aboutsummaryrefslogtreecommitdiff
path: root/gdb/nds32-tdep.c
blob: fc90797f6d0372466111eb52c88e035f4fafc623 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
/* Target-dependent code for the NDS32 architecture, for GDB.

   Copyright (C) 2013-2020 Free Software Foundation, Inc.
   Contributed by Andes Technology Corporation.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcore.h"
#include "value.h"
#include "reggroups.h"
#include "inferior.h"
#include "osabi.h"
#include "arch-utils.h"
#include "regcache.h"
#include "dis-asm.h"
#include "user-regs.h"
#include "elf-bfd.h"
#include "dwarf2/frame.h"
#include "remote.h"
#include "target-descriptions.h"

#include "nds32-tdep.h"
#include "elf/nds32.h"
#include "opcode/nds32.h"
#include <algorithm>

#include "features/nds32.c"

/* Simple macros for instruction analysis.  */
#define CHOP_BITS(insn, n)	(insn & ~__MASK (n))
#define N32_LSMW_ENABLE4(insn)	(((insn) >> 6) & 0xf)
#define N32_SMW_ADM \
	N32_TYPE4 (LSMW, 0, 0, 0, 1, (N32_LSMW_ADM << 2) | N32_LSMW_LSMW)
#define N32_LMW_BIM \
	N32_TYPE4 (LSMW, 0, 0, 0, 0, (N32_LSMW_BIM << 2) | N32_LSMW_LSMW)
#define N32_FLDI_SP \
	N32_TYPE2 (LDC, 0, REG_SP, 0)

/* Use an invalid address value as 'not available' marker.  */
enum { REG_UNAVAIL = (CORE_ADDR) -1 };

/* Use an impossible value as invalid offset.  */
enum { INVALID_OFFSET = (CORE_ADDR) -1 };

/* Instruction groups for NDS32 epilogue analysis.  */
enum
{
  /* Instructions used everywhere, not only in epilogue.  */
  INSN_NORMAL,
  /* Instructions used to reset sp for local vars, arguments, etc.  */
  INSN_RESET_SP,
  /* Instructions used to recover saved regs and to recover padding.  */
  INSN_RECOVER,
  /* Instructions used to return to the caller.  */
  INSN_RETURN,
  /* Instructions used to recover saved regs and to return to the caller.  */
  INSN_RECOVER_RETURN,
};

static const char *const nds32_register_names[] =
{
  /* 32 GPRs.  */
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
  "r24", "r25", "r26", "r27", "fp", "gp", "lp", "sp",
  /* PC.  */
  "pc",
};

static const char *const nds32_fdr_register_names[] =
{
  "fd0", "fd1", "fd2", "fd3", "fd4", "fd5", "fd6", "fd7",
  "fd8", "fd9", "fd10", "fd11", "fd12", "fd13", "fd14", "fd15",
  "fd16", "fd17", "fd18", "fd19", "fd20", "fd21", "fd22", "fd23",
  "fd24", "fd25", "fd26", "fd27", "fd28", "fd29", "fd30", "fd31"
};

static const char *const nds32_fsr_register_names[] =
{
  "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
  "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
  "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
  "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
};

/* The number of registers for four FPU configuration options.  */
const int num_fdr_map[] = { 4, 8, 16, 32 };
const int num_fsr_map[] = { 8, 16, 32, 32 };

/* Aliases for registers.  */
static const struct
{
  const char *name;
  const char *alias;
} nds32_register_aliases[] =
{
  {"r15", "ta"},
  {"r26", "p0"},
  {"r27", "p1"},
  {"fp", "r28"},
  {"gp", "r29"},
  {"lp", "r30"},
  {"sp", "r31"},

  {"cr0", "cpu_ver"},
  {"cr1", "icm_cfg"},
  {"cr2", "dcm_cfg"},
  {"cr3", "mmu_cfg"},
  {"cr4", "msc_cfg"},
  {"cr5", "core_id"},
  {"cr6", "fucop_exist"},
  {"cr7", "msc_cfg2"},

  {"ir0", "psw"},
  {"ir1", "ipsw"},
  {"ir2", "p_psw"},
  {"ir3", "ivb"},
  {"ir4", "eva"},
  {"ir5", "p_eva"},
  {"ir6", "itype"},
  {"ir7", "p_itype"},
  {"ir8", "merr"},
  {"ir9", "ipc"},
  {"ir10", "p_ipc"},
  {"ir11", "oipc"},
  {"ir12", "p_p0"},
  {"ir13", "p_p1"},
  {"ir14", "int_mask"},
  {"ir15", "int_pend"},
  {"ir16", "sp_usr"},
  {"ir17", "sp_priv"},
  {"ir18", "int_pri"},
  {"ir19", "int_ctrl"},
  {"ir20", "sp_usr1"},
  {"ir21", "sp_priv1"},
  {"ir22", "sp_usr2"},
  {"ir23", "sp_priv2"},
  {"ir24", "sp_usr3"},
  {"ir25", "sp_priv3"},
  {"ir26", "int_mask2"},
  {"ir27", "int_pend2"},
  {"ir28", "int_pri2"},
  {"ir29", "int_trigger"},

  {"mr0", "mmu_ctl"},
  {"mr1", "l1_pptb"},
  {"mr2", "tlb_vpn"},
  {"mr3", "tlb_data"},
  {"mr4", "tlb_misc"},
  {"mr5", "vlpt_idx"},
  {"mr6", "ilmb"},
  {"mr7", "dlmb"},
  {"mr8", "cache_ctl"},
  {"mr9", "hsmp_saddr"},
  {"mr10", "hsmp_eaddr"},
  {"mr11", "bg_region"},

  {"dr0", "bpc0"},
  {"dr1", "bpc1"},
  {"dr2", "bpc2"},
  {"dr3", "bpc3"},
  {"dr4", "bpc4"},
  {"dr5", "bpc5"},
  {"dr6", "bpc6"},
  {"dr7", "bpc7"},
  {"dr8", "bpa0"},
  {"dr9", "bpa1"},
  {"dr10", "bpa2"},
  {"dr11", "bpa3"},
  {"dr12", "bpa4"},
  {"dr13", "bpa5"},
  {"dr14", "bpa6"},
  {"dr15", "bpa7"},
  {"dr16", "bpam0"},
  {"dr17", "bpam1"},
  {"dr18", "bpam2"},
  {"dr19", "bpam3"},
  {"dr20", "bpam4"},
  {"dr21", "bpam5"},
  {"dr22", "bpam6"},
  {"dr23", "bpam7"},
  {"dr24", "bpv0"},
  {"dr25", "bpv1"},
  {"dr26", "bpv2"},
  {"dr27", "bpv3"},
  {"dr28", "bpv4"},
  {"dr29", "bpv5"},
  {"dr30", "bpv6"},
  {"dr31", "bpv7"},
  {"dr32", "bpcid0"},
  {"dr33", "bpcid1"},
  {"dr34", "bpcid2"},
  {"dr35", "bpcid3"},
  {"dr36", "bpcid4"},
  {"dr37", "bpcid5"},
  {"dr38", "bpcid6"},
  {"dr39", "bpcid7"},
  {"dr40", "edm_cfg"},
  {"dr41", "edmsw"},
  {"dr42", "edm_ctl"},
  {"dr43", "edm_dtr"},
  {"dr44", "bpmtc"},
  {"dr45", "dimbr"},
  {"dr46", "tecr0"},
  {"dr47", "tecr1"},

  {"hspr0", "hsp_ctl"},
  {"hspr1", "sp_bound"},
  {"hspr2", "sp_bound_priv"},

  {"pfr0", "pfmc0"},
  {"pfr1", "pfmc1"},
  {"pfr2", "pfmc2"},
  {"pfr3", "pfm_ctl"},
  {"pfr4", "pft_ctl"},

  {"dmar0", "dma_cfg"},
  {"dmar1", "dma_gcsw"},
  {"dmar2", "dma_chnsel"},
  {"dmar3", "dma_act"},
  {"dmar4", "dma_setup"},
  {"dmar5", "dma_isaddr"},
  {"dmar6", "dma_esaddr"},
  {"dmar7", "dma_tcnt"},
  {"dmar8", "dma_status"},
  {"dmar9", "dma_2dset"},
  {"dmar10", "dma_2dsctl"},
  {"dmar11", "dma_rcnt"},
  {"dmar12", "dma_hstatus"},

  {"racr0", "prusr_acc_ctl"},
  {"fucpr", "fucop_ctl"},

  {"idr0", "sdz_ctl"},
  {"idr1", "misc_ctl"},
  {"idr2", "ecc_misc"},

  {"secur0", "sfcr"},
  {"secur1", "sign"},
  {"secur2", "isign"},
  {"secur3", "p_isign"},
};

/* Value of a register alias.  BATON is the regnum of the corresponding
   register.  */

static struct value *
value_of_nds32_reg (struct frame_info *frame, const void *baton)
{
  return value_of_register ((int) (intptr_t) baton, frame);
}

/* Implement the "frame_align" gdbarch method.  */

static CORE_ADDR
nds32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
  /* 8-byte aligned.  */
  return align_down (sp, 8);
}

/* The same insn machine code is used for little-endian and big-endian.  */
constexpr gdb_byte nds32_break_insn[] = { 0xEA, 0x00 };

typedef BP_MANIPULATION (nds32_break_insn) nds32_breakpoint;

/* Implement the "dwarf2_reg_to_regnum" gdbarch method.  */

static int
nds32_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const int FSR = 38;
  const int FDR = FSR + 32;

  if (num >= 0 && num < 32)
    {
      /* General-purpose registers (R0 - R31).  */
      return num;
    }
  else if (num >= FSR && num < FSR + 32)
    {
      /* Single precision floating-point registers (FS0 - FS31).  */
      return num - FSR + tdep->fs0_regnum;
    }
  else if (num >= FDR && num < FDR + 32)
    {
      /* Double precision floating-point registers (FD0 - FD31).  */
      return num - FDR + NDS32_FD0_REGNUM;
    }

  /* No match, return a inaccessible register number.  */
  return -1;
}

/* NDS32 register groups.  */
static struct reggroup *nds32_cr_reggroup;
static struct reggroup *nds32_ir_reggroup;
static struct reggroup *nds32_mr_reggroup;
static struct reggroup *nds32_dr_reggroup;
static struct reggroup *nds32_pfr_reggroup;
static struct reggroup *nds32_hspr_reggroup;
static struct reggroup *nds32_dmar_reggroup;
static struct reggroup *nds32_racr_reggroup;
static struct reggroup *nds32_idr_reggroup;
static struct reggroup *nds32_secur_reggroup;

static void
nds32_init_reggroups (void)
{
  nds32_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
  nds32_ir_reggroup = reggroup_new ("ir", USER_REGGROUP);
  nds32_mr_reggroup = reggroup_new ("mr", USER_REGGROUP);
  nds32_dr_reggroup = reggroup_new ("dr", USER_REGGROUP);
  nds32_pfr_reggroup = reggroup_new ("pfr", USER_REGGROUP);
  nds32_hspr_reggroup = reggroup_new ("hspr", USER_REGGROUP);
  nds32_dmar_reggroup = reggroup_new ("dmar", USER_REGGROUP);
  nds32_racr_reggroup = reggroup_new ("racr", USER_REGGROUP);
  nds32_idr_reggroup = reggroup_new ("idr", USER_REGGROUP);
  nds32_secur_reggroup = reggroup_new ("secur", USER_REGGROUP);
}

static void
nds32_add_reggroups (struct gdbarch *gdbarch)
{
  /* Add pre-defined register groups.  */
  reggroup_add (gdbarch, general_reggroup);
  reggroup_add (gdbarch, float_reggroup);
  reggroup_add (gdbarch, system_reggroup);
  reggroup_add (gdbarch, all_reggroup);
  reggroup_add (gdbarch, save_reggroup);
  reggroup_add (gdbarch, restore_reggroup);

  /* Add NDS32 register groups.  */
  reggroup_add (gdbarch, nds32_cr_reggroup);
  reggroup_add (gdbarch, nds32_ir_reggroup);
  reggroup_add (gdbarch, nds32_mr_reggroup);
  reggroup_add (gdbarch, nds32_dr_reggroup);
  reggroup_add (gdbarch, nds32_pfr_reggroup);
  reggroup_add (gdbarch, nds32_hspr_reggroup);
  reggroup_add (gdbarch, nds32_dmar_reggroup);
  reggroup_add (gdbarch, nds32_racr_reggroup);
  reggroup_add (gdbarch, nds32_idr_reggroup);
  reggroup_add (gdbarch, nds32_secur_reggroup);
}

/* Implement the "register_reggroup_p" gdbarch method.  */

static int
nds32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			   struct reggroup *reggroup)
{
  const char *reg_name;
  const char *group_name;
  int ret;

  if (reggroup == all_reggroup)
    return 1;

  /* General reggroup contains only GPRs and PC.  */
  if (reggroup == general_reggroup)
    return regnum <= NDS32_PC_REGNUM;

  if (reggroup == float_reggroup || reggroup == save_reggroup
      || reggroup == restore_reggroup)
    {
      ret = tdesc_register_in_reggroup_p (gdbarch, regnum, reggroup);
      if (ret != -1)
	return ret;

      return default_register_reggroup_p (gdbarch, regnum, reggroup);
    }

  if (reggroup == system_reggroup)
    return (regnum > NDS32_PC_REGNUM)
	    && !nds32_register_reggroup_p (gdbarch, regnum, float_reggroup);

  /* The NDS32 reggroup contains registers whose name is prefixed
     by reggroup name.  */
  reg_name = gdbarch_register_name (gdbarch, regnum);
  group_name = reggroup_name (reggroup);
  return !strncmp (reg_name, group_name, strlen (group_name));
}

/* Implement the "pseudo_register_type" tdesc_arch_data method.  */

static struct type *
nds32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
  regnum -= gdbarch_num_regs (gdbarch);

  /* Currently, only FSRs could be defined as pseudo registers.  */
  if (regnum < gdbarch_num_pseudo_regs (gdbarch))
    return arch_float_type (gdbarch, -1, "builtin_type_ieee_single",
			    floatformats_ieee_single);

  warning (_("Unknown nds32 pseudo register %d."), regnum);
  return NULL;
}

/* Implement the "pseudo_register_name" tdesc_arch_data method.  */

static const char *
nds32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
{
  regnum -= gdbarch_num_regs (gdbarch);

  /* Currently, only FSRs could be defined as pseudo registers.  */
  if (regnum < gdbarch_num_pseudo_regs (gdbarch))
    return nds32_fsr_register_names[regnum];

  warning (_("Unknown nds32 pseudo register %d."), regnum);
  return NULL;
}

/* Implement the "pseudo_register_read" gdbarch method.  */

static enum register_status
nds32_pseudo_register_read (struct gdbarch *gdbarch,
			    readable_regcache *regcache, int regnum,
			    gdb_byte *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  gdb_byte reg_buf[8];
  int offset, fdr_regnum;
  enum register_status status;

  /* This function is registered in nds32_gdbarch_init only after these are
     set.  */
  gdb_assert (tdep->fpu_freg != -1);
  gdb_assert (tdep->use_pseudo_fsrs != 0);

  regnum -= gdbarch_num_regs (gdbarch);

  /* Currently, only FSRs could be defined as pseudo registers.  */
  if (regnum < gdbarch_num_pseudo_regs (gdbarch))
    {
      /* fs0 is always the most significant half of fd0.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	offset = (regnum & 1) ? 4 : 0;
      else
	offset = (regnum & 1) ? 0 : 4;

      fdr_regnum = NDS32_FD0_REGNUM + (regnum >> 1);
      status = regcache->raw_read (fdr_regnum, reg_buf);
      if (status == REG_VALID)
	memcpy (buf, reg_buf + offset, 4);

      return status;
    }

  gdb_assert_not_reached ("invalid pseudo register number");
}

/* Implement the "pseudo_register_write" gdbarch method.  */

static void
nds32_pseudo_register_write (struct gdbarch *gdbarch,
			     struct regcache *regcache, int regnum,
			     const gdb_byte *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  gdb_byte reg_buf[8];
  int offset, fdr_regnum;

  /* This function is registered in nds32_gdbarch_init only after these are
     set.  */
  gdb_assert (tdep->fpu_freg != -1);
  gdb_assert (tdep->use_pseudo_fsrs != 0);

  regnum -= gdbarch_num_regs (gdbarch);

  /* Currently, only FSRs could be defined as pseudo registers.  */
  if (regnum < gdbarch_num_pseudo_regs (gdbarch))
    {
      /* fs0 is always the most significant half of fd0.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	offset = (regnum & 1) ? 4 : 0;
      else
	offset = (regnum & 1) ? 0 : 4;

      fdr_regnum = NDS32_FD0_REGNUM + (regnum >> 1);
      regcache->raw_read (fdr_regnum, reg_buf);
      memcpy (reg_buf + offset, buf, 4);
      regcache->raw_write (fdr_regnum, reg_buf);
      return;
    }

  gdb_assert_not_reached ("invalid pseudo register number");
}

/* Helper function for NDS32 ABI.  Return true if FPRs can be used
   to pass function arguments and return value.  */

static int
nds32_abi_use_fpr (int elf_abi)
{
  return elf_abi == E_NDS_ABI_V2FP_PLUS;
}

/* Helper function for NDS32 ABI.  Return true if GPRs and stack
   can be used together to pass an argument.  */

static int
nds32_abi_split (int elf_abi)
{
  return elf_abi == E_NDS_ABI_AABI;
}

#define NDS32_NUM_SAVED_REGS (NDS32_LP_REGNUM + 1)

struct nds32_frame_cache
{
  /* The previous frame's inner most stack address.  Used as this
     frame ID's stack_addr.  */
  CORE_ADDR prev_sp;

  /* The frame's base, optionally used by the high-level debug info.  */
  CORE_ADDR base;

  /* During prologue analysis, keep how far the SP and FP have been offset
     from the start of the stack frame (as defined by the previous frame's
     stack pointer).
     During epilogue analysis, keep how far the SP has been offset from the
     current stack pointer.  */
  CORE_ADDR sp_offset;
  CORE_ADDR fp_offset;

  /* The address of the first instruction in this function.  */
  CORE_ADDR pc;

  /* Saved registers.  */
  CORE_ADDR saved_regs[NDS32_NUM_SAVED_REGS];
};

/* Allocate and initialize a frame cache.  */

static struct nds32_frame_cache *
nds32_alloc_frame_cache (void)
{
  struct nds32_frame_cache *cache;
  int i;

  cache = FRAME_OBSTACK_ZALLOC (struct nds32_frame_cache);

  /* Initialize fp_offset to check if FP is set in prologue.  */
  cache->fp_offset = INVALID_OFFSET;

  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset.  */
  for (i = 0; i < NDS32_NUM_SAVED_REGS; i++)
    cache->saved_regs[i] = REG_UNAVAIL;

  return cache;
}

/* Helper function for instructions used to push multiple words.  */

static void
nds32_push_multiple_words (struct nds32_frame_cache *cache, int rb, int re,
			   int enable4)
{
  CORE_ADDR sp_offset = cache->sp_offset;
  int i;

  /* Check LP, GP, FP in enable4.  */
  for (i = 1; i <= 3; i++)
    {
      if ((enable4 >> i) & 0x1)
	{
	  sp_offset += 4;
	  cache->saved_regs[NDS32_SP_REGNUM - i] = sp_offset;
	}
    }

  /* Skip case where re == rb == sp.  */
  if ((rb < REG_FP) && (re < REG_FP))
    {
      for (i = re; i >= rb; i--)
	{
	  sp_offset += 4;
	  cache->saved_regs[i] = sp_offset;
	}
    }

  /* For sp, update the offset.  */
  cache->sp_offset = sp_offset;
}

/* Analyze the instructions within the given address range.  If CACHE
   is non-NULL, fill it in.  Return the first address beyond the given
   address range.  If CACHE is NULL, return the first address not
   recognized as a prologue instruction.  */

static CORE_ADDR
nds32_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
			CORE_ADDR limit_pc, struct nds32_frame_cache *cache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
  /* Current scanning status.  */
  int in_prologue_bb = 0;
  int val_ta = 0;
  uint32_t insn, insn_len;

  for (; pc < limit_pc; pc += insn_len)
    {
      insn = read_memory_unsigned_integer (pc, 4, BFD_ENDIAN_BIG);

      if ((insn & 0x80000000) == 0)
	{
	  /* 32-bit instruction */
	  insn_len = 4;

	  if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_SP, 0))
	    {
	      /* addi $sp, $sp, imm15s */
	      int imm15s = N32_IMM15S (insn);

	      if (imm15s < 0)
		{
		  if (cache != NULL)
		    cache->sp_offset += -imm15s;

		  in_prologue_bb = 1;
		  continue;
		}
	    }
	  else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_FP, REG_SP, 0))
	    {
	      /* addi $fp, $sp, imm15s */
	      int imm15s = N32_IMM15S (insn);

	      if (imm15s > 0)
		{
		  if (cache != NULL)
		    cache->fp_offset = cache->sp_offset - imm15s;

		  in_prologue_bb = 1;
		  continue;
		}
	    }
	  else if ((insn & ~(__MASK (19) << 6)) == N32_SMW_ADM
		   && N32_RA5 (insn) == REG_SP)
	    {
	      /* smw.adm Rb, [$sp], Re, enable4 */
	      if (cache != NULL)
		nds32_push_multiple_words (cache, N32_RT5 (insn),
					   N32_RB5 (insn),
					   N32_LSMW_ENABLE4 (insn));
	      in_prologue_bb = 1;
	      continue;
	    }
	  else if (insn == N32_ALU1 (ADD, REG_SP, REG_SP, REG_TA)
		   || insn == N32_ALU1 (ADD, REG_SP, REG_TA, REG_SP))
	    {
	      /* add $sp, $sp, $ta */
	      /* add $sp, $ta, $sp */
	      if (val_ta < 0)
		{
		  if (cache != NULL)
		    cache->sp_offset += -val_ta;

		  in_prologue_bb = 1;
		  continue;
		}
	    }
	  else if (CHOP_BITS (insn, 20) == N32_TYPE1 (MOVI, REG_TA, 0))
	    {
	      /* movi $ta, imm20s */
	      if (cache != NULL)
		val_ta = N32_IMM20S (insn);

	      continue;
	    }
	  else if (CHOP_BITS (insn, 20) == N32_TYPE1 (SETHI, REG_TA, 0))
	    {
	      /* sethi $ta, imm20u */
	      if (cache != NULL)
		val_ta = N32_IMM20U (insn) << 12;

	      continue;
	    }
	  else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ORI, REG_TA, REG_TA, 0))
	    {
	      /* ori $ta, $ta, imm15u */
	      if (cache != NULL)
		val_ta |= N32_IMM15U (insn);

	      continue;
	    }
	  else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_TA, REG_TA, 0))
	    {
	      /* addi $ta, $ta, imm15s */
	      if (cache != NULL)
		val_ta += N32_IMM15S (insn);

	      continue;
	    }
	  if (insn == N32_ALU1 (ADD, REG_GP, REG_TA, REG_GP)
	      || insn == N32_ALU1 (ADD, REG_GP, REG_GP, REG_TA))
	    {
	      /* add $gp, $ta, $gp */
	      /* add $gp, $gp, $ta */
	      in_prologue_bb = 1;
	      continue;
	    }
	  else if (CHOP_BITS (insn, 20) == N32_TYPE1 (MOVI, REG_GP, 0))
	    {
	      /* movi $gp, imm20s */
	      in_prologue_bb = 1;
	      continue;
	    }
	  else if (CHOP_BITS (insn, 20) == N32_TYPE1 (SETHI, REG_GP, 0))
	    {
	      /* sethi $gp, imm20u */
	      in_prologue_bb = 1;
	      continue;
	    }
	  else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ORI, REG_GP, REG_GP, 0))
	    {
	      /* ori $gp, $gp, imm15u */
	      in_prologue_bb = 1;
	      continue;
	    }
	  else
	    {
	      /* Jump/Branch insns never appear in prologue basic block.
		 The loop can be escaped early when these insns are met.  */
	      if (in_prologue_bb == 1)
		{
		  int op = N32_OP6 (insn);

		  if (op == N32_OP6_JI
		      || op == N32_OP6_JREG
		      || op == N32_OP6_BR1
		      || op == N32_OP6_BR2
		      || op == N32_OP6_BR3)
		    break;
		}
	    }

	  if (abi_use_fpr && N32_OP6 (insn) == N32_OP6_SDC
	      && __GF (insn, 12, 3) == 0)
	    {
	      /* For FPU insns, CP (bit [13:14]) should be CP0,  and only
		 normal form (bit [12] == 0) is used.  */

	      /* fsdi FDt, [$sp + (imm12s << 2)] */
	      if (N32_RA5 (insn) == REG_SP)
		continue;
	    }

	  /* The optimizer might shove anything into the prologue, if
	     we build up cache (cache != NULL) from analyzing prologue,
	     we just skip what we don't recognize and analyze further to
	     make cache as complete as possible.  However, if we skip
	     prologue, we'll stop immediately on unrecognized
	     instruction.  */
	  if (cache == NULL)
	    break;
	}
      else
	{
	  /* 16-bit instruction */
	  insn_len = 2;

	  insn >>= 16;

	  if (CHOP_BITS (insn, 10) == N16_TYPE10 (ADDI10S, 0))
	    {
	      /* addi10s.sp */
	      int imm10s = N16_IMM10S (insn);

	      if (imm10s < 0)
		{
		  if (cache != NULL)
		    cache->sp_offset += -imm10s;

		  in_prologue_bb = 1;
		  continue;
		}
	    }
	  else if (__GF (insn, 7, 8) == N16_T25_PUSH25)
	    {
	      /* push25 */
	      if (cache != NULL)
		{
		  int imm8u = (insn & 0x1f) << 3;
		  int re = (insn >> 5) & 0x3;
		  const int reg_map[] = { 6, 8, 10, 14 };

		  /* Operation 1 -- smw.adm R6, [$sp], Re, #0xe */
		  nds32_push_multiple_words (cache, 6, reg_map[re], 0xe);

		  /* Operation 2 -- sp = sp - (imm5u << 3) */
		  cache->sp_offset += imm8u;
		}

	      in_prologue_bb = 1;
	      continue;
	    }
	  else if (insn == N16_TYPE5 (ADD5PC, REG_GP))
	    {
	      /* add5.pc $gp */
	      in_prologue_bb = 1;
	      continue;
	    }
	  else if (CHOP_BITS (insn, 5) == N16_TYPE55 (MOVI55, REG_GP, 0))
	    {
	      /* movi55 $gp, imm5s */
	      in_prologue_bb = 1;
	      continue;
	    }
	  else
	    {
	      /* Jump/Branch insns never appear in prologue basic block.
		 The loop can be escaped early when these insns are met.  */
	      if (in_prologue_bb == 1)
		{
		  uint32_t insn5 = CHOP_BITS (insn, 5);
		  uint32_t insn8 = CHOP_BITS (insn, 8);
		  uint32_t insn38 = CHOP_BITS (insn, 11);

		  if (insn5 == N16_TYPE5 (JR5, 0)
		      || insn5 == N16_TYPE5 (JRAL5, 0)
		      || insn5 == N16_TYPE5 (RET5, 0)
		      || insn8 == N16_TYPE8 (J8, 0)
		      || insn8 == N16_TYPE8 (BEQZS8, 0)
		      || insn8 == N16_TYPE8 (BNEZS8, 0)
		      || insn38 == N16_TYPE38 (BEQZ38, 0, 0)
		      || insn38 == N16_TYPE38 (BNEZ38, 0, 0)
		      || insn38 == N16_TYPE38 (BEQS38, 0, 0)
		      || insn38 == N16_TYPE38 (BNES38, 0, 0))
		    break;
		}
	    }

	  /* The optimizer might shove anything into the prologue, if
	     we build up cache (cache != NULL) from analyzing prologue,
	     we just skip what we don't recognize and analyze further to
	     make cache as complete as possible.  However, if we skip
	     prologue, we'll stop immediately on unrecognized
	     instruction.  */
	  if (cache == NULL)
	    break;
	}
    }

  return pc;
}

/* Implement the "skip_prologue" gdbarch method.

   Find the end of function prologue.  */

static CORE_ADDR
nds32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr, limit_pc;

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);
      if (post_prologue_pc != 0)
	return std::max (pc, post_prologue_pc);
    }

  /* Can't determine prologue from the symbol table, need to examine
     instructions.  */

  /* Find an upper limit on the function prologue using the debug
     information.  If the debug information could not be used to provide
     that bound, then use an arbitrary large number as the upper bound.  */
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
  if (limit_pc == 0)
    limit_pc = pc + 128;	/* Magic.  */

  /* Find the end of prologue.  */
  return nds32_analyze_prologue (gdbarch, pc, limit_pc, NULL);
}

/* Allocate and fill in *THIS_CACHE with information about the prologue of
   *THIS_FRAME.  Do not do this if *THIS_CACHE was already allocated.  Return
   a pointer to the current nds32_frame_cache in *THIS_CACHE.  */

static struct nds32_frame_cache *
nds32_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct nds32_frame_cache *cache;
  CORE_ADDR current_pc;
  ULONGEST prev_sp;
  ULONGEST this_base;
  int i;

  if (*this_cache)
    return (struct nds32_frame_cache *) *this_cache;

  cache = nds32_alloc_frame_cache ();
  *this_cache = cache;

  cache->pc = get_frame_func (this_frame);
  current_pc = get_frame_pc (this_frame);
  nds32_analyze_prologue (gdbarch, cache->pc, current_pc, cache);

  /* Compute the previous frame's stack pointer (which is also the
     frame's ID's stack address), and this frame's base pointer.  */
  if (cache->fp_offset != INVALID_OFFSET)
    {
      /* FP is set in prologue, so it can be used to calculate other info.  */
      this_base = get_frame_register_unsigned (this_frame, NDS32_FP_REGNUM);
      prev_sp = this_base + cache->fp_offset;
    }
  else
    {
      this_base = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM);
      prev_sp = this_base + cache->sp_offset;
    }

  cache->prev_sp = prev_sp;
  cache->base = this_base;

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < NDS32_NUM_SAVED_REGS; i++)
    if (cache->saved_regs[i] != REG_UNAVAIL)
      cache->saved_regs[i] = cache->prev_sp - cache->saved_regs[i];

  return cache;
}

/* Implement the "this_id" frame_unwind method.

   Our frame ID for a normal frame is the current function's starting
   PC and the caller's SP when we were called.  */

static void
nds32_frame_this_id (struct frame_info *this_frame,
		     void **this_cache, struct frame_id *this_id)
{
  struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->prev_sp == 0)
    return;

  *this_id = frame_id_build (cache->prev_sp, cache->pc);
}

/* Implement the "prev_register" frame_unwind method.  */

static struct value *
nds32_frame_prev_register (struct frame_info *this_frame, void **this_cache,
			   int regnum)
{
  struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache);

  if (regnum == NDS32_SP_REGNUM)
    return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);

  /* The PC of the previous frame is stored in the LP register of
     the current frame.  */
  if (regnum == NDS32_PC_REGNUM)
    regnum = NDS32_LP_REGNUM;

  if (regnum < NDS32_NUM_SAVED_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
    return frame_unwind_got_memory (this_frame, regnum,
				    cache->saved_regs[regnum]);

  return frame_unwind_got_register (this_frame, regnum, regnum);
}

static const struct frame_unwind nds32_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  nds32_frame_this_id,
  nds32_frame_prev_register,
  NULL,
  default_frame_sniffer,
};

/* Return the frame base address of *THIS_FRAME.  */

static CORE_ADDR
nds32_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_base nds32_frame_base =
{
  &nds32_frame_unwind,
  nds32_frame_base_address,
  nds32_frame_base_address,
  nds32_frame_base_address
};

/* Helper function for instructions used to pop multiple words.  */

static void
nds32_pop_multiple_words (struct nds32_frame_cache *cache, int rb, int re,
			  int enable4)
{
  CORE_ADDR sp_offset = cache->sp_offset;
  int i;

  /* Skip case where re == rb == sp.  */
  if ((rb < REG_FP) && (re < REG_FP))
    {
      for (i = rb; i <= re; i++)
	{
	  cache->saved_regs[i] = sp_offset;
	  sp_offset += 4;
	}
    }

  /* Check FP, GP, LP in enable4.  */
  for (i = 3; i >= 1; i--)
    {
      if ((enable4 >> i) & 0x1)
	{
	  cache->saved_regs[NDS32_SP_REGNUM - i] = sp_offset;
	  sp_offset += 4;
	}
    }

  /* For sp, update the offset.  */
  cache->sp_offset = sp_offset;
}

/* The instruction sequences in NDS32 epilogue are

   INSN_RESET_SP  (optional)
		  (If exists, this must be the first instruction in epilogue
		   and the stack has not been destroyed.).
   INSN_RECOVER  (optional).
   INSN_RETURN/INSN_RECOVER_RETURN  (required).  */

/* Helper function for analyzing the given 32-bit INSN.  If CACHE is non-NULL,
   the necessary information will be recorded.  */

static inline int
nds32_analyze_epilogue_insn32 (int abi_use_fpr, uint32_t insn,
			       struct nds32_frame_cache *cache)
{
  if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_SP, 0)
      && N32_IMM15S (insn) > 0)
    /* addi $sp, $sp, imm15s */
    return INSN_RESET_SP;
  else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_FP, 0)
	   && N32_IMM15S (insn) < 0)
    /* addi $sp, $fp, imm15s */
    return INSN_RESET_SP;
  else if ((insn & ~(__MASK (19) << 6)) == N32_LMW_BIM
	   && N32_RA5 (insn) == REG_SP)
    {
      /* lmw.bim Rb, [$sp], Re, enable4 */
      if (cache != NULL)
	nds32_pop_multiple_words (cache, N32_RT5 (insn),
				  N32_RB5 (insn), N32_LSMW_ENABLE4 (insn));

      return INSN_RECOVER;
    }
  else if (insn == N32_JREG (JR, 0, REG_LP, 0, 1))
    /* ret $lp */
    return INSN_RETURN;
  else if (insn == N32_ALU1 (ADD, REG_SP, REG_SP, REG_TA)
	   || insn == N32_ALU1 (ADD, REG_SP, REG_TA, REG_SP))
    /* add $sp, $sp, $ta */
    /* add $sp, $ta, $sp */
    return INSN_RESET_SP;
  else if (abi_use_fpr
	   && (insn & ~(__MASK (5) << 20 | __MASK (13))) == N32_FLDI_SP)
    {
      if (__GF (insn, 12, 1) == 0)
	/* fldi FDt, [$sp + (imm12s << 2)] */
	return INSN_RECOVER;
      else
	{
	  /* fldi.bi FDt, [$sp], (imm12s << 2) */
	  int offset = N32_IMM12S (insn) << 2;

	  if (offset == 8 || offset == 12)
	    {
	      if (cache != NULL)
		cache->sp_offset += offset;

	      return INSN_RECOVER;
	    }
	}
    }

  return INSN_NORMAL;
}

/* Helper function for analyzing the given 16-bit INSN.  If CACHE is non-NULL,
   the necessary information will be recorded.  */

static inline int
nds32_analyze_epilogue_insn16 (uint32_t insn, struct nds32_frame_cache *cache)
{
  if (insn == N16_TYPE5 (RET5, REG_LP))
    /* ret5 $lp */
    return INSN_RETURN;
  else if (CHOP_BITS (insn, 10) == N16_TYPE10 (ADDI10S, 0))
    {
      /* addi10s.sp */
      int imm10s = N16_IMM10S (insn);

      if (imm10s > 0)
	{
	  if (cache != NULL)
	    cache->sp_offset += imm10s;

	  return INSN_RECOVER;
	}
    }
  else if (__GF (insn, 7, 8) == N16_T25_POP25)
    {
      /* pop25 */
      if (cache != NULL)
	{
	  int imm8u = (insn & 0x1f) << 3;
	  int re = (insn >> 5) & 0x3;
	  const int reg_map[] = { 6, 8, 10, 14 };

	  /* Operation 1 -- sp = sp + (imm5u << 3) */
	  cache->sp_offset += imm8u;

	  /* Operation 2 -- lmw.bim R6, [$sp], Re, #0xe */
	  nds32_pop_multiple_words (cache, 6, reg_map[re], 0xe);
	}

      /* Operation 3 -- ret $lp */
      return INSN_RECOVER_RETURN;
    }

  return INSN_NORMAL;
}

/* Analyze a reasonable amount of instructions from the given PC to find
   the instruction used to return to the caller.  Return 1 if the 'return'
   instruction could be found, 0 otherwise.

   If CACHE is non-NULL, fill it in.  */

static int
nds32_analyze_epilogue (struct gdbarch *gdbarch, CORE_ADDR pc,
			struct nds32_frame_cache *cache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
  CORE_ADDR limit_pc;
  uint32_t insn, insn_len;
  int insn_type = INSN_NORMAL;

  if (abi_use_fpr)
    limit_pc = pc + 48;
  else
    limit_pc = pc + 16;

  for (; pc < limit_pc; pc += insn_len)
    {
      insn = read_memory_unsigned_integer (pc, 4, BFD_ENDIAN_BIG);

      if ((insn & 0x80000000) == 0)
	{
	  /* 32-bit instruction */
	  insn_len = 4;

	  insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, cache);
	  if (insn_type == INSN_RETURN)
	    return 1;
	  else if (insn_type == INSN_RECOVER)
	    continue;
	}
      else
	{
	  /* 16-bit instruction */
	  insn_len = 2;

	  insn >>= 16;
	  insn_type = nds32_analyze_epilogue_insn16 (insn, cache);
	  if (insn_type == INSN_RETURN || insn_type == INSN_RECOVER_RETURN)
	    return 1;
	  else if (insn_type == INSN_RECOVER)
	    continue;
	}

      /* Stop the scan if this is an unexpected instruction.  */
      break;
    }

  return 0;
}

/* Implement the "stack_frame_destroyed_p" gdbarch method.  */

static int
nds32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
  int insn_type = INSN_NORMAL;
  int ret_found = 0;
  uint32_t insn;

  insn = read_memory_unsigned_integer (addr, 4, BFD_ENDIAN_BIG);

  if ((insn & 0x80000000) == 0)
    {
      /* 32-bit instruction */

      insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, NULL);
    }
  else
    {
      /* 16-bit instruction */

      insn >>= 16;
      insn_type = nds32_analyze_epilogue_insn16 (insn, NULL);
    }

  if (insn_type == INSN_NORMAL || insn_type == INSN_RESET_SP)
    return 0;

  /* Search the required 'return' instruction within the following reasonable
     instructions.  */
  ret_found = nds32_analyze_epilogue (gdbarch, addr, NULL);
  if (ret_found == 0)
    return 0;

  /* Scan backwards to make sure that the last instruction has adjusted
     stack.  Both a 16-bit and a 32-bit instruction will be tried.  This is
     just a heuristic, so the false positives will be acceptable.  */
  insn = read_memory_unsigned_integer (addr - 2, 4, BFD_ENDIAN_BIG);

  /* Only 16-bit instructions are possible at addr - 2.  */
  if ((insn & 0x80000000) != 0)
    {
      /* This may be a 16-bit instruction or part of a 32-bit instruction.  */

      insn_type = nds32_analyze_epilogue_insn16 (insn >> 16, NULL);
      if (insn_type == INSN_RECOVER)
	return 1;
    }

  insn = read_memory_unsigned_integer (addr - 4, 4, BFD_ENDIAN_BIG);

  /* If this is a 16-bit instruction at addr - 4, then there must be another
     16-bit instruction at addr - 2, so only 32-bit instructions need to
     be analyzed here.  */
  if ((insn & 0x80000000) == 0)
    {
      /* This may be a 32-bit instruction or part of a 32-bit instruction.  */

      insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, NULL);
      if (insn_type == INSN_RECOVER || insn_type == INSN_RESET_SP)
	return 1;
    }

  return 0;
}

/* Implement the "sniffer" frame_unwind method.  */

static int
nds32_epilogue_frame_sniffer (const struct frame_unwind *self,
			      struct frame_info *this_frame, void **this_cache)
{
  if (frame_relative_level (this_frame) == 0)
    return nds32_stack_frame_destroyed_p (get_frame_arch (this_frame),
					  get_frame_pc (this_frame));
  else
    return 0;
}

/* Allocate and fill in *THIS_CACHE with information needed to unwind
   *THIS_FRAME within epilogue.  Do not do this if *THIS_CACHE was already
   allocated.  Return a pointer to the current nds32_frame_cache in
   *THIS_CACHE.  */

static struct nds32_frame_cache *
nds32_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct nds32_frame_cache *cache;
  CORE_ADDR current_pc, current_sp;
  int i;

  if (*this_cache)
    return (struct nds32_frame_cache *) *this_cache;

  cache = nds32_alloc_frame_cache ();
  *this_cache = cache;

  cache->pc = get_frame_func (this_frame);
  current_pc = get_frame_pc (this_frame);
  nds32_analyze_epilogue (gdbarch, current_pc, cache);

  current_sp = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM);
  cache->prev_sp = current_sp + cache->sp_offset;

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < NDS32_NUM_SAVED_REGS; i++)
    if (cache->saved_regs[i] != REG_UNAVAIL)
      cache->saved_regs[i] = current_sp + cache->saved_regs[i];

  return cache;
}

/* Implement the "this_id" frame_unwind method.  */

static void
nds32_epilogue_frame_this_id (struct frame_info *this_frame,
			      void **this_cache, struct frame_id *this_id)
{
  struct nds32_frame_cache *cache
    = nds32_epilogue_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->prev_sp == 0)
    return;

  *this_id = frame_id_build (cache->prev_sp, cache->pc);
}

/* Implement the "prev_register" frame_unwind method.  */

static struct value *
nds32_epilogue_frame_prev_register (struct frame_info *this_frame,
				    void **this_cache, int regnum)
{
  struct nds32_frame_cache *cache
    = nds32_epilogue_frame_cache (this_frame, this_cache);

  if (regnum == NDS32_SP_REGNUM)
    return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);

  /* The PC of the previous frame is stored in the LP register of
     the current frame.  */
  if (regnum == NDS32_PC_REGNUM)
    regnum = NDS32_LP_REGNUM;

  if (regnum < NDS32_NUM_SAVED_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
    return frame_unwind_got_memory (this_frame, regnum,
				    cache->saved_regs[regnum]);

  return frame_unwind_got_register (this_frame, regnum, regnum);
}

static const struct frame_unwind nds32_epilogue_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  nds32_epilogue_frame_this_id,
  nds32_epilogue_frame_prev_register,
  NULL,
  nds32_epilogue_frame_sniffer
};


/* Floating type and struct type that has only one floating type member
   can pass value using FPU registers (when FPU ABI is used).  */

static int
nds32_check_calling_use_fpr (struct type *type)
{
  struct type *t;
  enum type_code typecode;

  t = type;
  while (1)
    {
      t = check_typedef (t);
      typecode = t->code ();
      if (typecode != TYPE_CODE_STRUCT)
	break;
      else if (t->num_fields () != 1)
	return 0;
      else
	t = t->field (0).type ();
    }

  return typecode == TYPE_CODE_FLT;
}

/* Implement the "push_dummy_call" gdbarch method.  */

static CORE_ADDR
nds32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		       struct regcache *regcache, CORE_ADDR bp_addr,
		       int nargs, struct value **args, CORE_ADDR sp,
		       function_call_return_method return_method,
		       CORE_ADDR struct_addr)
{
  const int REND = 6;		/* End for register offset.  */
  int goff = 0;			/* Current gpr offset for argument.  */
  int foff = 0;			/* Current fpr offset for argument.  */
  int soff = 0;			/* Current stack offset for argument.  */
  int i;
  ULONGEST regval;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct type *func_type = value_type (function);
  int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
  int abi_split = nds32_abi_split (tdep->elf_abi);

  /* Set the return address.  For the NDS32, the return breakpoint is
     always at BP_ADDR.  */
  regcache_cooked_write_unsigned (regcache, NDS32_LP_REGNUM, bp_addr);

  /* If STRUCT_RETURN is true, then the struct return address (in
     STRUCT_ADDR) will consume the first argument-passing register.
     Both adjust the register count and store that value.  */
  if (return_method == return_method_struct)
    {
      regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, struct_addr);
      goff++;
    }

  /* Now make sure there's space on the stack */
  for (i = 0; i < nargs; i++)
    {
      struct type *type = value_type (args[i]);
      int align = type_align (type);

      /* If align is zero, it may be an empty struct.
	 Just ignore the argument of empty struct.  */
      if (align == 0)
	continue;

      sp -= TYPE_LENGTH (type);
      sp = align_down (sp, align);
    }

  /* Stack must be 8-byte aligned.  */
  sp = align_down (sp, 8);

  soff = 0;
  for (i = 0; i < nargs; i++)
    {
      const gdb_byte *val;
      int align, len;
      struct type *type;
      int calling_use_fpr;
      int use_fpr = 0;

      type = value_type (args[i]);
      calling_use_fpr = nds32_check_calling_use_fpr (type);
      len = TYPE_LENGTH (type);
      align = type_align (type);
      val = value_contents (args[i]);

      /* The size of a composite type larger than 4 bytes will be rounded
	 up to the nearest multiple of 4.  */
      if (len > 4)
	len = align_up (len, 4);

      /* Variadic functions are handled differently between AABI and ABI2FP+.

	 For AABI, the caller pushes arguments in registers, callee stores
	 unnamed arguments in stack, and then va_arg fetch arguments in stack.
	 Therefore, we don't have to handle variadic functions specially.

	 For ABI2FP+, the caller pushes only named arguments in registers
	 and pushes all unnamed arguments in stack.  */

      if (abi_use_fpr && func_type->has_varargs ()
	  && i >= func_type->num_fields ())
	goto use_stack;

      /* Try to use FPRs to pass arguments only when
	 1. The program is built using toolchain with FPU support.
	 2. The type of this argument can use FPR to pass value.  */
      use_fpr = abi_use_fpr && calling_use_fpr;

      if (use_fpr)
	{
	  if (tdep->fpu_freg == -1)
	    goto error_no_fpr;

	  /* Adjust alignment.  */
	  if ((align >> 2) > 0)
	    foff = align_up (foff, align >> 2);

	  if (foff < REND)
	    {
	      switch (len)
		{
		case 4:
		  regcache->cooked_write (tdep->fs0_regnum + foff, val);
		  foff++;
		  break;
		case 8:
		  regcache->cooked_write (NDS32_FD0_REGNUM + (foff >> 1), val);
		  foff += 2;
		  break;
		default:
		  /* Long double?  */
		  internal_error (__FILE__, __LINE__,
				  "Do not know how to handle %d-byte double.\n",
				  len);
		  break;
		}
	      continue;
	    }
	}
      else
	{
	  /*
	     When passing arguments using GPRs,

	     * A composite type not larger than 4 bytes is passed in $rN.
	       The format is as if the value is loaded with load instruction
	       of corresponding size (e.g., LB, LH, LW).

	       For example,

		       r0
		       31      0
	       LITTLE: [x x b a]
		  BIG: [x x a b]

	     * Otherwise, a composite type is passed in consecutive registers.
	       The size is rounded up to the nearest multiple of 4.
	       The successive registers hold the parts of the argument as if
	       were loaded using lmw instructions.

	       For example,

		       r0	 r1
		       31      0 31      0
	       LITTLE: [d c b a] [x x x e]
		  BIG: [a b c d] [e x x x]
	   */

	  /* Adjust alignment.  */
	  if ((align >> 2) > 0)
	    goff = align_up (goff, align >> 2);

	  if (len <= (REND - goff) * 4)
	    {
	      /* This argument can be passed wholly via GPRs.  */
	      while (len > 0)
		{
		  regval = extract_unsigned_integer (val, (len > 4) ? 4 : len,
						     byte_order);
		  regcache_cooked_write_unsigned (regcache,
						  NDS32_R0_REGNUM + goff,
						  regval);
		  len -= 4;
		  val += 4;
		  goff++;
		}
	      continue;
	    }
	  else if (abi_split)
	    {
	      /* Some parts of this argument can be passed via GPRs.  */
	      while (goff < REND)
		{
		  regval = extract_unsigned_integer (val, (len > 4) ? 4 : len,
						     byte_order);
		  regcache_cooked_write_unsigned (regcache,
						  NDS32_R0_REGNUM + goff,
						  regval);
		  len -= 4;
		  val += 4;
		  goff++;
		}
	    }
	}

use_stack:
      /*
	 When pushing (split parts of) an argument into stack,

	 * A composite type not larger than 4 bytes is copied to different
	   base address.
	   In little-endian, the first byte of this argument is aligned
	   at the low address of the next free word.
	   In big-endian, the last byte of this argument is aligned
	   at the high address of the next free word.

	   For example,

	   sp [ - ]  [ c ] hi
	      [ c ]  [ b ]
	      [ b ]  [ a ]
	      [ a ]  [ - ] lo
	     LITTLE   BIG
       */

      /* Adjust alignment.  */
      soff = align_up (soff, align);

      while (len > 0)
	{
	  int rlen = (len > 4) ? 4 : len;

	  if (byte_order == BFD_ENDIAN_BIG)
	    write_memory (sp + soff + 4 - rlen, val, rlen);
	  else
	    write_memory (sp + soff, val, rlen);

	  len -= 4;
	  val += 4;
	  soff += 4;
	}
    }

  /* Finally, update the SP register.  */
  regcache_cooked_write_unsigned (regcache, NDS32_SP_REGNUM, sp);

  return sp;

error_no_fpr:
  /* If use_fpr, but no floating-point register exists,
     then it is an error.  */
  error (_("Fail to call. FPU registers are required."));
}

/* Read, for architecture GDBARCH, a function return value of TYPE
   from REGCACHE, and copy that into VALBUF.  */

static void
nds32_extract_return_value (struct gdbarch *gdbarch, struct type *type,
			    struct regcache *regcache, gdb_byte *valbuf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
  int calling_use_fpr;
  int len;

  calling_use_fpr = nds32_check_calling_use_fpr (type);
  len = TYPE_LENGTH (type);

  if (abi_use_fpr && calling_use_fpr)
    {
      if (len == 4)
	regcache->cooked_read (tdep->fs0_regnum, valbuf);
      else if (len == 8)
	regcache->cooked_read (NDS32_FD0_REGNUM, valbuf);
      else
	internal_error (__FILE__, __LINE__,
			_("Cannot extract return value of %d bytes "
			  "long floating-point."), len);
    }
  else
    {
      /*
	 When returning result,

	 * A composite type not larger than 4 bytes is returned in $r0.
	   The format is as if the result is loaded with load instruction
	   of corresponding size (e.g., LB, LH, LW).

	   For example,

		   r0
		   31      0
	   LITTLE: [x x b a]
	      BIG: [x x a b]

	 * Otherwise, a composite type not larger than 8 bytes is returned
	   in $r0 and $r1.
	   In little-endian, the first word is loaded in $r0.
	   In big-endian, the last word is loaded in $r1.

	   For example,

		   r0	     r1
		   31      0 31      0
	   LITTLE: [d c b a] [x x x e]
	      BIG: [x x x a] [b c d e]
       */

      ULONGEST tmp;

      if (len < 4)
	{
	  /* By using store_unsigned_integer we avoid having to do
	     anything special for small big-endian values.  */
	  regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM, &tmp);
	  store_unsigned_integer (valbuf, len, byte_order, tmp);
	}
      else if (len == 4)
	{
	  regcache->cooked_read (NDS32_R0_REGNUM, valbuf);
	}
      else if (len < 8)
	{
	  int len1, len2;

	  len1 = byte_order == BFD_ENDIAN_BIG ? len - 4 : 4;
	  len2 = len - len1;

	  regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM, &tmp);
	  store_unsigned_integer (valbuf, len1, byte_order, tmp);

	  regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM + 1, &tmp);
	  store_unsigned_integer (valbuf + len1, len2, byte_order, tmp);
	}
      else
	{
	  regcache->cooked_read (NDS32_R0_REGNUM, valbuf);
	  regcache->cooked_read (NDS32_R0_REGNUM + 1, valbuf + 4);
	}
    }
}

/* Write, for architecture GDBARCH, a function return value of TYPE
   from VALBUF into REGCACHE.  */

static void
nds32_store_return_value (struct gdbarch *gdbarch, struct type *type,
			  struct regcache *regcache, const gdb_byte *valbuf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi);
  int calling_use_fpr;
  int len;

  calling_use_fpr = nds32_check_calling_use_fpr (type);
  len = TYPE_LENGTH (type);

  if (abi_use_fpr && calling_use_fpr)
    {
      if (len == 4)
	regcache->cooked_write (tdep->fs0_regnum, valbuf);
      else if (len == 8)
	regcache->cooked_write (NDS32_FD0_REGNUM, valbuf);
      else
	internal_error (__FILE__, __LINE__,
			_("Cannot store return value of %d bytes "
			  "long floating-point."), len);
    }
  else
    {
      ULONGEST regval;

      if (len < 4)
	{
	  regval = extract_unsigned_integer (valbuf, len, byte_order);
	  regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, regval);
	}
      else if (len == 4)
	{
	  regcache->cooked_write (NDS32_R0_REGNUM, valbuf);
	}
      else if (len < 8)
	{
	  int len1, len2;

	  len1 = byte_order == BFD_ENDIAN_BIG ? len - 4 : 4;
	  len2 = len - len1;

	  regval = extract_unsigned_integer (valbuf, len1, byte_order);
	  regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, regval);

	  regval = extract_unsigned_integer (valbuf + len1, len2, byte_order);
	  regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM + 1,
					  regval);
	}
      else
	{
	  regcache->cooked_write (NDS32_R0_REGNUM, valbuf);
	  regcache->cooked_write (NDS32_R0_REGNUM + 1, valbuf + 4);
	}
    }
}

/* Implement the "return_value" gdbarch method.

   Determine, for architecture GDBARCH, how a return value of TYPE
   should be returned.  If it is supposed to be returned in registers,
   and READBUF is non-zero, read the appropriate value from REGCACHE,
   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
   from WRITEBUF into REGCACHE.  */

static enum return_value_convention
nds32_return_value (struct gdbarch *gdbarch, struct value *func_type,
		    struct type *type, struct regcache *regcache,
		    gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (TYPE_LENGTH (type) > 8)
    {
      return RETURN_VALUE_STRUCT_CONVENTION;
    }
  else
    {
      if (readbuf != NULL)
	nds32_extract_return_value (gdbarch, type, regcache, readbuf);
      if (writebuf != NULL)
	nds32_store_return_value (gdbarch, type, regcache, writebuf);

      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

/* Implement the "get_longjmp_target" gdbarch method.  */

static int
nds32_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
  gdb_byte buf[4];
  CORE_ADDR jb_addr;
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  jb_addr = get_frame_register_unsigned (frame, NDS32_R0_REGNUM);

  if (target_read_memory (jb_addr + 11 * 4, buf, 4))
    return 0;

  *pc = extract_unsigned_integer (buf, 4, byte_order);
  return 1;
}

/* Validate the given TDESC, and fixed-number some registers in it.
   Return 0 if the given TDESC does not contain the required feature
   or not contain required registers.  */

static int
nds32_validate_tdesc_p (const struct target_desc *tdesc,
			struct tdesc_arch_data *tdesc_data,
			int *fpu_freg, int *use_pseudo_fsrs)
{
  const struct tdesc_feature *feature;
  int i, valid_p;

  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nds32.core");
  if (feature == NULL)
    return 0;

  valid_p = 1;
  /* Validate and fixed-number R0-R10.  */
  for (i = NDS32_R0_REGNUM; i <= NDS32_R0_REGNUM + 10; i++)
    valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
					nds32_register_names[i]);

  /* Validate R15.  */
  valid_p &= tdesc_unnumbered_register (feature,
					nds32_register_names[NDS32_TA_REGNUM]);

  /* Validate and fixed-number FP, GP, LP, SP, PC.  */
  for (i = NDS32_FP_REGNUM; i <= NDS32_PC_REGNUM; i++)
    valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
					nds32_register_names[i]);

  if (!valid_p)
    return 0;

  /* Fixed-number R11-R27.  */
  for (i = NDS32_R0_REGNUM + 11; i <= NDS32_R0_REGNUM + 27; i++)
    tdesc_numbered_register (feature, tdesc_data, i, nds32_register_names[i]);

  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nds32.fpu");
  if (feature != NULL)
    {
      int num_fdr_regs, num_fsr_regs, fs0_regnum, num_listed_fsr;
      int freg = -1;

      /* Guess FPU configuration via listed registers.  */
      if (tdesc_unnumbered_register (feature, "fd31"))
	freg = 3;
      else if (tdesc_unnumbered_register (feature, "fd15"))
	freg = 2;
      else if (tdesc_unnumbered_register (feature, "fd7"))
	freg = 1;
      else if (tdesc_unnumbered_register (feature, "fd3"))
	freg = 0;

      if (freg == -1)
	/* Required FDR is not found.  */
	return 0;
      else
	*fpu_freg = freg;

      /* Validate and fixed-number required FDRs.  */
      num_fdr_regs = num_fdr_map[freg];
      for (i = 0; i < num_fdr_regs; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data,
					    NDS32_FD0_REGNUM + i,
					    nds32_fdr_register_names[i]);
      if (!valid_p)
	return 0;

      /* Count the number of listed FSRs, and fixed-number them if present.  */
      num_fsr_regs = num_fsr_map[freg];
      fs0_regnum = NDS32_FD0_REGNUM + num_fdr_regs;
      num_listed_fsr = 0;
      for (i = 0; i < num_fsr_regs; i++)
	num_listed_fsr += tdesc_numbered_register (feature, tdesc_data,
						   fs0_regnum + i,
						   nds32_fsr_register_names[i]);

      if (num_listed_fsr == 0)
	/* No required FSRs are listed explicitly,  make them pseudo registers
	   of FDRs.  */
	*use_pseudo_fsrs = 1;
      else if (num_listed_fsr == num_fsr_regs)
	/* All required FSRs are listed explicitly.  */
	*use_pseudo_fsrs = 0;
      else
	/* Some required FSRs are missing.  */
	return 0;
    }

  return 1;
}

/* Initialize the current architecture based on INFO.  If possible,
   re-use an architecture from ARCHES, which is a list of
   architectures already created during this debugging session.

   Called e.g. at program startup, when reading a core file, and when
   reading a binary file.  */

static struct gdbarch *
nds32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  struct gdbarch_list *best_arch;
  struct tdesc_arch_data *tdesc_data = NULL;
  const struct target_desc *tdesc = info.target_desc;
  int elf_abi = E_NDS_ABI_AABI;
  int fpu_freg = -1;
  int use_pseudo_fsrs = 0;
  int i, num_regs, maxregs;

  /* Extract the elf_flags if available.  */
  if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    elf_abi = elf_elfheader (info.abfd)->e_flags & EF_NDS_ABI;

  /* If there is already a candidate, use it.  */
  for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
       best_arch != NULL;
       best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
    {
      struct gdbarch_tdep *idep = gdbarch_tdep (best_arch->gdbarch);

      if (idep->elf_abi != elf_abi)
	continue;

      /* Found a match.  */
      break;
    }

  if (best_arch != NULL)
    return best_arch->gdbarch;

  if (!tdesc_has_registers (tdesc))
    tdesc = tdesc_nds32;

  tdesc_data = tdesc_data_alloc ();

  if (!nds32_validate_tdesc_p (tdesc, tdesc_data, &fpu_freg, &use_pseudo_fsrs))
    {
      tdesc_data_cleanup (tdesc_data);
      return NULL;
    }

  /* Allocate space for the new architecture.  */
  tdep = XCNEW (struct gdbarch_tdep);
  tdep->fpu_freg = fpu_freg;
  tdep->use_pseudo_fsrs = use_pseudo_fsrs;
  tdep->fs0_regnum = -1;
  tdep->elf_abi = elf_abi;

  gdbarch = gdbarch_alloc (&info, tdep);

  set_gdbarch_wchar_bit (gdbarch, 16);
  set_gdbarch_wchar_signed (gdbarch, 0);

  if (fpu_freg == -1)
    num_regs = NDS32_NUM_REGS;
  else if (use_pseudo_fsrs == 1)
    {
      set_gdbarch_pseudo_register_read (gdbarch, nds32_pseudo_register_read);
      set_gdbarch_pseudo_register_write (gdbarch, nds32_pseudo_register_write);
      set_tdesc_pseudo_register_name (gdbarch, nds32_pseudo_register_name);
      set_tdesc_pseudo_register_type (gdbarch, nds32_pseudo_register_type);
      set_gdbarch_num_pseudo_regs (gdbarch, num_fsr_map[fpu_freg]);

      num_regs = NDS32_NUM_REGS + num_fdr_map[fpu_freg];
    }
  else
    num_regs = NDS32_NUM_REGS + num_fdr_map[fpu_freg] + num_fsr_map[fpu_freg];

  set_gdbarch_num_regs (gdbarch, num_regs);
  tdesc_use_registers (gdbarch, tdesc, tdesc_data);

  /* Cache the register number of fs0.  */
  if (fpu_freg != -1)
    tdep->fs0_regnum = user_reg_map_name_to_regnum (gdbarch, "fs0", -1);

  /* Add NDS32 register aliases.  To avoid search in user register name space,
     user_reg_map_name_to_regnum is not used.  */
  maxregs = gdbarch_num_cooked_regs (gdbarch);
  for (i = 0; i < ARRAY_SIZE (nds32_register_aliases); i++)
    {
      int regnum, j;

      regnum = -1;
      /* Search register name space.  */
      for (j = 0; j < maxregs; j++)
	{
	  const char *regname = gdbarch_register_name (gdbarch, j);

	  if (regname != NULL
	      && strcmp (regname, nds32_register_aliases[i].name) == 0)
	    {
	      regnum = j;
	      break;
	    }
	}

      /* Try next alias entry if the given name can not be found in register
	 name space.  */
      if (regnum == -1)
	continue;

      user_reg_add (gdbarch, nds32_register_aliases[i].alias,
		    value_of_nds32_reg, (const void *) (intptr_t) regnum);
    }

  nds32_add_reggroups (gdbarch);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  info.tdesc_data = tdesc_data;
  gdbarch_init_osabi (info, gdbarch);

  /* Override tdesc_register callbacks for system registers.  */
  set_gdbarch_register_reggroup_p (gdbarch, nds32_register_reggroup_p);

  set_gdbarch_sp_regnum (gdbarch, NDS32_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, NDS32_PC_REGNUM);
  set_gdbarch_stack_frame_destroyed_p (gdbarch, nds32_stack_frame_destroyed_p);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nds32_dwarf2_reg_to_regnum);

  set_gdbarch_push_dummy_call (gdbarch, nds32_push_dummy_call);
  set_gdbarch_return_value (gdbarch, nds32_return_value);

  set_gdbarch_skip_prologue (gdbarch, nds32_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       nds32_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       nds32_breakpoint::bp_from_kind);

  set_gdbarch_frame_align (gdbarch, nds32_frame_align);
  frame_base_set_default (gdbarch, &nds32_frame_base);

  /* Handle longjmp.  */
  set_gdbarch_get_longjmp_target (gdbarch, nds32_get_longjmp_target);

  /* The order of appending is the order it check frame.  */
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &nds32_epilogue_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &nds32_frame_unwind);

  return gdbarch;
}

void _initialize_nds32_tdep ();
void
_initialize_nds32_tdep ()
{
  /* Initialize gdbarch.  */
  register_gdbarch_init (bfd_arch_nds32, nds32_gdbarch_init);

  initialize_tdesc_nds32 ();
  nds32_init_reggroups ();
}