1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
/* Print National Semiconductor 32000 instructions for GDB, the GNU debugger.
Copyright 1986, 1988, 1991 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <stdio.h>
#include "defs.h"
#include "symtab.h"
#include "ns32k-opcode.h"
#include "gdbcore.h"
/* 32000 instructions are never longer than this. */
#define MAXLEN 62
/* Number of elements in the opcode table. */
#define NOPCODES (sizeof notstrs / sizeof notstrs[0])
extern char *reg_names[];
#define NEXT_IS_ADDR '|'
/*
* extract "count" bits starting "offset" bits
* into buffer
*/
int
bit_extract (buffer, offset, count)
char *buffer;
int offset;
int count;
{
int result;
int mask;
int bit;
buffer += offset >> 3;
offset &= 7;
bit = 1;
result = 0;
while (count--)
{
if ((*buffer & (1 << offset)))
result |= bit;
if (++offset == 8)
{
offset = 0;
buffer++;
}
bit <<= 1;
}
return result;
}
float
fbit_extract (buffer, offset, count)
{
union {
int ival;
float fval;
} foo;
foo.ival = bit_extract (buffer, offset, 32);
return foo.fval;
}
double
dbit_extract (buffer, offset, count)
{
union {
struct {int low, high; } ival;
double dval;
} foo;
foo.ival.low = bit_extract (buffer, offset, 32);
foo.ival.high = bit_extract (buffer, offset+32, 32);
return foo.dval;
}
sign_extend (value, bits)
{
value = value & ((1 << bits) - 1);
return (value & (1 << (bits-1))
? value | (~((1 << bits) - 1))
: value);
}
flip_bytes (ptr, count)
char *ptr;
int count;
{
char tmp;
while (count > 0)
{
tmp = *ptr;
ptr[0] = ptr[count-1];
ptr[count-1] = tmp;
ptr++;
count -= 2;
}
}
/* Given a character C, does it represent a general addressing mode? */
#define Is_gen(c) \
((c) == 'F' || (c) == 'L' || (c) == 'B' \
|| (c) == 'W' || (c) == 'D' || (c) == 'A')
/* Adressing modes. */
#define Adrmod_index_byte 0x1c
#define Adrmod_index_word 0x1d
#define Adrmod_index_doubleword 0x1e
#define Adrmod_index_quadword 0x1f
/* Is MODE an indexed addressing mode? */
#define Adrmod_is_index(mode) \
(mode == Adrmod_index_byte \
|| mode == Adrmod_index_word \
|| mode == Adrmod_index_doubleword \
|| mode == Adrmod_index_quadword)
/* Print the 32000 instruction at address MEMADDR in debugged memory,
on STREAM. Returns length of the instruction, in bytes. */
int
print_insn (memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
{
unsigned char buffer[MAXLEN];
register int i;
register unsigned char *p;
register char *d;
unsigned short first_word;
int gen, disp;
int ioffset; /* bits into instruction */
int aoffset; /* bits into arguments */
char arg_bufs[MAX_ARGS+1][ARG_LEN];
int argnum;
int maxarg;
read_memory (memaddr, buffer, MAXLEN);
first_word = *(unsigned short *) buffer;
for (i = 0; i < NOPCODES; i++)
if ((first_word & ((1 << notstrs[i].detail.obits) - 1))
== notstrs[i].detail.code)
break;
/* Handle undefined instructions. */
if (i == NOPCODES)
{
fprintf (stream, "0%o", buffer[0]);
return 1;
}
fprintf (stream, "%s", notstrs[i].name);
ioffset = notstrs[i].detail.ibits;
aoffset = notstrs[i].detail.ibits;
d = notstrs[i].detail.args;
if (*d)
{
/* Offset in bits of the first thing beyond each index byte.
Element 0 is for operand A and element 1 is for operand B.
The rest are irrelevant, but we put them here so we don't
index outside the array. */
int index_offset[MAX_ARGS];
/* 0 for operand A, 1 for operand B, greater for other args. */
int whicharg = 0;
fputc ('\t', stream);
maxarg = 0;
/* First we have to find and keep track of the index bytes,
if we are using scaled indexed addressing mode, since the index
bytes occur right after the basic instruction, not as part
of the addressing extension. */
if (Is_gen(d[1]))
{
int addr_mode = bit_extract (buffer, ioffset - 5, 5);
if (Adrmod_is_index (addr_mode))
{
aoffset += 8;
index_offset[0] = aoffset;
}
}
if (d[2] && Is_gen(d[3]))
{
int addr_mode = bit_extract (buffer, ioffset - 10, 5);
if (Adrmod_is_index (addr_mode))
{
aoffset += 8;
index_offset[1] = aoffset;
}
}
while (*d)
{
argnum = *d - '1';
d++;
if (argnum > maxarg && argnum < MAX_ARGS)
maxarg = argnum;
ioffset = print_insn_arg (*d, ioffset, &aoffset, buffer,
memaddr, arg_bufs[argnum],
index_offset[whicharg]);
d++;
whicharg++;
}
for (argnum = 0; argnum <= maxarg; argnum++)
{
CORE_ADDR addr;
char *ch, *index ();
for (ch = arg_bufs[argnum]; *ch;)
{
if (*ch == NEXT_IS_ADDR)
{
++ch;
addr = atoi (ch);
print_address (addr, stream);
while (*ch && *ch != NEXT_IS_ADDR)
++ch;
if (*ch)
++ch;
}
else
putc (*ch++, stream);
}
if (argnum < maxarg)
fprintf (stream, ", ");
}
}
return aoffset / 8;
}
/* Print an instruction operand of category given by d. IOFFSET is
the bit position below which small (<1 byte) parts of the operand can
be found (usually in the basic instruction, but for indexed
addressing it can be in the index byte). AOFFSETP is a pointer to the
bit position of the addressing extension. BUFFER contains the
instruction. ADDR is where BUFFER was read from. Put the disassembled
version of the operand in RESULT. INDEX_OFFSET is the bit position
of the index byte (it contains garbage if this operand is not a
general operand using scaled indexed addressing mode). */
print_insn_arg (d, ioffset, aoffsetp, buffer, addr, result, index_offset)
char d;
int ioffset, *aoffsetp;
char *buffer;
CORE_ADDR addr;
char *result;
int index_offset;
{
int addr_mode;
float Fvalue;
double Lvalue;
int Ivalue;
int disp1, disp2;
int index;
switch (d)
{
case 'F':
case 'L':
case 'B':
case 'W':
case 'D':
case 'A':
addr_mode = bit_extract (buffer, ioffset-5, 5);
ioffset -= 5;
switch (addr_mode)
{
case 0x0: case 0x1: case 0x2: case 0x3:
case 0x4: case 0x5: case 0x6: case 0x7:
switch (d)
{
case 'F':
case 'L':
sprintf (result, "f%d", addr_mode);
break;
default:
sprintf (result, "r%d", addr_mode);
}
break;
case 0x8: case 0x9: case 0xa: case 0xb:
case 0xc: case 0xd: case 0xe: case 0xf:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(r%d)", disp1, addr_mode & 7);
break;
case 0x10:
case 0x11:
case 0x12:
disp1 = get_displacement (buffer, aoffsetp);
disp2 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(%d(%s))", disp2, disp1,
addr_mode==0x10?"fp":addr_mode==0x11?"sp":"sb");
break;
case 0x13:
sprintf (result, "reserved");
break;
case 0x14:
switch (d)
{
case 'B':
Ivalue = bit_extract (buffer, *aoffsetp, 8);
Ivalue = sign_extend (Ivalue, 8);
*aoffsetp += 8;
sprintf (result, "$%d", Ivalue);
break;
case 'W':
Ivalue = bit_extract (buffer, *aoffsetp, 16);
flip_bytes (&Ivalue, 2);
*aoffsetp += 16;
Ivalue = sign_extend (Ivalue, 16);
sprintf (result, "$%d", Ivalue);
break;
case 'D':
Ivalue = bit_extract (buffer, *aoffsetp, 32);
flip_bytes (&Ivalue, 4);
*aoffsetp += 32;
sprintf (result, "$%d", Ivalue);
break;
case 'A':
Ivalue = bit_extract (buffer, *aoffsetp, 32);
flip_bytes (&Ivalue, 4);
*aoffsetp += 32;
sprintf (result, "$|%d|", Ivalue);
break;
case 'F':
Fvalue = fbit_extract (buffer, *aoffsetp, 32);
flip_bytes (&Fvalue, 4);
*aoffsetp += 32;
sprintf (result, "$%g", Fvalue);
break;
case 'L':
Lvalue = dbit_extract (buffer, *aoffsetp, 64);
flip_bytes (&Lvalue, 8);
*aoffsetp += 64;
sprintf (result, "$%g", Lvalue);
break;
}
break;
case 0x15:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "@|%d|", disp1);
break;
case 0x16:
disp1 = get_displacement (buffer, aoffsetp);
disp2 = get_displacement (buffer, aoffsetp);
sprintf (result, "EXT(%d) + %d", disp1, disp2);
break;
case 0x17:
sprintf (result, "tos");
break;
case 0x18:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(fp)", disp1);
break;
case 0x19:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(sp)", disp1);
break;
case 0x1a:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(sb)", disp1);
break;
case 0x1b:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "|%d|", addr + disp1);
break;
case 0x1c:
case 0x1d:
case 0x1e:
case 0x1f:
index = bit_extract (buffer, index_offset - 8, 3);
print_insn_arg (d, index_offset, aoffsetp, buffer, addr,
result, 0);
{
static char *ind[] = {"b", "w", "d", "q"};
char *off;
off = result + strlen (result);
sprintf (off, "[r%d:%s]", index,
ind[addr_mode & 3]);
}
break;
}
break;
case 'q':
Ivalue = bit_extract (buffer, ioffset-4, 4);
Ivalue = sign_extend (Ivalue, 4);
sprintf (result, "%d", Ivalue);
ioffset -= 4;
break;
case 'r':
Ivalue = bit_extract (buffer, ioffset-3, 3);
sprintf (result, "r%d", Ivalue&7);
ioffset -= 3;
break;
case 'd':
sprintf (result, "%d", get_displacement (buffer, aoffsetp));
break;
case 'p':
sprintf (result, "%c%d%c", NEXT_IS_ADDR,
addr + get_displacement (buffer, aoffsetp),
NEXT_IS_ADDR);
break;
case 'i':
Ivalue = bit_extract (buffer, *aoffsetp, 8);
*aoffsetp += 8;
sprintf (result, "0x%x", Ivalue);
break;
}
return ioffset;
}
get_displacement (buffer, aoffsetp)
char *buffer;
int *aoffsetp;
{
int Ivalue;
Ivalue = bit_extract (buffer, *aoffsetp, 8);
switch (Ivalue & 0xc0)
{
case 0x00:
case 0x40:
Ivalue = sign_extend (Ivalue, 7);
*aoffsetp += 8;
break;
case 0x80:
Ivalue = bit_extract (buffer, *aoffsetp, 16);
flip_bytes (&Ivalue, 2);
Ivalue = sign_extend (Ivalue, 14);
*aoffsetp += 16;
break;
case 0xc0:
Ivalue = bit_extract (buffer, *aoffsetp, 32);
flip_bytes (&Ivalue, 4);
Ivalue = sign_extend (Ivalue, 30);
*aoffsetp += 32;
break;
}
return Ivalue;
}
/* Return the number of locals in the current frame given a pc
pointing to the enter instruction. This is used in the macro
FRAME_FIND_SAVED_REGS. */
ns32k_localcount (enter_pc)
CORE_ADDR enter_pc;
{
unsigned char localtype;
int localcount;
localtype = read_memory_integer (enter_pc+2, 1);
if ((localtype & 0x80) == 0)
localcount = localtype;
else if ((localtype & 0xc0) == 0x80)
localcount = (((localtype & 0x3f) << 8)
| (read_memory_integer (enter_pc+3, 1) & 0xff));
else
localcount = (((localtype & 0x3f) << 24)
| ((read_memory_integer (enter_pc+3, 1) & 0xff) << 16)
| ((read_memory_integer (enter_pc+4, 1) & 0xff) << 8 )
| (read_memory_integer (enter_pc+5, 1) & 0xff));
return localcount;
}
/*
* Get the address of the enter opcode for the function
* containing PC, if there is an enter for the function,
* and if the pc is between the enter and exit.
* Returns positive address if pc is between enter/exit,
* 1 if pc before enter or after exit, 0 otherwise.
*/
CORE_ADDR
ns32k_get_enter_addr (pc)
CORE_ADDR pc;
{
CORE_ADDR enter_addr;
unsigned char op;
if (ABOUT_TO_RETURN (pc))
return 1; /* after exit */
enter_addr = get_pc_function_start (pc);
if (pc == enter_addr)
return 1; /* before enter */
op = read_memory_integer (enter_addr, 1);
if (op != 0x82)
return 0; /* function has no enter/exit */
return enter_addr; /* pc is between enter and exit */
}
|