aboutsummaryrefslogtreecommitdiff
path: root/gdb/nat/aarch64-linux-hw-point.c
blob: ba235e54c783b74c403ab3dd05417b65bba94065 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
/* Copyright (C) 2009-2015 Free Software Foundation, Inc.
   Contributed by ARM Ltd.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "common-defs.h"
#include "break-common.h"
#include "nat/linux-nat.h"
#include "aarch64-linux-hw-point.h"

#include <sys/uio.h>
#include <asm/ptrace.h>
#include <sys/ptrace.h>
#include <elf.h>

/* Number of hardware breakpoints/watchpoints the target supports.
   They are initialized with values obtained via the ptrace calls
   with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively.  */

int aarch64_num_bp_regs;
int aarch64_num_wp_regs;

/* Utility function that returns the length in bytes of a watchpoint
   according to the content of a hardware debug control register CTRL.
   Note that the kernel currently only supports the following Byte
   Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
   that for a hardware watchpoint, its valid length can only be 1
   byte, 2 bytes, 4 bytes or 8 bytes.  */

unsigned int
aarch64_watchpoint_length (unsigned int ctrl)
{
  switch (DR_CONTROL_LENGTH (ctrl))
    {
    case 0x01:
      return 1;
    case 0x03:
      return 2;
    case 0x0f:
      return 4;
    case 0xff:
      return 8;
    default:
      return 0;
    }
}

/* Given the hardware breakpoint or watchpoint type TYPE and its
   length LEN, return the expected encoding for a hardware
   breakpoint/watchpoint control register.  */

static unsigned int
aarch64_point_encode_ctrl_reg (enum target_hw_bp_type type, int len)
{
  unsigned int ctrl, ttype;

  /* type */
  switch (type)
    {
    case hw_write:
      ttype = 2;
      break;
    case hw_read:
      ttype = 1;
      break;
    case hw_access:
      ttype = 3;
      break;
    case hw_execute:
      ttype = 0;
      break;
    default:
      perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
    }

  ctrl = ttype << 3;

  /* length bitmask */
  ctrl |= ((1 << len) - 1) << 5;
  /* enabled at el0 */
  ctrl |= (2 << 1) | 1;

  return ctrl;
}

/* Addresses to be written to the hardware breakpoint and watchpoint
   value registers need to be aligned; the alignment is 4-byte and
   8-type respectively.  Linux kernel rejects any non-aligned address
   it receives from the related ptrace call.  Furthermore, the kernel
   currently only supports the following Byte Address Select (BAS)
   values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
   watchpoint to be accepted by the kernel (via ptrace call), its
   valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
   Despite these limitations, the unaligned watchpoint is supported in
   this port.

   Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise.  */

static int
aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
{
  unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
    : AARCH64_HBP_ALIGNMENT;

  if (addr & (alignment - 1))
    return 0;

  if (len != 8 && len != 4 && len != 2 && len != 1)
    return 0;

  return 1;
}

/* Given the (potentially unaligned) watchpoint address in ADDR and
   length in LEN, return the aligned address and aligned length in
   *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively.  The returned
   aligned address and length will be valid values to write to the
   hardware watchpoint value and control registers.

   The given watchpoint may get truncated if more than one hardware
   register is needed to cover the watched region.  *NEXT_ADDR_P
   and *NEXT_LEN_P, if non-NULL, will return the address and length
   of the remaining part of the watchpoint (which can be processed
   by calling this routine again to generate another aligned address
   and length pair.

   Essentially, unaligned watchpoint is achieved by minimally
   enlarging the watched area to meet the alignment requirement, and
   if necessary, splitting the watchpoint over several hardware
   watchpoint registers.  The trade-off is that there will be
   false-positive hits for the read-type or the access-type hardware
   watchpoints; for the write type, which is more commonly used, there
   will be no such issues, as the higher-level breakpoint management
   in gdb always examines the exact watched region for any content
   change, and transparently resumes a thread from a watchpoint trap
   if there is no change to the watched region.

   Another limitation is that because the watched region is enlarged,
   the watchpoint fault address returned by
   aarch64_stopped_data_address may be outside of the original watched
   region, especially when the triggering instruction is accessing a
   larger region.  When the fault address is not within any known
   range, watchpoints_triggered in gdb will get confused, as the
   higher-level watchpoint management is only aware of original
   watched regions, and will think that some unknown watchpoint has
   been triggered.  In such a case, gdb may stop without displaying
   any detailed information.

   Once the kernel provides the full support for Byte Address Select
   (BAS) in the hardware watchpoint control register, these
   limitations can be largely relaxed with some further work.  */

static void
aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
			  int *aligned_len_p, CORE_ADDR *next_addr_p,
			  int *next_len_p)
{
  int aligned_len;
  unsigned int offset;
  CORE_ADDR aligned_addr;
  const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
  const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;

  /* As assumed by the algorithm.  */
  gdb_assert (alignment == max_wp_len);

  if (len <= 0)
    return;

  /* Address to be put into the hardware watchpoint value register
     must be aligned.  */
  offset = addr & (alignment - 1);
  aligned_addr = addr - offset;

  gdb_assert (offset >= 0 && offset < alignment);
  gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
  gdb_assert (offset + len > 0);

  if (offset + len >= max_wp_len)
    {
      /* Need more than one watchpoint registers; truncate it at the
	 alignment boundary.  */
      aligned_len = max_wp_len;
      len -= (max_wp_len - offset);
      addr += (max_wp_len - offset);
      gdb_assert ((addr & (alignment - 1)) == 0);
    }
  else
    {
      /* Find the smallest valid length that is large enough to
	 accommodate this watchpoint.  */
      static const unsigned char
	aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
	{ 1, 2, 4, 4, 8, 8, 8, 8 };

      aligned_len = aligned_len_array[offset + len - 1];
      addr += len;
      len = 0;
    }

  if (aligned_addr_p)
    *aligned_addr_p = aligned_addr;
  if (aligned_len_p)
    *aligned_len_p = aligned_len;
  if (next_addr_p)
    *next_addr_p = addr;
  if (next_len_p)
    *next_len_p = len;
}

struct aarch64_dr_update_callback_param
{
  int is_watchpoint;
  unsigned int idx;
};

/* Callback for iterate_over_lwps.  Records the
   information about the change of one hardware breakpoint/watchpoint
   setting for the thread LWP.
   The information is passed in via PTR.
   N.B.  The actual updating of hardware debug registers is not
   carried out until the moment the thread is resumed.  */

static int
debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
{
  struct aarch64_dr_update_callback_param *param_p
    = (struct aarch64_dr_update_callback_param *) ptr;
  int pid = ptid_get_pid (ptid_of_lwp (lwp));
  int idx = param_p->idx;
  int is_watchpoint = param_p->is_watchpoint;
  struct arch_lwp_info *info = lwp_arch_private_info (lwp);
  dr_changed_t *dr_changed_ptr;
  dr_changed_t dr_changed;

  if (info == NULL)
    {
      info = XCNEW (struct arch_lwp_info);
      lwp_set_arch_private_info (lwp, info);
    }

  if (show_debug_regs)
    {
      debug_printf ("debug_reg_change_callback: \n\tOn entry:\n");
      debug_printf ("\tpid%d, dr_changed_bp=0x%s, "
		    "dr_changed_wp=0x%s\n", pid,
		    phex (info->dr_changed_bp, 8),
		    phex (info->dr_changed_wp, 8));
    }

  dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
    : &info->dr_changed_bp;
  dr_changed = *dr_changed_ptr;

  gdb_assert (idx >= 0
	      && (idx <= (is_watchpoint ? aarch64_num_wp_regs
			  : aarch64_num_bp_regs)));

  /* The actual update is done later just before resuming the lwp,
     we just mark that one register pair needs updating.  */
  DR_MARK_N_CHANGED (dr_changed, idx);
  *dr_changed_ptr = dr_changed;

  /* If the lwp isn't stopped, force it to momentarily pause, so
     we can update its debug registers.  */
  if (!lwp_is_stopped (lwp))
    linux_stop_lwp (lwp);

  if (show_debug_regs)
    {
      debug_printf ("\tOn exit:\n\tpid%d, dr_changed_bp=0x%s, "
		    "dr_changed_wp=0x%s\n", pid,
		    phex (info->dr_changed_bp, 8),
		    phex (info->dr_changed_wp, 8));
    }

  return 0;
}

/* Notify each thread that their IDXth breakpoint/watchpoint register
   pair needs to be updated.  The message will be recorded in each
   thread's arch-specific data area, the actual updating will be done
   when the thread is resumed.  */

static void
aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
				 int is_watchpoint, unsigned int idx)
{
  struct aarch64_dr_update_callback_param param;
  ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (current_lwp_ptid ()));

  param.is_watchpoint = is_watchpoint;
  param.idx = idx;

  iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) &param);
}

/* Record the insertion of one breakpoint/watchpoint, as represented
   by ADDR and CTRL, in the process' arch-specific data area *STATE.  */

static int
aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
				   enum target_hw_bp_type type,
				   CORE_ADDR addr, int len)
{
  int i, idx, num_regs, is_watchpoint;
  unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
  CORE_ADDR *dr_addr_p;

  /* Set up state pointers.  */
  is_watchpoint = (type != hw_execute);
  gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
  if (is_watchpoint)
    {
      num_regs = aarch64_num_wp_regs;
      dr_addr_p = state->dr_addr_wp;
      dr_ctrl_p = state->dr_ctrl_wp;
      dr_ref_count = state->dr_ref_count_wp;
    }
  else
    {
      num_regs = aarch64_num_bp_regs;
      dr_addr_p = state->dr_addr_bp;
      dr_ctrl_p = state->dr_ctrl_bp;
      dr_ref_count = state->dr_ref_count_bp;
    }

  ctrl = aarch64_point_encode_ctrl_reg (type, len);

  /* Find an existing or free register in our cache.  */
  idx = -1;
  for (i = 0; i < num_regs; ++i)
    {
      if ((dr_ctrl_p[i] & 1) == 0)
	{
	  gdb_assert (dr_ref_count[i] == 0);
	  idx = i;
	  /* no break; continue hunting for an exising one.  */
	}
      else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
	{
	  gdb_assert (dr_ref_count[i] != 0);
	  idx = i;
	  break;
	}
    }

  /* No space.  */
  if (idx == -1)
    return -1;

  /* Update our cache.  */
  if ((dr_ctrl_p[idx] & 1) == 0)
    {
      /* new entry */
      dr_addr_p[idx] = addr;
      dr_ctrl_p[idx] = ctrl;
      dr_ref_count[idx] = 1;
      /* Notify the change.  */
      aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
    }
  else
    {
      /* existing entry */
      dr_ref_count[idx]++;
    }

  return 0;
}

/* Record the removal of one breakpoint/watchpoint, as represented by
   ADDR and CTRL, in the process' arch-specific data area *STATE.  */

static int
aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
				   enum target_hw_bp_type type,
				   CORE_ADDR addr, int len)
{
  int i, num_regs, is_watchpoint;
  unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
  CORE_ADDR *dr_addr_p;

  /* Set up state pointers.  */
  is_watchpoint = (type != hw_execute);
  gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
  if (is_watchpoint)
    {
      num_regs = aarch64_num_wp_regs;
      dr_addr_p = state->dr_addr_wp;
      dr_ctrl_p = state->dr_ctrl_wp;
      dr_ref_count = state->dr_ref_count_wp;
    }
  else
    {
      num_regs = aarch64_num_bp_regs;
      dr_addr_p = state->dr_addr_bp;
      dr_ctrl_p = state->dr_ctrl_bp;
      dr_ref_count = state->dr_ref_count_bp;
    }

  ctrl = aarch64_point_encode_ctrl_reg (type, len);

  /* Find the entry that matches the ADDR and CTRL.  */
  for (i = 0; i < num_regs; ++i)
    if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
      {
	gdb_assert (dr_ref_count[i] != 0);
	break;
      }

  /* Not found.  */
  if (i == num_regs)
    return -1;

  /* Clear our cache.  */
  if (--dr_ref_count[i] == 0)
    {
      /* Clear the enable bit.  */
      ctrl &= ~1;
      dr_addr_p[i] = 0;
      dr_ctrl_p[i] = ctrl;
      /* Notify the change.  */
      aarch64_notify_debug_reg_change (state, is_watchpoint, i);
    }

  return 0;
}

int
aarch64_handle_breakpoint (enum target_hw_bp_type type, CORE_ADDR addr,
			   int len, int is_insert,
			   struct aarch64_debug_reg_state *state)
{
  /* The hardware breakpoint on AArch64 should always be 4-byte
     aligned.  */
  if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
    return -1;

  if (is_insert)
    return aarch64_dr_state_insert_one_point (state, type, addr, len);
  else
    return aarch64_dr_state_remove_one_point (state, type, addr, len);
}

/* This is essentially the same as aarch64_handle_breakpoint, apart
   from that it is an aligned watchpoint to be handled.  */

static int
aarch64_handle_aligned_watchpoint (enum target_hw_bp_type type,
				   CORE_ADDR addr, int len, int is_insert,
				   struct aarch64_debug_reg_state *state)
{
  if (is_insert)
    return aarch64_dr_state_insert_one_point (state, type, addr, len);
  else
    return aarch64_dr_state_remove_one_point (state, type, addr, len);
}

/* Insert/remove unaligned watchpoint by calling
   aarch64_align_watchpoint repeatedly until the whole watched region,
   as represented by ADDR and LEN, has been properly aligned and ready
   to be written to one or more hardware watchpoint registers.
   IS_INSERT indicates whether this is an insertion or a deletion.
   Return 0 if succeed.  */

static int
aarch64_handle_unaligned_watchpoint (enum target_hw_bp_type type,
				     CORE_ADDR addr, int len, int is_insert,
				     struct aarch64_debug_reg_state *state)
{
  while (len > 0)
    {
      CORE_ADDR aligned_addr;
      int aligned_len, ret;

      aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
				&addr, &len);

      if (is_insert)
	ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
						 aligned_len);
      else
	ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
						 aligned_len);

      if (show_debug_regs)
	debug_printf ("handle_unaligned_watchpoint: is_insert: %d\n"
		      "                             "
		      "aligned_addr: %s, aligned_len: %d\n"
		      "                                "
		      "next_addr: %s,    next_len: %d\n",
		      is_insert, core_addr_to_string_nz (aligned_addr),
		      aligned_len, core_addr_to_string_nz (addr), len);

      if (ret != 0)
	return ret;
    }

  return 0;
}

int
aarch64_handle_watchpoint (enum target_hw_bp_type type, CORE_ADDR addr,
			   int len, int is_insert,
			   struct aarch64_debug_reg_state *state)
{
  if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
    return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert,
					      state);
  else
    return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert,
						state);
}

/* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
   registers with data from *STATE.  */

void
aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
			      int tid, int watchpoint)
{
  int i, count;
  struct iovec iov;
  struct user_hwdebug_state regs;
  const CORE_ADDR *addr;
  const unsigned int *ctrl;

  memset (&regs, 0, sizeof (regs));
  iov.iov_base = &regs;
  count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
  addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
  ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
  if (count == 0)
    return;
  iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
		 + sizeof (regs.dbg_regs [count - 1]));

  for (i = 0; i < count; i++)
    {
      regs.dbg_regs[i].addr = addr[i];
      regs.dbg_regs[i].ctrl = ctrl[i];
    }

  if (ptrace (PTRACE_SETREGSET, tid,
	      watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
	      (void *) &iov))
    error (_("Unexpected error setting hardware debug registers"));
}

/* Print the values of the cached breakpoint/watchpoint registers.  */

void
aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
			      const char *func, CORE_ADDR addr,
			      int len, enum target_hw_bp_type type)
{
  int i;

  debug_printf ("%s", func);
  if (addr || len)
    debug_printf (" (addr=0x%08lx, len=%d, type=%s)",
		  (unsigned long) addr, len,
		  type == hw_write ? "hw-write-watchpoint"
		  : (type == hw_read ? "hw-read-watchpoint"
		     : (type == hw_access ? "hw-access-watchpoint"
			: (type == hw_execute ? "hw-breakpoint"
			   : "??unknown??"))));
  debug_printf (":\n");

  debug_printf ("\tBREAKPOINTs:\n");
  for (i = 0; i < aarch64_num_bp_regs; i++)
    debug_printf ("\tBP%d: addr=%s, ctrl=0x%08x, ref.count=%d\n",
		  i, core_addr_to_string_nz (state->dr_addr_bp[i]),
		  state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);

  debug_printf ("\tWATCHPOINTs:\n");
  for (i = 0; i < aarch64_num_wp_regs; i++)
    debug_printf ("\tWP%d: addr=%s, ctrl=0x%08x, ref.count=%d\n",
		  i, core_addr_to_string_nz (state->dr_addr_wp[i]),
		  state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
}

/* Get the hardware debug register capacity information from the
   process represented by TID.  */

void
aarch64_linux_get_debug_reg_capacity (int tid)
{
  struct iovec iov;
  struct user_hwdebug_state dreg_state;

  iov.iov_base = &dreg_state;
  iov.iov_len = sizeof (dreg_state);

  /* Get hardware watchpoint register info.  */
  if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_WATCH, &iov) == 0
      && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
    {
      aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
      if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
	{
	  warning (_("Unexpected number of hardware watchpoint registers"
		     " reported by ptrace, got %d, expected %d."),
		   aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
	  aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
	}
    }
  else
    {
      warning (_("Unable to determine the number of hardware watchpoints"
		 " available."));
      aarch64_num_wp_regs = 0;
    }

  /* Get hardware breakpoint register info.  */
  if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_BREAK, &iov) == 0
      && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
    {
      aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
      if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
	{
	  warning (_("Unexpected number of hardware breakpoint registers"
		     " reported by ptrace, got %d, expected %d."),
		   aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
	  aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
	}
    }
  else
    {
      warning (_("Unable to determine the number of hardware breakpoints"
		 " available."));
      aarch64_num_bp_regs = 0;
    }
}