ppc_linux_get_hwcap (void)
{
  CORE_ADDR field;

  if (target_auxv_search (current_top_target (), AT_HWCAP, &field) != 1)
    return 0;

  return field;
}

/* Fetch the AT_HWCAP2 entry from the aux vector.  */

static CORE_ADDR
ppc_linux_get_hwcap2 (void)
{
  CORE_ADDR field;

  if (target_auxv_search (current_top_target (), AT_HWCAP2, &field) != 1)
    return 0;

  return field;
}

/* The cached DABR value, to install in new threads.
   This variable is used when the PowerPC HWDEBUG ptrace
   interface is not available.  */
static long saved_dabr_value;

/* Global structure that will store information about the available
   features provided by the PowerPC HWDEBUG ptrace interface.  */
static struct ppc_debug_info hwdebug_info;

/* Global variable that holds the maximum number of slots that the
   kernel will use.  This is only used when PowerPC HWDEBUG ptrace interface
   is available.  */
static size_t max_slots_number = 0;

struct hw_break_tuple
{
  long slot;
  struct ppc_hw_breakpoint *hw_break;
};

/* This is an internal VEC created to store information about *points inserted
   for each thread.  This is used when PowerPC HWDEBUG ptrace interface is
   available.  */
typedef struct thread_points
  {
    /* The TID to which this *point relates.  */
    int tid;
    /* Information about the *point, such as its address, type, etc.

       Each element inside this vector corresponds to a hardware
       breakpoint or watchpoint in the thread represented by TID.  The maximum
       size of these vector is MAX_SLOTS_NUMBER.  If the hw_break element of
       the tuple is NULL, then the position in the vector is free.  */
    struct hw_break_tuple *hw_breaks;
  } *thread_points_p;
DEF_VEC_P (thread_points_p);

VEC(thread_points_p) *ppc_threads = NULL;

/* The version of the PowerPC HWDEBUG kernel interface that we will use, if
   available.  */
#define PPC_DEBUG_CURRENT_VERSION 1

/* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface.  */
static int
have_ptrace_hwdebug_interface (void)
{
  static int have_ptrace_hwdebug_interface = -1;

  if (have_ptrace_hwdebug_interface == -1)
    {
      int tid;

      tid = inferior_ptid.lwp ();
      if (tid == 0)
	tid = inferior_ptid.pid ();

      /* Check for kernel support for PowerPC HWDEBUG ptrace interface.  */
      if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
	{
	  /* Check whether PowerPC HWDEBUG ptrace interface is functional and
	     provides any supported feature.  */
	  if (hwdebug_info.features != 0)
	    {
	      have_ptrace_hwdebug_interface = 1;
	      max_slots_number = hwdebug_info.num_instruction_bps
	        + hwdebug_info.num_data_bps
	        + hwdebug_info.num_condition_regs;
	      return have_ptrace_hwdebug_interface;
	    }
	}
      /* Old school interface and no PowerPC HWDEBUG ptrace support.  */
      have_ptrace_hwdebug_interface = 0;
      memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
    }

  return have_ptrace_hwdebug_interface;
}

int
ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
{
  int total_hw_wp, total_hw_bp;

  if (have_ptrace_hwdebug_interface ())
    {
      /* When PowerPC HWDEBUG ptrace interface is available, the number of
	 available hardware watchpoints and breakpoints is stored at the
	 hwdebug_info struct.  */
      total_hw_bp = hwdebug_info.num_instruction_bps;
      total_hw_wp = hwdebug_info.num_data_bps;
    }
  else
    {
      /* When we do not have PowerPC HWDEBUG ptrace interface, we should
	 consider having 1 hardware watchpoint and no hardware breakpoints.  */
      total_hw_bp = 0;
      total_hw_wp = 1;
    }

  if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
      || type == bp_access_watchpoint || type == bp_watchpoint)
    {
      if (cnt + ot > total_hw_wp)
	return -1;
    }
  else if (type == bp_hardware_breakpoint)
    {
      if (total_hw_bp == 0)
	{
	  /* No hardware breakpoint support. */
	  return 0;
	}
      if (cnt > total_hw_bp)
	return -1;
    }

  if (!have_ptrace_hwdebug_interface ())
    {
      int tid;
      ptid_t ptid = inferior_ptid;

      /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
	 and whether the target has DABR.  If either answer is no, the
	 ptrace call will return -1.  Fail in that case.  */
      tid = ptid.lwp ();
      if (tid == 0)
	tid = ptid.pid ();

      if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
	return 0;
    }

  return 1;
}

int
ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
{
  /* Handle sub-8-byte quantities.  */
  if (len <= 0)
    return 0;

  /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
     restrictions for watchpoints in the processors.  In that case, we use that
     information to determine the hardcoded watchable region for
     watchpoints.  */
  if (have_ptrace_hwdebug_interface ())
    {
      int region_size;
      /* Embedded DAC-based processors, like the PowerPC 440 have ranged
	 watchpoints and can watch any access within an arbitrary memory
	 region. This is useful to watch arrays and structs, for instance.  It
         takes two hardware watchpoints though.  */
      if (len > 1
	  && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
	  && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
	return 2;
      /* Check if the processor provides DAWR interface.  */
      if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
	/* DAWR interface allows to watch up to 512 byte wide ranges which
	   can't cross a 512 byte boundary.  */
	region_size = 512;
      else
	region_size = hwdebug_info.data_bp_alignment;
      /* Server processors provide one hardware watchpoint and addr+len should
         fall in the watchable region provided by the ptrace interface.  */
      if (region_size
	  && (addr + len > (addr & ~(region_size - 1)) + region_size))
	return 0;
    }
  /* addr+len must fall in the 8 byte watchable region for DABR-based
     processors (i.e., server processors).  Without the new PowerPC HWDEBUG 
     ptrace interface, DAC-based processors (i.e., embedded processors) will
     use addresses aligned to 4-bytes due to the way the read/write flags are
     passed in the old ptrace interface.  */
  else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
	   && (addr + len) > (addr & ~3) + 4)
	   || (addr + len) > (addr & ~7) + 8)
    return 0;

  return 1;
}

/* This function compares two ppc_hw_breakpoint structs field-by-field.  */
static int
hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
{
  return (a->trigger_type == b->trigger_type
	  && a->addr_mode == b->addr_mode
	  && a->condition_mode == b->condition_mode
	  && a->addr == b->addr
	  && a->addr2 == b->addr2
	  && a->condition_value == b->condition_value);
}

/* This function can be used to retrieve a thread_points by the TID of the
   related process/thread.  If nothing has been found, and ALLOC_NEW is 0,
   it returns NULL.  If ALLOC_NEW is non-zero, a new thread_points for the
   provided TID will be created and returned.  */
static struct thread_points *
hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
{
  int i;
  struct thread_points *t;

  for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
    if (t->tid == tid)
      return t;

  t = NULL;

  /* Do we need to allocate a new point_item
     if the wanted one does not exist?  */
  if (alloc_new)
    {
      t = XNEW (struct thread_points);
      t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number);
      t->tid = tid;
      VEC_safe_push (thread_points_p, ppc_threads, t);
    }

  return t;
}

/* This function is a generic wrapper that is responsible for inserting a
   *point (i.e., calling `ptrace' in order to issue the request to the
   kernel) and registering it internally in GDB.  */
static void
hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
{
  int i;
  long slot;
  gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b));
  struct hw_break_tuple *hw_breaks;
  struct thread_points *t;

  errno = 0;
  slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ());
  if (slot < 0)
    perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));

  /* Everything went fine, so we have to register this *point.  */
  t = hwdebug_find_thread_points_by_tid (tid, 1);
  gdb_assert (t != NULL);
  hw_breaks = t->hw_breaks;

  /* Find a free element in the hw_breaks vector.  */
  for (i = 0; i < max_slots_number; i++)
    if (hw_breaks[i].hw_break == NULL)
      {
	hw_breaks[i].slot = slot;
	hw_breaks[i].hw_break = p.release ();
	break;
      }

  gdb_assert (i != max_slots_number);
}

/* This function is a generic wrapper that is responsible for removing a
   *point (i.e., calling `ptrace' in order to issue the request to the
   kernel), and unregistering it internally at GDB.  */
static void
hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
{
  int i;
  struct hw_break_tuple *hw_breaks;
  struct thread_points *t;

  t = hwdebug_find_thread_points_by_tid (tid, 0);
  gdb_assert (t != NULL);
  hw_breaks = t->hw_breaks;

  for (i = 0; i < max_slots_number; i++)
    if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
      break;

  gdb_assert (i != max_slots_number);

  /* We have to ignore ENOENT errors because the kernel implements hardware
     breakpoints/watchpoints as "one-shot", that is, they are automatically
     deleted when hit.  */
  errno = 0;
  if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
    if (errno != ENOENT)
      perror_with_name (_("Unexpected error deleting "
			  "breakpoint or watchpoint"));

  xfree (hw_breaks[i].hw_break);
  hw_breaks[i].hw_break = NULL;
}

/* Return the number of registers needed for a ranged breakpoint.  */

int
ppc_linux_nat_target::ranged_break_num_registers ()
{
  return ((have_ptrace_hwdebug_interface ()
	   && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
	  2 : -1);
}

/* Insert the hardware breakpoint described by BP_TGT.  Returns 0 for
   success, 1 if hardware breakpoints are not supported or -1 for failure.  */

int
ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
					    struct bp_target_info *bp_tgt)
{
  struct lwp_info *lp;
  struct ppc_hw_breakpoint p;

  if (!have_ptrace_hwdebug_interface ())
    return -1;

  p.version = PPC_DEBUG_CURRENT_VERSION;
  p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
  p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
  p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
  p.condition_value = 0;

  if (bp_tgt->length)
    {
      p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;

      /* The breakpoint will trigger if the address of the instruction is
	 within the defined range, as follows: p.addr <= address < p.addr2.  */
      p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
    }
  else
    {
      p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
      p.addr2 = 0;
    }

  ALL_LWPS (lp)
    hwdebug_insert_point (&p, lp->ptid.lwp ());

  return 0;
}

int
ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
					    struct bp_target_info *bp_tgt)
{
  struct lwp_info *lp;
  struct ppc_hw_breakpoint p;

  if (!have_ptrace_hwdebug_interface ())
    return -1;

  p.version = PPC_DEBUG_CURRENT_VERSION;
  p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
  p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
  p.addr = (uint64_t) bp_tgt->placed_address;
  p.condition_value = 0;

  if (bp_tgt->length)
    {
      p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;

      /* The breakpoint will trigger if the address of the instruction is within
	 the defined range, as follows: p.addr <= address < p.addr2.  */
      p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
    }
  else
    {
      p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
      p.addr2 = 0;
    }

  ALL_LWPS (lp)
    hwdebug_remove_point (&p, lp->ptid.lwp ());

  return 0;
}

static int
get_trigger_type (enum target_hw_bp_type type)
{
  int t;

  if (type == hw_read)
    t = PPC_BREAKPOINT_TRIGGER_READ;
  else if (type == hw_write)
    t = PPC_BREAKPOINT_TRIGGER_WRITE;
  else
    t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;

  return t;
}

/* Insert a new masked watchpoint at ADDR using the mask MASK.
   RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
   or hw_access for an access watchpoint.  Returns 0 on success and throws
   an error on failure.  */

int
ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr,  CORE_ADDR mask,
					      target_hw_bp_type rw)
{
  struct lwp_info *lp;
  struct ppc_hw_breakpoint p;

  gdb_assert (have_ptrace_hwdebug_interface ());

  p.version = PPC_DEBUG_CURRENT_VERSION;
  p.trigger_type = get_trigger_type (rw);
  p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
  p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
  p.addr = addr;
  p.addr2 = mask;
  p.condition_value = 0;

  ALL_LWPS (lp)
    hwdebug_insert_point (&p, lp->ptid.lwp ());

  return 0;
}

/* Remove a masked watchpoint at ADDR with the mask MASK.
   RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
   or hw_access for an access watchpoint.  Returns 0 on success and throws
   an error on failure.  */

int
ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
					      target_hw_bp_type rw)
{
  struct lwp_info *lp;
  struct ppc_hw_breakpoint p;

  gdb_assert (have_ptrace_hwdebug_interface ());

  p.version = PPC_DEBUG_CURRENT_VERSION;
  p.trigger_type = get_trigger_type (rw);
  p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
  p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
  p.addr = addr;
  p.addr2 = mask;
  p.condition_value = 0;

  ALL_LWPS (lp)
    hwdebug_remove_point (&p, lp->ptid.lwp ());

  return 0;
}

/* Check whether we have at least one free DVC register.  */
static int
can_use_watchpoint_cond_accel (void)
{
  struct thread_points *p;
  int tid = inferior_ptid.lwp ();
  int cnt = hwdebug_info.num_condition_regs, i;

  if (!have_ptrace_hwdebug_interface () || cnt == 0)
    return 0;

  p = hwdebug_find_thread_points_by_tid (tid, 0);

  if (p)
    {
      for (i = 0; i < max_slots_number; i++)
	if (p->hw_breaks[i].hw_break != NULL
	    && (p->hw_breaks[i].hw_break->condition_mode
		!= PPC_BREAKPOINT_CONDITION_NONE))
	  cnt--;

      /* There are no available slots now.  */
      if (cnt <= 0)
	return 0;
    }

  return 1;
}

/* Calculate the enable bits and the contents of the Data Value Compare
   debug register present in BookE processors.

   ADDR is the address to be watched, LEN is the length of watched data
   and DATA_VALUE is the value which will trigger the watchpoint.
   On exit, CONDITION_MODE will hold the enable bits for the DVC, and
   CONDITION_VALUE will hold the value which should be put in the
   DVC register.  */
static void
calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
	       uint32_t *condition_mode, uint64_t *condition_value)
{
  int i, num_byte_enable, align_offset, num_bytes_off_dvc,
      rightmost_enabled_byte;
  CORE_ADDR addr_end_data, addr_end_dvc;

  /* The DVC register compares bytes within fixed-length windows which
     are word-aligned, with length equal to that of the DVC register.
     We need to calculate where our watch region is relative to that
     window and enable comparison of the bytes which fall within it.  */

  align_offset = addr % hwdebug_info.sizeof_condition;
  addr_end_data = addr + len;
  addr_end_dvc = (addr - align_offset
		  + hwdebug_info.sizeof_condition);
  num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
			 addr_end_data - addr_end_dvc : 0;
  num_byte_enable = len - num_bytes_off_dvc;
  /* Here, bytes are numbered from right to left.  */
  rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
			      addr_end_dvc - addr_end_data : 0;

  *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
  for (i = 0; i < num_byte_enable; i++)
    *condition_mode
      |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);

  /* Now we need to match the position within the DVC of the comparison
     value with where the watch region is relative to the window
     (i.e., the ALIGN_OFFSET).  */

  *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
		      << rightmost_enabled_byte * 8);
}

/* Return the number of memory locations that need to be accessed to
   evaluate the expression which generated the given value chain.
   Returns -1 if there's any register access involved, or if there are
   other kinds of values which are not acceptable in a condition
   expression (e.g., lval_computed or lval_internalvar).  */
static int
num_memory_accesses (const std::vector<value_ref_ptr> &chain)
{
  int found_memory_cnt = 0;

  /* The idea here is that evaluating an expression generates a series
     of values, one holding the value of every subexpression.  (The
     expression a*b+c has five subexpressions: a, b, a*b, c, and
     a*b+c.)  GDB's values hold almost enough information to establish
     the criteria given above --- they identify memory lvalues,
     register lvalues, computed values, etcetera.  So we can evaluate
     the expression, and then scan the chain of values that leaves
     behind to determine the memory locations involved in the evaluation
     of an expression.

     However, I don't think that the values returned by inferior
     function calls are special in any way.  So this function may not
     notice that an expression contains an inferior function call.
     FIXME.  */

  for (const value_ref_ptr &iter : chain)
    {
      struct value *v = iter.get ();

      /* Constants and values from the history are fine.  */
      if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
	continue;
      else if (VALUE_LVAL (v) == lval_memory)
	{
	  /* A lazy memory lvalue is one that GDB never needed to fetch;
	     we either just used its address (e.g., `a' in `a.b') or
	     we never needed it at all (e.g., `a' in `a,b').  */
	  if (!value_lazy (v))
	    found_memory_cnt++;
	}
      /* Other kinds of values are not fine.  */
      else
	return -1;
    }

  return found_memory_cnt;
}

/* Verifies whether the expression COND can be implemented using the
   DVC (Data Value Compare) register in BookE processors.  The expression
   must test the watch value for equality with a constant expression.
   If the function returns 1, DATA_VALUE will contain the constant against
   which the watch value should be compared and LEN will contain the size
   of the constant.  */
static int
check_condition (CORE_ADDR watch_addr, struct expression *cond,
		 CORE_ADDR *data_value, int *len)
{
  int pc = 1, num_accesses_left, num_accesses_right;
  struct value *left_val, *right_val;
  std::vector<value_ref_ptr> left_chain, right_chain;

  if (cond->elts[0].opcode != BINOP_EQUAL)
    return 0;

  fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
  num_accesses_left = num_memory_accesses (left_chain);

  if (left_val == NULL || num_accesses_left < 0)
    return 0;

  fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
  num_accesses_right = num_memory_accesses (right_chain);

  if (right_val == NULL || num_accesses_right < 0)
    return 0;

  if (num_accesses_left == 1 && num_accesses_right == 0
      && VALUE_LVAL (left_val) == lval_memory
      && value_address (left_val) == watch_addr)
    {
      *data_value = value_as_long (right_val);

      /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
	 the same type as the memory region referenced by LEFT_VAL.  */
      *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
    }
  else if (num_accesses_left == 0 && num_accesses_right == 1
	   && VALUE_LVAL (right_val) == lval_memory
	   && value_address (right_val) == watch_addr)
    {
      *data_value = value_as_long (left_val);

      /* DATA_VALUE is the constant in LEFT_VAL, but actually has
	 the same type as the memory region referenced by RIGHT_VAL.  */
      *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
    }
  else
    return 0;

  return 1;
}

/* Return non-zero if the target is capable of using hardware to evaluate
   the condition expression, thus only triggering the watchpoint when it is
   true.  */
bool
ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, int len,
						      int rw,
						      struct expression *cond)
{
  CORE_ADDR data_value;

  return (have_ptrace_hwdebug_interface ()
	  && hwdebug_info.num_condition_regs > 0
	  && check_condition (addr, cond, &data_value, &len));
}

/* Set up P with the parameters necessary to request a watchpoint covering
   LEN bytes starting at ADDR and if possible with condition expression COND
   evaluated by hardware.  INSERT tells if we are creating a request for
   inserting or removing the watchpoint.  */

static void
create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
			   int len, enum target_hw_bp_type type,
			   struct expression *cond, int insert)
{
  if (len == 1
      || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
    {
      int use_condition;
      CORE_ADDR data_value;

      use_condition = (insert? can_use_watchpoint_cond_accel ()
			: hwdebug_info.num_condition_regs > 0);
      if (cond && use_condition && check_condition (addr, cond,
						    &data_value, &len))
	calculate_dvc (addr, len, data_value, &p->condition_mode,
		       &p->condition_value);
      else
	{
	  p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
	  p->condition_value = 0;
	}

      p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
      p->addr2 = 0;
    }
  else
    {
      p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
      p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
      p->condition_value = 0;

      /* The watchpoint will trigger if the address of the memory access is
	 within the defined range, as follows: p->addr <= address < p->addr2.

	 Note that the above sentence just documents how ptrace interprets
	 its arguments; the watchpoint is set to watch the range defined by
	 the user _inclusively_, as specified by the user interface.  */
      p->addr2 = (uint64_t) addr + len;
    }

  p->version = PPC_DEBUG_CURRENT_VERSION;
  p->trigger_type = get_trigger_type (type);
  p->addr = (uint64_t) addr;
}

int
ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
					 enum target_hw_bp_type type,
					 struct expression *cond)
{
  struct lwp_info *lp;
  int ret = -1;

  if (have_ptrace_hwdebug_interface ())
    {
      struct ppc_hw_breakpoint p;

      create_watchpoint_request (&p, addr, len, type, cond, 1);

      ALL_LWPS (lp)
	hwdebug_insert_point (&p, lp->ptid.lwp ());

      ret = 0;
    }
  else
    {
      long dabr_value;
      long read_mode, write_mode;

      if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
	{
	  /* PowerPC 440 requires only the read/write flags to be passed
	     to the kernel.  */
	  read_mode = 1;
	  write_mode = 2;
	}
      else
	{
	  /* PowerPC 970 and other DABR-based processors are required to pass
	     the Breakpoint Translation bit together with the flags.  */
	  read_mode = 5;
	  write_mode = 6;
	}

      dabr_value = addr & ~(read_mode | write_mode);
      switch (type)
	{
	  case hw_read:
	    /* Set read and translate bits.  */
	    dabr_value |= read_mode;
	    break;
	  case hw_write:
	    /* Set write and translate bits.  */
	    dabr_value |= write_mode;
	    break;
	  case hw_access:
	    /* Set read, write and translate bits.  */
	    dabr_value |= read_mode | write_mode;
	    break;
	}

      saved_dabr_value = dabr_value;

      ALL_LWPS (lp)
	if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0,
		    saved_dabr_value) < 0)
	  return -1;

      ret = 0;
    }

  return ret;
}

int
ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
					 enum target_hw_bp_type type,
					 struct expression *cond)
{
  struct lwp_info *lp;
  int ret = -1;

  if (have_ptrace_hwdebug_interface ())
    {
      struct ppc_hw_breakpoint p;

      create_watchpoint_request (&p, addr, len, type, cond, 0);

      ALL_LWPS (lp)
	hwdebug_remove_point (&p, lp->ptid.lwp ());

      ret = 0;
    }
  else
    {
      saved_dabr_value = 0;
      ALL_LWPS (lp)
	if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0,
		    saved_dabr_value) < 0)
	  return -1;

      ret = 0;
    }

  return ret;
}

void
ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
{
  int tid = lp->ptid.lwp ();

  if (have_ptrace_hwdebug_interface ())
    {
      int i;
      struct thread_points *p;
      struct hw_break_tuple *hw_breaks;

      if (VEC_empty (thread_points_p, ppc_threads))
	return;

      /* Get a list of breakpoints from any thread.  */
      p = VEC_last (thread_points_p, ppc_threads);
      hw_breaks = p->hw_breaks;

      /* Copy that thread's breakpoints and watchpoints to the new thread.  */
      for (i = 0; i < max_slots_number; i++)
	if (hw_breaks[i].hw_break)
	  {
	    /* Older kernels did not make new threads inherit their parent
	       thread's debug state, so we always clear the slot and replicate
	       the debug state ourselves, ensuring compatibility with all
	       kernels.  */

	    /* The ppc debug resource accounting is done through "slots".
	       Ask the kernel the deallocate this specific *point's slot.  */
	    ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);

	    hwdebug_insert_point (hw_breaks[i].hw_break, tid);
	  }
    }
  else
    ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
}

static void
ppc_linux_thread_exit (struct thread_info *tp, int silent)
{
  int i;
  int tid = tp->ptid.lwp ();
  struct hw_break_tuple *hw_breaks;
  struct thread_points *t = NULL, *p;

  if (!have_ptrace_hwdebug_interface ())
    return;

  for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
    if (p->tid == tid)
      {
	t = p;
	break;
      }

  if (t == NULL)
    return;

  VEC_unordered_remove (thread_points_p, ppc_threads, i);

  hw_breaks = t->hw_breaks;

  for (i = 0; i < max_slots_number; i++)
    if (hw_breaks[i].hw_break)
      xfree (hw_breaks[i].hw_break);

  xfree (t->hw_breaks);
  xfree (t);
}

bool
ppc_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
{
  siginfo_t siginfo;

  if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
    return false;

  if (siginfo.si_signo != SIGTRAP
      || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
    return false;

  if (have_ptrace_hwdebug_interface ())
    {
      int i;
      struct thread_points *t;
      struct hw_break_tuple *hw_breaks;
      /* The index (or slot) of the *point is passed in the si_errno field.  */
      int slot = siginfo.si_errno;

      t = hwdebug_find_thread_points_by_tid (inferior_ptid.lwp (), 0);

      /* Find out if this *point is a hardware breakpoint.
	 If so, we should return 0.  */
      if (t)
	{
	  hw_breaks = t->hw_breaks;
	  for (i = 0; i < max_slots_number; i++)
	   if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
	       && hw_breaks[i].hw_break->trigger_type
		    == PPC_BREAKPOINT_TRIGGER_EXECUTE)
	     return false;
	}
    }

  *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
  return true;
}

bool
ppc_linux_nat_target::stopped_by_watchpoint ()
{
  CORE_ADDR addr;
  return stopped_data_address (&addr);
}

bool
ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
						    CORE_ADDR start,
						    int length)
{
  int mask;

  if (have_ptrace_hwdebug_interface ()
      && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
    return start <= addr && start + length >= addr;
  else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
    mask = 3;
  else
    mask = 7;

  addr &= ~mask;

  /* Check whether [start, start+length-1] intersects [addr, addr+mask].  */
  return start <= addr + mask && start + length - 1 >= addr;
}

/* Return the number of registers needed for a masked hardware watchpoint.  */

int
ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
{
  if (!have_ptrace_hwdebug_interface ()
	   || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
    return -1;
  else if ((mask & 0xC0000000) != 0xC0000000)
    {
      warning (_("The given mask covers kernel address space "
		 "and cannot be used.\n"));

      return -2;
    }
  else
    return 2;
}

void
ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
{
  pid_t tid = get_ptrace_pid (regcache->ptid ());

  if (regno >= 0)
    store_register (regcache, tid, regno);
  else
    store_ppc_registers (regcache, tid);
}

/* Functions for transferring registers between a gregset_t or fpregset_t
   (see sys/ucontext.h) and gdb's regcache.  The word size is that used
   by the ptrace interface, not the current program's ABI.  Eg. if a
   powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
   read or write 64-bit gregsets.  This is to suit the host libthread_db.  */

void
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
{
  const struct regset *regset = ppc_linux_gregset (sizeof (long));

  ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
}

void
fill_gregset (const struct regcache *regcache,
	      gdb_gregset_t *gregsetp, int regno)
{
  const struct regset *regset = ppc_linux_gregset (sizeof (long));

  if (regno == -1)
    memset (gregsetp, 0, sizeof (*gregsetp));
  ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
}

void
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
{
  const struct regset *regset = ppc_linux_fpregset ();

  ppc_supply_fpregset (regset, regcache, -1,
		       fpregsetp, sizeof (*fpregsetp));
}

void
fill_fpregset (const struct regcache *regcache,
	       gdb_fpregset_t *fpregsetp, int regno)
{
  const struct regset *regset = ppc_linux_fpregset ();

  ppc_collect_fpregset (regset, regcache, regno,
			fpregsetp, sizeof (*fpregsetp));
}

int
ppc_linux_nat_target::auxv_parse (gdb_byte **readptr,
				  gdb_byte *endptr, CORE_ADDR *typep,
				  CORE_ADDR *valp)
{
  int tid = inferior_ptid.lwp ();
  if (tid == 0)
    tid = inferior_ptid.pid ();

  int sizeof_auxv_field = ppc_linux_target_wordsize (tid);

  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
  gdb_byte *ptr = *readptr;

  if (endptr == ptr)
    return 0;

  if (endptr - ptr < sizeof_auxv_field * 2)
    return -1;

  *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
  ptr += sizeof_auxv_field;
  *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
  ptr += sizeof_auxv_field;

  *readptr = ptr;
  return 1;
}

const struct target_desc *
ppc_linux_nat_target::read_description ()
{
  int tid = inferior_ptid.lwp ();
  if (tid == 0)
    tid = inferior_ptid.pid ();

  if (have_ptrace_getsetevrregs)
    {
      struct gdb_evrregset_t evrregset;

      if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
        return tdesc_powerpc_e500l;

      /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
	 Anything else needs to be reported.  */
      else if (errno != EIO)
	perror_with_name (_("Unable to fetch SPE registers"));
    }

  struct ppc_linux_features features = ppc_linux_no_features;

  features.wordsize = ppc_linux_target_wordsize (tid);

  CORE_ADDR hwcap = ppc_linux_get_hwcap ();
  CORE_ADDR hwcap2 = ppc_linux_get_hwcap2 ();

  if (have_ptrace_getsetvsxregs
      && (hwcap & PPC_FEATURE_HAS_VSX))
    {
      gdb_vsxregset_t vsxregset;

      if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
	features.vsx = true;

      /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
	 Anything else needs to be reported.  */
      else if (errno != EIO)
	perror_with_name (_("Unable to fetch VSX registers"));
    }

  if (have_ptrace_getvrregs
      && (hwcap & PPC_FEATURE_HAS_ALTIVEC))
    {
      gdb_vrregset_t vrregset;

      if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
        features.altivec = true;

      /* EIO means that the PTRACE_GETVRREGS request isn't supported.
	 Anything else needs to be reported.  */
      else if (errno != EIO)
	perror_with_name (_("Unable to fetch AltiVec registers"));
    }

  if (hwcap & PPC_FEATURE_CELL)
    features.cell = true;

  features.isa205 = ppc_linux_has_isa205 (hwcap);

  if ((hwcap2 & PPC_FEATURE2_DSCR)
      && check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET)
      && check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET))
    features.ppr_dscr = true;

  return ppc_linux_match_description (features);
}

void
_initialize_ppc_linux_nat (void)
{
  linux_target = &the_ppc_linux_nat_target;

  gdb::observers::thread_exit.attach (ppc_linux_thread_exit);

  /* Register the target.  */
  add_inf_child_target (linux_target);
}