aboutsummaryrefslogtreecommitdiff
path: root/gdb/nto-tdep.c
blob: 03b2d1e96d7c84573b96c228b6a8b5552fc9b2f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
/* nto-tdep.c - general QNX Neutrino target functionality.

   Copyright (C) 2003-2018 Free Software Foundation, Inc.

   Contributed by QNX Software Systems Ltd.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include <sys/stat.h>
#include "nto-tdep.h"
#include "top.h"
#include "inferior.h"
#include "infrun.h"
#include "gdbarch.h"
#include "bfd.h"
#include "elf-bfd.h"
#include "solib-svr4.h"
#include "gdbcore.h"
#include "objfiles.h"

#define QNX_NOTE_NAME	"QNX"
#define QNX_INFO_SECT_NAME "QNX_info"

#ifdef __CYGWIN__
#include <sys/cygwin.h>
#endif

#ifdef __CYGWIN__
static char default_nto_target[] = "C:\\QNXsdk\\target\\qnx6";
#elif defined(__sun__) || defined(linux)
static char default_nto_target[] = "/opt/QNXsdk/target/qnx6";
#else
static char default_nto_target[] = "";
#endif

struct nto_target_ops current_nto_target;

static const struct inferior_data *nto_inferior_data_reg;

static char *
nto_target (void)
{
  char *p = getenv ("QNX_TARGET");

#ifdef __CYGWIN__
  static char buf[PATH_MAX];
  if (p)
    cygwin_conv_path (CCP_WIN_A_TO_POSIX, p, buf, PATH_MAX);
  else
    cygwin_conv_path (CCP_WIN_A_TO_POSIX, default_nto_target, buf, PATH_MAX);
  return buf;
#else
  return p ? p : default_nto_target;
#endif
}

/* Take a string such as i386, rs6000, etc. and map it onto CPUTYPE_X86,
   CPUTYPE_PPC, etc. as defined in nto-share/dsmsgs.h.  */
int
nto_map_arch_to_cputype (const char *arch)
{
  if (!strcmp (arch, "i386") || !strcmp (arch, "x86"))
    return CPUTYPE_X86;
  if (!strcmp (arch, "rs6000") || !strcmp (arch, "powerpc"))
    return CPUTYPE_PPC;
  if (!strcmp (arch, "mips"))
    return CPUTYPE_MIPS;
  if (!strcmp (arch, "arm"))
    return CPUTYPE_ARM;
  if (!strcmp (arch, "sh"))
    return CPUTYPE_SH;
  return CPUTYPE_UNKNOWN;
}

int
nto_find_and_open_solib (const char *solib, unsigned o_flags,
			 char **temp_pathname)
{
  char *buf, *arch_path, *nto_root;
  const char *endian;
  const char *base;
  const char *arch;
  int arch_len, len, ret;
#define PATH_FMT \
  "%s/lib:%s/usr/lib:%s/usr/photon/lib:%s/usr/photon/dll:%s/lib/dll"

  nto_root = nto_target ();
  if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0)
    {
      arch = "x86";
      endian = "";
    }
  else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
		   "rs6000") == 0
	   || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
		   "powerpc") == 0)
    {
      arch = "ppc";
      endian = "be";
    }
  else
    {
      arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name;
      endian = gdbarch_byte_order (target_gdbarch ())
	       == BFD_ENDIAN_BIG ? "be" : "le";
    }

  /* In case nto_root is short, add strlen(solib)
     so we can reuse arch_path below.  */

  arch_len = (strlen (nto_root) + strlen (arch) + strlen (endian) + 2
	      + strlen (solib));
  arch_path = (char *) alloca (arch_len);
  xsnprintf (arch_path, arch_len, "%s/%s%s", nto_root, arch, endian);

  len = strlen (PATH_FMT) + strlen (arch_path) * 5 + 1;
  buf = (char *) alloca (len);
  xsnprintf (buf, len, PATH_FMT, arch_path, arch_path, arch_path, arch_path,
	     arch_path);

  base = lbasename (solib);
  ret = openp (buf, OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, base, o_flags,
	       temp_pathname);
  if (ret < 0 && base != solib)
    {
      xsnprintf (arch_path, arch_len, "/%s", solib);
      ret = open (arch_path, o_flags, 0);
      if (temp_pathname)
	{
	  if (ret >= 0)
	    *temp_pathname = gdb_realpath (arch_path).release ();
	  else
	    *temp_pathname = NULL;
	}
    }
  return ret;
}

void
nto_init_solib_absolute_prefix (void)
{
  char buf[PATH_MAX * 2], arch_path[PATH_MAX];
  char *nto_root;
  const char *endian;
  const char *arch;

  nto_root = nto_target ();
  if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0)
    {
      arch = "x86";
      endian = "";
    }
  else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
		   "rs6000") == 0
	   || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
		   "powerpc") == 0)
    {
      arch = "ppc";
      endian = "be";
    }
  else
    {
      arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name;
      endian = gdbarch_byte_order (target_gdbarch ())
	       == BFD_ENDIAN_BIG ? "be" : "le";
    }

  xsnprintf (arch_path, sizeof (arch_path), "%s/%s%s", nto_root, arch, endian);

  xsnprintf (buf, sizeof (buf), "set solib-absolute-prefix %s", arch_path);
  execute_command (buf, 0);
}

char **
nto_parse_redirection (char *pargv[], const char **pin, const char **pout, 
		       const char **perr)
{
  char **argv;
  const char *in, *out, *err, *p;
  int argc, i, n;

  for (n = 0; pargv[n]; n++);
  if (n == 0)
    return NULL;
  in = "";
  out = "";
  err = "";

  argv = XCNEWVEC (char *, n + 1);
  argc = n;
  for (i = 0, n = 0; n < argc; n++)
    {
      p = pargv[n];
      if (*p == '>')
	{
	  p++;
	  if (*p)
	    out = p;
	  else
	    out = pargv[++n];
	}
      else if (*p == '<')
	{
	  p++;
	  if (*p)
	    in = p;
	  else
	    in = pargv[++n];
	}
      else if (*p++ == '2' && *p++ == '>')
	{
	  if (*p == '&' && *(p + 1) == '1')
	    err = out;
	  else if (*p)
	    err = p;
	  else
	    err = pargv[++n];
	}
      else
	argv[i++] = pargv[n];
    }
  *pin = in;
  *pout = out;
  *perr = err;
  return argv;
}

static CORE_ADDR
lm_addr (struct so_list *so)
{
  lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;

  return li->l_addr;
}

static CORE_ADDR
nto_truncate_ptr (CORE_ADDR addr)
{
  if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
    /* We don't need to truncate anything, and the bit twiddling below
       will fail due to overflow problems.  */
    return addr;
  else
    return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
}

static Elf_Internal_Phdr *
find_load_phdr (bfd *abfd)
{
  Elf_Internal_Phdr *phdr;
  unsigned int i;

  if (!elf_tdata (abfd))
    return NULL;

  phdr = elf_tdata (abfd)->phdr;
  for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
    {
      if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X))
	return phdr;
    }
  return NULL;
}

void
nto_relocate_section_addresses (struct so_list *so, struct target_section *sec)
{
  /* Neutrino treats the l_addr base address field in link.h as different than
     the base address in the System V ABI and so the offset needs to be
     calculated and applied to relocations.  */
  Elf_Internal_Phdr *phdr = find_load_phdr (sec->the_bfd_section->owner);
  unsigned vaddr = phdr ? phdr->p_vaddr : 0;

  sec->addr = nto_truncate_ptr (sec->addr + lm_addr (so) - vaddr);
  sec->endaddr = nto_truncate_ptr (sec->endaddr + lm_addr (so) - vaddr);
}

/* This is cheating a bit because our linker code is in libc.so.  If we
   ever implement lazy linking, this may need to be re-examined.  */
int
nto_in_dynsym_resolve_code (CORE_ADDR pc)
{
  if (in_plt_section (pc))
    return 1;
  return 0;
}

void
nto_dummy_supply_regset (struct regcache *regcache, char *regs)
{
  /* Do nothing.  */
}

static void
nto_sniff_abi_note_section (bfd *abfd, asection *sect, void *obj)
{
  const char *sectname;
  unsigned int sectsize;
  /* Buffer holding the section contents.  */
  char *note;
  unsigned int namelen;
  const char *name;
  const unsigned sizeof_Elf_Nhdr = 12;

  sectname = bfd_get_section_name (abfd, sect);
  sectsize = bfd_section_size (abfd, sect);

  if (sectsize > 128)
    sectsize = 128;

  if (sectname != NULL && strstr (sectname, QNX_INFO_SECT_NAME) != NULL)
    *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
  else if (sectname != NULL && strstr (sectname, "note") != NULL
	   && sectsize > sizeof_Elf_Nhdr)
    {
      note = XNEWVEC (char, sectsize);
      bfd_get_section_contents (abfd, sect, note, 0, sectsize);
      namelen = (unsigned int) bfd_h_get_32 (abfd, note);
      name = note + sizeof_Elf_Nhdr;
      if (sectsize >= namelen + sizeof_Elf_Nhdr
	  && namelen == sizeof (QNX_NOTE_NAME)
	  && 0 == strcmp (name, QNX_NOTE_NAME))
        *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;

      XDELETEVEC (note);
    }
}

enum gdb_osabi
nto_elf_osabi_sniffer (bfd *abfd)
{
  enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;

  bfd_map_over_sections (abfd,
			 nto_sniff_abi_note_section,
			 &osabi);

  return osabi;
}

static const char *nto_thread_state_str[] =
{
  "DEAD",		/* 0  0x00 */
  "RUNNING",	/* 1  0x01 */
  "READY",	/* 2  0x02 */
  "STOPPED",	/* 3  0x03 */
  "SEND",		/* 4  0x04 */
  "RECEIVE",	/* 5  0x05 */
  "REPLY",	/* 6  0x06 */
  "STACK",	/* 7  0x07 */
  "WAITTHREAD",	/* 8  0x08 */
  "WAITPAGE",	/* 9  0x09 */
  "SIGSUSPEND",	/* 10 0x0a */
  "SIGWAITINFO",	/* 11 0x0b */
  "NANOSLEEP",	/* 12 0x0c */
  "MUTEX",	/* 13 0x0d */
  "CONDVAR",	/* 14 0x0e */
  "JOIN",		/* 15 0x0f */
  "INTR",		/* 16 0x10 */
  "SEM",		/* 17 0x11 */
  "WAITCTX",	/* 18 0x12 */
  "NET_SEND",	/* 19 0x13 */
  "NET_REPLY"	/* 20 0x14 */
};

const char *
nto_extra_thread_info (struct target_ops *self, struct thread_info *ti)
{
  if (ti != NULL && ti->priv != NULL)
    {
      nto_thread_info *priv = get_nto_thread_info (ti);

      if (priv->state < ARRAY_SIZE (nto_thread_state_str))
	return nto_thread_state_str [priv->state];
    }
  return "";
}

void
nto_initialize_signals (void)
{
  /* We use SIG45 for pulses, or something, so nostop, noprint
     and pass them.  */
  signal_stop_update (gdb_signal_from_name ("SIG45"), 0);
  signal_print_update (gdb_signal_from_name ("SIG45"), 0);
  signal_pass_update (gdb_signal_from_name ("SIG45"), 1);

  /* By default we don't want to stop on these two, but we do want to pass.  */
#if defined(SIGSELECT)
  signal_stop_update (SIGSELECT, 0);
  signal_print_update (SIGSELECT, 0);
  signal_pass_update (SIGSELECT, 1);
#endif

#if defined(SIGPHOTON)
  signal_stop_update (SIGPHOTON, 0);
  signal_print_update (SIGPHOTON, 0);
  signal_pass_update (SIGPHOTON, 1);
#endif
}

/* Read AUXV from initial_stack.  */
LONGEST
nto_read_auxv_from_initial_stack (CORE_ADDR initial_stack, gdb_byte *readbuf,
                                  LONGEST len, size_t sizeof_auxv_t)
{
  gdb_byte targ32[4]; /* For 32 bit target values.  */
  gdb_byte targ64[8]; /* For 64 bit target values.  */
  CORE_ADDR data_ofs = 0;
  ULONGEST anint;
  LONGEST len_read = 0;
  gdb_byte *buff;
  enum bfd_endian byte_order;
  int ptr_size;

  if (sizeof_auxv_t == 16)
    ptr_size = 8;
  else
    ptr_size = 4;

  /* Skip over argc, argv and envp... Comment from ldd.c:

     The startup frame is set-up so that we have:
     auxv
     NULL
     ...
     envp2
     envp1 <----- void *frame + (argc + 2) * sizeof(char *)
     NULL
     ...
     argv2
     argv1
     argc  <------ void * frame

     On entry to ldd, frame gives the address of argc on the stack.  */
  /* Read argc. 4 bytes on both 64 and 32 bit arches and luckily little
   * endian. So we just read first 4 bytes.  */
  if (target_read_memory (initial_stack + data_ofs, targ32, 4) != 0)
    return 0;

  byte_order = gdbarch_byte_order (target_gdbarch ());

  anint = extract_unsigned_integer (targ32, sizeof (targ32), byte_order);

  /* Size of pointer is assumed to be 4 bytes (32 bit arch.) */
  data_ofs += (anint + 2) * ptr_size; /* + 2 comes from argc itself and
                                                NULL terminating pointer in
                                                argv.  */

  /* Now loop over env table:  */
  anint = 0;
  while (target_read_memory (initial_stack + data_ofs, targ64, ptr_size)
         == 0)
    {
      if (extract_unsigned_integer (targ64, ptr_size, byte_order) == 0)
	anint = 1; /* Keep looping until non-null entry is found.  */
      else if (anint)
	break;
      data_ofs += ptr_size;
    }
  initial_stack += data_ofs;

  memset (readbuf, 0, len);
  buff = readbuf;
  while (len_read <= len-sizeof_auxv_t)
    {
      if (target_read_memory (initial_stack + len_read, buff, sizeof_auxv_t)
	  == 0)
        {
	  /* Both 32 and 64 bit structures have int as the first field.  */
          const ULONGEST a_type
	    = extract_unsigned_integer (buff, sizeof (targ32), byte_order);

          if (a_type == AT_NULL)
	    break;
	  buff += sizeof_auxv_t;
	  len_read += sizeof_auxv_t;
        }
      else
        break;
    }
  return len_read;
}

/* Allocate new nto_inferior_data object.  */

static struct nto_inferior_data *
nto_new_inferior_data (void)
{
  struct nto_inferior_data *const inf_data
    = XCNEW (struct nto_inferior_data);

  return inf_data;
}

/* Free inferior data.  */

static void
nto_inferior_data_cleanup (struct inferior *const inf, void *const dat)
{
  xfree (dat);
}

/* Return nto_inferior_data for the given INFERIOR.  If not yet created,
   construct it.  */

struct nto_inferior_data *
nto_inferior_data (struct inferior *const inferior)
{
  struct inferior *const inf = inferior ? inferior : current_inferior ();
  struct nto_inferior_data *inf_data;

  gdb_assert (inf != NULL);

  inf_data
    = (struct nto_inferior_data *) inferior_data (inf, nto_inferior_data_reg);
  if (inf_data == NULL)
    {
      set_inferior_data (inf, nto_inferior_data_reg,
			 (inf_data = nto_new_inferior_data ()));
    }

  return inf_data;
}

void
_initialize_nto_tdep (void)
{
  nto_inferior_data_reg
    = register_inferior_data_with_cleanup (NULL, nto_inferior_data_cleanup);
}