aboutsummaryrefslogtreecommitdiff
path: root/gdb/nat/aarch64-sve-linux-ptrace.c
blob: b8f0711f9beb2eb902d7d27263405cead81f408a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/* Common target dependent for AArch64 systems.

   Copyright (C) 2018-2020 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include <sys/utsname.h>
#include <sys/uio.h>
#include "gdbsupport/common-defs.h"
#include "elf/external.h"
#include "elf/common.h"
#include "aarch64-sve-linux-ptrace.h"
#include "arch/aarch64.h"
#include "gdbsupport/common-regcache.h"
#include "gdbsupport/byte-vector.h"

/* See nat/aarch64-sve-linux-ptrace.h.  */

uint64_t
aarch64_sve_get_vq (int tid)
{
  struct iovec iovec;
  struct user_sve_header header;

  iovec.iov_len = sizeof (header);
  iovec.iov_base = &header;

  /* Ptrace gives the vector length in bytes.  Convert it to VQ, the number of
     128bit chunks in a Z register.  We use VQ because 128bits is the minimum
     a Z register can increase in size.  */

  if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
    {
      /* SVE is not supported.  */
      return 0;
    }

  uint64_t vq = sve_vq_from_vl (header.vl);

  if (!sve_vl_valid (header.vl))
    {
      warning (_("Invalid SVE state from kernel; SVE disabled."));
      return 0;
    }

  return vq;
}

/* See nat/aarch64-sve-linux-ptrace.h.  */

bool
aarch64_sve_set_vq (int tid, uint64_t vq)
{
  struct iovec iovec;
  struct user_sve_header header;

  iovec.iov_len = sizeof (header);
  iovec.iov_base = &header;

  if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
    {
      /* SVE is not supported.  */
      return false;
    }

  header.vl = sve_vl_from_vq (vq);

  if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
    {
      /* Vector length change failed.  */
      return false;
    }

  return true;
}

/* See nat/aarch64-sve-linux-ptrace.h.  */

bool
aarch64_sve_set_vq (int tid, struct reg_buffer_common *reg_buf)
{
  if (reg_buf->get_register_status (AARCH64_SVE_VG_REGNUM) != REG_VALID)
    return false;

  uint64_t reg_vg = 0;
  reg_buf->raw_collect (AARCH64_SVE_VG_REGNUM, &reg_vg);

  return aarch64_sve_set_vq (tid, sve_vq_from_vg (reg_vg));
}

/* See nat/aarch64-sve-linux-ptrace.h.  */

std::unique_ptr<gdb_byte[]>
aarch64_sve_get_sveregs (int tid)
{
  struct iovec iovec;
  uint64_t vq = aarch64_sve_get_vq (tid);

  if (vq == 0)
    perror_with_name (_("Unable to fetch SVE register header"));

  /* A ptrace call with NT_ARM_SVE will return a header followed by either a
     dump of all the SVE and FP registers, or an fpsimd structure (identical to
     the one returned by NT_FPREGSET) if the kernel has not yet executed any
     SVE code.  Make sure we allocate enough space for a full SVE dump.  */

  iovec.iov_len = SVE_PT_SIZE (vq, SVE_PT_REGS_SVE);
  std::unique_ptr<gdb_byte[]> buf (new gdb_byte[iovec.iov_len]);
  iovec.iov_base = buf.get ();

  if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
    perror_with_name (_("Unable to fetch SVE registers"));

  return buf;
}

/* See nat/aarch64-sve-linux-ptrace.h.  */

void
aarch64_sve_regs_copy_to_reg_buf (struct reg_buffer_common *reg_buf,
				  const void *buf)
{
  char *base = (char *) buf;
  struct user_sve_header *header = (struct user_sve_header *) buf;

  uint64_t vq = sve_vq_from_vl (header->vl);
  uint64_t vg = sve_vg_from_vl (header->vl);

  /* Sanity check the data in the header.  */
  if (!sve_vl_valid (header->vl)
      || SVE_PT_SIZE (vq, header->flags) != header->size)
    error (_("Invalid SVE header from kernel."));

  /* Update VG.  Note, the registers in the regcache will already be of the
     correct length.  */
  reg_buf->raw_supply (AARCH64_SVE_VG_REGNUM, &vg);

  if (HAS_SVE_STATE (*header))
    {
      /* The register dump contains a set of SVE registers.  */

      for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
	reg_buf->raw_supply (AARCH64_SVE_Z0_REGNUM + i,
			     base + SVE_PT_SVE_ZREG_OFFSET (vq, i));

      for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
	reg_buf->raw_supply (AARCH64_SVE_P0_REGNUM + i,
			     base + SVE_PT_SVE_PREG_OFFSET (vq, i));

      reg_buf->raw_supply (AARCH64_SVE_FFR_REGNUM,
			   base + SVE_PT_SVE_FFR_OFFSET (vq));
      reg_buf->raw_supply (AARCH64_FPSR_REGNUM,
			   base + SVE_PT_SVE_FPSR_OFFSET (vq));
      reg_buf->raw_supply (AARCH64_FPCR_REGNUM,
			   base + SVE_PT_SVE_FPCR_OFFSET (vq));
    }
  else
    {
      /* There is no SVE state yet - the register dump contains a fpsimd
	 structure instead.  These registers still exist in the hardware, but
	 the kernel has not yet initialised them, and so they will be null.  */

      char *zero_reg = (char *) alloca (SVE_PT_SVE_ZREG_SIZE (vq));
      struct user_fpsimd_state *fpsimd
	= (struct user_fpsimd_state *)(base + SVE_PT_FPSIMD_OFFSET);

      /* Copy across the V registers from fpsimd structure to the Z registers,
	 ensuring the non overlapping state is set to null.  */

      memset (zero_reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));

      for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
	{
	  memcpy (zero_reg, &fpsimd->vregs[i], sizeof (__int128_t));
	  reg_buf->raw_supply (AARCH64_SVE_Z0_REGNUM + i, zero_reg);
	}

      reg_buf->raw_supply (AARCH64_FPSR_REGNUM, &fpsimd->fpsr);
      reg_buf->raw_supply (AARCH64_FPCR_REGNUM, &fpsimd->fpcr);

      /* Clear the SVE only registers.  */

      for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
	reg_buf->raw_supply (AARCH64_SVE_P0_REGNUM + i, zero_reg);

      reg_buf->raw_supply (AARCH64_SVE_FFR_REGNUM, zero_reg);
    }
}

/* See nat/aarch64-sve-linux-ptrace.h.  */

void
aarch64_sve_regs_copy_from_reg_buf (const struct reg_buffer_common *reg_buf,
				    void *buf)
{
  struct user_sve_header *header = (struct user_sve_header *) buf;
  char *base = (char *) buf;
  uint64_t vq = sve_vq_from_vl (header->vl);

  /* Sanity check the data in the header.  */
  if (!sve_vl_valid (header->vl)
      || SVE_PT_SIZE (vq, header->flags) != header->size)
    error (_("Invalid SVE header from kernel."));

  if (!HAS_SVE_STATE (*header))
    {
      /* There is no SVE state yet - the register dump contains a fpsimd
	 structure instead.  Where possible we want to write the reg_buf data
	 back to the kernel using the fpsimd structure.  However, if we cannot
	 then we'll need to reformat the fpsimd into a full SVE structure,
	 resulting in the initialization of SVE state written back to the
	 kernel, which is why we try to avoid it.  */

      bool has_sve_state = false;
      char *zero_reg = (char *) alloca (SVE_PT_SVE_ZREG_SIZE (vq));
      struct user_fpsimd_state *fpsimd
	= (struct user_fpsimd_state *)(base + SVE_PT_FPSIMD_OFFSET);

      memset (zero_reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));

      /* Check in the reg_buf if any of the Z registers are set after the
	 first 128 bits, or if any of the other SVE registers are set.  */

      for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
	{
	  has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i,
						 zero_reg, sizeof (__int128_t));
	  if (has_sve_state)
	    break;
	}

      if (!has_sve_state)
	for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
	  {
	    has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_P0_REGNUM + i,
						   zero_reg, 0);
	    if (has_sve_state)
	      break;
	  }

      if (!has_sve_state)
	  has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_FFR_REGNUM,
						 zero_reg, 0);

      /* If no SVE state exists, then use the existing fpsimd structure to
	 write out state and return.  */
      if (!has_sve_state)
	{
	  /* The collects of the Z registers will overflow the size of a vreg.
	     There is enough space in the structure to allow for this, but we
	     cannot overflow into the next register as we might not be
	     collecting every register.  */

	  for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
	    {
	      if (REG_VALID
		  == reg_buf->get_register_status (AARCH64_SVE_Z0_REGNUM + i))
		{
		  reg_buf->raw_collect (AARCH64_SVE_Z0_REGNUM + i, zero_reg);
		  memcpy (&fpsimd->vregs[i], zero_reg, sizeof (__int128_t));
		}
	    }

	  if (REG_VALID == reg_buf->get_register_status (AARCH64_FPSR_REGNUM))
	    reg_buf->raw_collect (AARCH64_FPSR_REGNUM, &fpsimd->fpsr);
	  if (REG_VALID == reg_buf->get_register_status (AARCH64_FPCR_REGNUM))
	    reg_buf->raw_collect (AARCH64_FPCR_REGNUM, &fpsimd->fpcr);

	  return;
	}

      /* Otherwise, reformat the fpsimd structure into a full SVE set, by
	 expanding the V registers (working backwards so we don't splat
	 registers before they are copied) and using null for everything else.
	 Note that enough space for a full SVE dump was originally allocated
	 for base.  */

      header->flags |= SVE_PT_REGS_SVE;
      header->size = SVE_PT_SIZE (vq, SVE_PT_REGS_SVE);

      memcpy (base + SVE_PT_SVE_FPSR_OFFSET (vq), &fpsimd->fpsr,
	      sizeof (uint32_t));
      memcpy (base + SVE_PT_SVE_FPCR_OFFSET (vq), &fpsimd->fpcr,
	      sizeof (uint32_t));

      for (int i = AARCH64_SVE_Z_REGS_NUM; i >= 0 ; i--)
	{
	  memcpy (base + SVE_PT_SVE_ZREG_OFFSET (vq, i), &fpsimd->vregs[i],
		  sizeof (__int128_t));
	}
    }

  /* Replace the kernel values with those from reg_buf.  */

  for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
    if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_Z0_REGNUM + i))
      reg_buf->raw_collect (AARCH64_SVE_Z0_REGNUM + i,
			    base + SVE_PT_SVE_ZREG_OFFSET (vq, i));

  for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
    if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_P0_REGNUM + i))
      reg_buf->raw_collect (AARCH64_SVE_P0_REGNUM + i,
			    base + SVE_PT_SVE_PREG_OFFSET (vq, i));

  if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_FFR_REGNUM))
    reg_buf->raw_collect (AARCH64_SVE_FFR_REGNUM,
			  base + SVE_PT_SVE_FFR_OFFSET (vq));
  if (REG_VALID == reg_buf->get_register_status (AARCH64_FPSR_REGNUM))
    reg_buf->raw_collect (AARCH64_FPSR_REGNUM,
			  base + SVE_PT_SVE_FPSR_OFFSET (vq));
  if (REG_VALID == reg_buf->get_register_status (AARCH64_FPCR_REGNUM))
    reg_buf->raw_collect (AARCH64_FPCR_REGNUM,
			  base + SVE_PT_SVE_FPCR_OFFSET (vq));

}