aboutsummaryrefslogtreecommitdiff
path: root/gdb/nat/aarch64-linux-hw-point.c
blob: 18b5af2d49b7989c7d339bd964c942c1aca7da67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/* Copyright (C) 2009-2018 Free Software Foundation, Inc.
   Contributed by ARM Ltd.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "common-defs.h"
#include "break-common.h"
#include "common-regcache.h"
#include "nat/linux-nat.h"
#include "aarch64-linux-hw-point.h"

#include <sys/uio.h>
#include <asm/ptrace.h>
#include <sys/ptrace.h>
#include <elf.h>

/* Number of hardware breakpoints/watchpoints the target supports.
   They are initialized with values obtained via the ptrace calls
   with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively.  */

int aarch64_num_bp_regs;
int aarch64_num_wp_regs;

/* True if this kernel does not have the bug described by PR
   external/20207 (Linux >= 4.10).  A fixed kernel supports any
   contiguous range of bits in 8-bit byte DR_CONTROL_MASK.  A buggy
   kernel supports only 0x01, 0x03, 0x0f and 0xff.  We start by
   assuming the bug is fixed, and then detect the bug at
   PTRACE_SETREGSET time.  */
static bool kernel_supports_any_contiguous_range = true;

/* Return starting byte 0..7 incl. of a watchpoint encoded by CTRL.  */

unsigned int
aarch64_watchpoint_offset (unsigned int ctrl)
{
  uint8_t mask = DR_CONTROL_MASK (ctrl);
  unsigned retval;

  /* Shift out bottom zeros.  */
  for (retval = 0; mask && (mask & 1) == 0; ++retval)
    mask >>= 1;

  return retval;
}

/* Utility function that returns the length in bytes of a watchpoint
   according to the content of a hardware debug control register CTRL.
   Any contiguous range of bytes in CTRL is supported.  The returned
   value can be between 0..8 (inclusive).  */

unsigned int
aarch64_watchpoint_length (unsigned int ctrl)
{
  uint8_t mask = DR_CONTROL_MASK (ctrl);
  unsigned retval;

  /* Shift out bottom zeros.  */
  mask >>= aarch64_watchpoint_offset (ctrl);

  /* Count bottom ones.  */
  for (retval = 0; (mask & 1) != 0; ++retval)
    mask >>= 1;

  if (mask != 0)
    error (_("Unexpected hardware watchpoint length register value 0x%x"),
	   DR_CONTROL_MASK (ctrl));

  return retval;
}

/* Given the hardware breakpoint or watchpoint type TYPE and its
   length LEN, return the expected encoding for a hardware
   breakpoint/watchpoint control register.  */

static unsigned int
aarch64_point_encode_ctrl_reg (enum target_hw_bp_type type, int offset, int len)
{
  unsigned int ctrl, ttype;

  gdb_assert (offset == 0 || kernel_supports_any_contiguous_range);
  gdb_assert (offset + len <= AARCH64_HWP_MAX_LEN_PER_REG);

  /* type */
  switch (type)
    {
    case hw_write:
      ttype = 2;
      break;
    case hw_read:
      ttype = 1;
      break;
    case hw_access:
      ttype = 3;
      break;
    case hw_execute:
      ttype = 0;
      break;
    default:
      perror_with_name (_("Unrecognized breakpoint/watchpoint type"));
    }

  ctrl = ttype << 3;

  /* offset and length bitmask */
  ctrl |= ((1 << len) - 1) << (5 + offset);
  /* enabled at el0 */
  ctrl |= (2 << 1) | 1;

  return ctrl;
}

/* Addresses to be written to the hardware breakpoint and watchpoint
   value registers need to be aligned; the alignment is 4-byte and
   8-type respectively.  Linux kernel rejects any non-aligned address
   it receives from the related ptrace call.  Furthermore, the kernel
   currently only supports the following Byte Address Select (BAS)
   values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
   watchpoint to be accepted by the kernel (via ptrace call), its
   valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
   Despite these limitations, the unaligned watchpoint is supported in
   this port.

   Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise.  */

static int
aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
{
  unsigned int alignment = 0;

  if (is_watchpoint)
    alignment = AARCH64_HWP_ALIGNMENT;
  else
    {
      struct regcache *regcache
	= get_thread_regcache_for_ptid (current_lwp_ptid ());

      /* Set alignment to 2 only if the current process is 32-bit,
	 since thumb instruction can be 2-byte aligned.  Otherwise, set
	 alignment to AARCH64_HBP_ALIGNMENT.  */
      if (regcache_register_size (regcache, 0) == 8)
	alignment = AARCH64_HBP_ALIGNMENT;
      else
	alignment = 2;
    }

  if (addr & (alignment - 1))
    return 0;

  if ((!kernel_supports_any_contiguous_range
       && len != 8 && len != 4 && len != 2 && len != 1)
      || (kernel_supports_any_contiguous_range
	  && (len < 1 || len > 8)))
    return 0;

  return 1;
}

/* Given the (potentially unaligned) watchpoint address in ADDR and
   length in LEN, return the aligned address, offset from that base
   address, and aligned length in *ALIGNED_ADDR_P, *ALIGNED_OFFSET_P
   and *ALIGNED_LEN_P, respectively.  The returned values will be
   valid values to write to the hardware watchpoint value and control
   registers.

   The given watchpoint may get truncated if more than one hardware
   register is needed to cover the watched region.  *NEXT_ADDR_P
   and *NEXT_LEN_P, if non-NULL, will return the address and length
   of the remaining part of the watchpoint (which can be processed
   by calling this routine again to generate another aligned address,
   offset and length tuple.

   Essentially, unaligned watchpoint is achieved by minimally
   enlarging the watched area to meet the alignment requirement, and
   if necessary, splitting the watchpoint over several hardware
   watchpoint registers.

   On kernels that predate the support for Byte Address Select (BAS)
   in the hardware watchpoint control register, the offset from the
   base address is always zero, and so in that case the trade-off is
   that there will be false-positive hits for the read-type or the
   access-type hardware watchpoints; for the write type, which is more
   commonly used, there will be no such issues, as the higher-level
   breakpoint management in gdb always examines the exact watched
   region for any content change, and transparently resumes a thread
   from a watchpoint trap if there is no change to the watched region.

   Another limitation is that because the watched region is enlarged,
   the watchpoint fault address discovered by
   aarch64_stopped_data_address may be outside of the original watched
   region, especially when the triggering instruction is accessing a
   larger region.  When the fault address is not within any known
   range, watchpoints_triggered in gdb will get confused, as the
   higher-level watchpoint management is only aware of original
   watched regions, and will think that some unknown watchpoint has
   been triggered.  To prevent such a case,
   aarch64_stopped_data_address implementations in gdb and gdbserver
   try to match the trapped address with a watched region, and return
   an address within the latter. */

static void
aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
			  int *aligned_offset_p, int *aligned_len_p,
			  CORE_ADDR *next_addr_p, int *next_len_p,
			  CORE_ADDR *next_addr_orig_p)
{
  int aligned_len;
  unsigned int offset, aligned_offset;
  CORE_ADDR aligned_addr;
  const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
  const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;

  /* As assumed by the algorithm.  */
  gdb_assert (alignment == max_wp_len);

  if (len <= 0)
    return;

  /* The address put into the hardware watchpoint value register must
     be aligned.  */
  offset = addr & (alignment - 1);
  aligned_addr = addr - offset;
  aligned_offset
    = kernel_supports_any_contiguous_range ? addr & (alignment - 1) : 0;

  gdb_assert (offset >= 0 && offset < alignment);
  gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
  gdb_assert (offset + len > 0);

  if (offset + len >= max_wp_len)
    {
      /* Need more than one watchpoint register; truncate at the
	 alignment boundary.  */
      aligned_len
	= max_wp_len - (kernel_supports_any_contiguous_range ? offset : 0);
      len -= (max_wp_len - offset);
      addr += (max_wp_len - offset);
      gdb_assert ((addr & (alignment - 1)) == 0);
    }
  else
    {
      /* Find the smallest valid length that is large enough to
	 accommodate this watchpoint.  */
      static const unsigned char
	aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
	{ 1, 2, 4, 4, 8, 8, 8, 8 };

      aligned_len = (kernel_supports_any_contiguous_range
		     ? len : aligned_len_array[offset + len - 1]);
      addr += len;
      len = 0;
    }

  if (aligned_addr_p)
    *aligned_addr_p = aligned_addr;
  if (aligned_offset_p)
    *aligned_offset_p = aligned_offset;
  if (aligned_len_p)
    *aligned_len_p = aligned_len;
  if (next_addr_p)
    *next_addr_p = addr;
  if (next_len_p)
    *next_len_p = len;
  if (next_addr_orig_p)
    *next_addr_orig_p = align_down (*next_addr_orig_p + alignment, alignment);
}

struct aarch64_dr_update_callback_param
{
  int is_watchpoint;
  unsigned int idx;
};

/* Callback for iterate_over_lwps.  Records the
   information about the change of one hardware breakpoint/watchpoint
   setting for the thread LWP.
   The information is passed in via PTR.
   N.B.  The actual updating of hardware debug registers is not
   carried out until the moment the thread is resumed.  */

static int
debug_reg_change_callback (struct lwp_info *lwp, void *ptr)
{
  struct aarch64_dr_update_callback_param *param_p
    = (struct aarch64_dr_update_callback_param *) ptr;
  int tid = ptid_of_lwp (lwp).lwp ();
  int idx = param_p->idx;
  int is_watchpoint = param_p->is_watchpoint;
  struct arch_lwp_info *info = lwp_arch_private_info (lwp);
  dr_changed_t *dr_changed_ptr;
  dr_changed_t dr_changed;

  if (info == NULL)
    {
      info = XCNEW (struct arch_lwp_info);
      lwp_set_arch_private_info (lwp, info);
    }

  if (show_debug_regs)
    {
      debug_printf ("debug_reg_change_callback: \n\tOn entry:\n");
      debug_printf ("\ttid%d, dr_changed_bp=0x%s, "
		    "dr_changed_wp=0x%s\n", tid,
		    phex (info->dr_changed_bp, 8),
		    phex (info->dr_changed_wp, 8));
    }

  dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
    : &info->dr_changed_bp;
  dr_changed = *dr_changed_ptr;

  gdb_assert (idx >= 0
	      && (idx <= (is_watchpoint ? aarch64_num_wp_regs
			  : aarch64_num_bp_regs)));

  /* The actual update is done later just before resuming the lwp,
     we just mark that one register pair needs updating.  */
  DR_MARK_N_CHANGED (dr_changed, idx);
  *dr_changed_ptr = dr_changed;

  /* If the lwp isn't stopped, force it to momentarily pause, so
     we can update its debug registers.  */
  if (!lwp_is_stopped (lwp))
    linux_stop_lwp (lwp);

  if (show_debug_regs)
    {
      debug_printf ("\tOn exit:\n\ttid%d, dr_changed_bp=0x%s, "
		    "dr_changed_wp=0x%s\n", tid,
		    phex (info->dr_changed_bp, 8),
		    phex (info->dr_changed_wp, 8));
    }

  return 0;
}

/* Notify each thread that their IDXth breakpoint/watchpoint register
   pair needs to be updated.  The message will be recorded in each
   thread's arch-specific data area, the actual updating will be done
   when the thread is resumed.  */

static void
aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
				 int is_watchpoint, unsigned int idx)
{
  struct aarch64_dr_update_callback_param param;
  ptid_t pid_ptid = ptid_t (current_lwp_ptid ().pid ());

  param.is_watchpoint = is_watchpoint;
  param.idx = idx;

  iterate_over_lwps (pid_ptid, debug_reg_change_callback, (void *) &param);
}

/* Reconfigure STATE to be compatible with Linux kernels with the PR
   external/20207 bug.  This is called when
   KERNEL_SUPPORTS_ANY_CONTIGUOUS_RANGE transitions to false.  Note we
   don't try to support combining watchpoints with matching (and thus
   shared) masks, as it's too late when we get here.  On buggy
   kernels, GDB will try to first setup the perfect matching ranges,
   which will run out of registers before this function can merge
   them.  It doesn't look like worth the effort to improve that, given
   eventually buggy kernels will be phased out.  */

static void
aarch64_downgrade_regs (struct aarch64_debug_reg_state *state)
{
  for (int i = 0; i < aarch64_num_wp_regs; ++i)
    if ((state->dr_ctrl_wp[i] & 1) != 0)
      {
	gdb_assert (state->dr_ref_count_wp[i] != 0);
	uint8_t mask_orig = (state->dr_ctrl_wp[i] >> 5) & 0xff;
	gdb_assert (mask_orig != 0);
	static const uint8_t old_valid[] = { 0x01, 0x03, 0x0f, 0xff };
	uint8_t mask = 0;
	for (const uint8_t old_mask : old_valid)
	  if (mask_orig <= old_mask)
	    {
	      mask = old_mask;
	      break;
	    }
	gdb_assert (mask != 0);

	/* No update needed for this watchpoint?  */
	if (mask == mask_orig)
	  continue;
	state->dr_ctrl_wp[i] |= mask << 5;
	state->dr_addr_wp[i]
	  = align_down (state->dr_addr_wp[i], AARCH64_HWP_ALIGNMENT);

	/* Try to match duplicate entries.  */
	for (int j = 0; j < i; ++j)
	  if ((state->dr_ctrl_wp[j] & 1) != 0
	      && state->dr_addr_wp[j] == state->dr_addr_wp[i]
	      && state->dr_addr_orig_wp[j] == state->dr_addr_orig_wp[i]
	      && state->dr_ctrl_wp[j] == state->dr_ctrl_wp[i])
	    {
	      state->dr_ref_count_wp[j] += state->dr_ref_count_wp[i];
	      state->dr_ref_count_wp[i] = 0;
	      state->dr_addr_wp[i] = 0;
	      state->dr_addr_orig_wp[i] = 0;
	      state->dr_ctrl_wp[i] &= ~1;
	      break;
	    }

	aarch64_notify_debug_reg_change (state, 1 /* is_watchpoint */, i);
      }
}

/* Record the insertion of one breakpoint/watchpoint, as represented
   by ADDR and CTRL, in the process' arch-specific data area *STATE.  */

static int
aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
				   enum target_hw_bp_type type,
				   CORE_ADDR addr, int offset, int len,
				   CORE_ADDR addr_orig)
{
  int i, idx, num_regs, is_watchpoint;
  unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
  CORE_ADDR *dr_addr_p, *dr_addr_orig_p;

  /* Set up state pointers.  */
  is_watchpoint = (type != hw_execute);
  gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
  if (is_watchpoint)
    {
      num_regs = aarch64_num_wp_regs;
      dr_addr_p = state->dr_addr_wp;
      dr_addr_orig_p = state->dr_addr_orig_wp;
      dr_ctrl_p = state->dr_ctrl_wp;
      dr_ref_count = state->dr_ref_count_wp;
    }
  else
    {
      num_regs = aarch64_num_bp_regs;
      dr_addr_p = state->dr_addr_bp;
      dr_addr_orig_p = nullptr;
      dr_ctrl_p = state->dr_ctrl_bp;
      dr_ref_count = state->dr_ref_count_bp;
    }

  ctrl = aarch64_point_encode_ctrl_reg (type, offset, len);

  /* Find an existing or free register in our cache.  */
  idx = -1;
  for (i = 0; i < num_regs; ++i)
    {
      if ((dr_ctrl_p[i] & 1) == 0)
	{
	  gdb_assert (dr_ref_count[i] == 0);
	  idx = i;
	  /* no break; continue hunting for an exising one.  */
	}
      else if (dr_addr_p[i] == addr
	       && (dr_addr_orig_p == nullptr || dr_addr_orig_p[i] == addr_orig)
	       && dr_ctrl_p[i] == ctrl)
	{
	  gdb_assert (dr_ref_count[i] != 0);
	  idx = i;
	  break;
	}
    }

  /* No space.  */
  if (idx == -1)
    return -1;

  /* Update our cache.  */
  if ((dr_ctrl_p[idx] & 1) == 0)
    {
      /* new entry */
      dr_addr_p[idx] = addr;
      if (dr_addr_orig_p != nullptr)
	dr_addr_orig_p[idx] = addr_orig;
      dr_ctrl_p[idx] = ctrl;
      dr_ref_count[idx] = 1;
      /* Notify the change.  */
      aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
    }
  else
    {
      /* existing entry */
      dr_ref_count[idx]++;
    }

  return 0;
}

/* Record the removal of one breakpoint/watchpoint, as represented by
   ADDR and CTRL, in the process' arch-specific data area *STATE.  */

static int
aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
				   enum target_hw_bp_type type,
				   CORE_ADDR addr, int offset, int len,
				   CORE_ADDR addr_orig)
{
  int i, num_regs, is_watchpoint;
  unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
  CORE_ADDR *dr_addr_p, *dr_addr_orig_p;

  /* Set up state pointers.  */
  is_watchpoint = (type != hw_execute);
  if (is_watchpoint)
    {
      num_regs = aarch64_num_wp_regs;
      dr_addr_p = state->dr_addr_wp;
      dr_addr_orig_p = state->dr_addr_orig_wp;
      dr_ctrl_p = state->dr_ctrl_wp;
      dr_ref_count = state->dr_ref_count_wp;
    }
  else
    {
      num_regs = aarch64_num_bp_regs;
      dr_addr_p = state->dr_addr_bp;
      dr_addr_orig_p = nullptr;
      dr_ctrl_p = state->dr_ctrl_bp;
      dr_ref_count = state->dr_ref_count_bp;
    }

  ctrl = aarch64_point_encode_ctrl_reg (type, offset, len);

  /* Find the entry that matches the ADDR and CTRL.  */
  for (i = 0; i < num_regs; ++i)
    if (dr_addr_p[i] == addr
	&& (dr_addr_orig_p == nullptr || dr_addr_orig_p[i] == addr_orig)
	&& dr_ctrl_p[i] == ctrl)
      {
	gdb_assert (dr_ref_count[i] != 0);
	break;
      }

  /* Not found.  */
  if (i == num_regs)
    return -1;

  /* Clear our cache.  */
  if (--dr_ref_count[i] == 0)
    {
      /* Clear the enable bit.  */
      ctrl &= ~1;
      dr_addr_p[i] = 0;
      if (dr_addr_orig_p != nullptr)
	dr_addr_orig_p[i] = 0;
      dr_ctrl_p[i] = ctrl;
      /* Notify the change.  */
      aarch64_notify_debug_reg_change (state, is_watchpoint, i);
    }

  return 0;
}

int
aarch64_handle_breakpoint (enum target_hw_bp_type type, CORE_ADDR addr,
			   int len, int is_insert,
			   struct aarch64_debug_reg_state *state)
{
  if (is_insert)
    {
      /* The hardware breakpoint on AArch64 should always be 4-byte
	 aligned, but on AArch32, it can be 2-byte aligned.  Note that
	 we only check the alignment on inserting breakpoint because
	 aarch64_point_is_aligned needs the inferior_ptid inferior's
	 regcache to decide whether the inferior is 32-bit or 64-bit.
	 However when GDB follows the parent process and detach breakpoints
	 from child process, inferior_ptid is the child ptid, but the
	 child inferior doesn't exist in GDB's view yet.  */
      if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
	return -1;

      return aarch64_dr_state_insert_one_point (state, type, addr, 0, len, -1);
    }
  else
    return aarch64_dr_state_remove_one_point (state, type, addr, 0, len, -1);
}

/* This is essentially the same as aarch64_handle_breakpoint, apart
   from that it is an aligned watchpoint to be handled.  */

static int
aarch64_handle_aligned_watchpoint (enum target_hw_bp_type type,
				   CORE_ADDR addr, int len, int is_insert,
				   struct aarch64_debug_reg_state *state)
{
  if (is_insert)
    return aarch64_dr_state_insert_one_point (state, type, addr, 0, len, addr);
  else
    return aarch64_dr_state_remove_one_point (state, type, addr, 0, len, addr);
}

/* Insert/remove unaligned watchpoint by calling
   aarch64_align_watchpoint repeatedly until the whole watched region,
   as represented by ADDR and LEN, has been properly aligned and ready
   to be written to one or more hardware watchpoint registers.
   IS_INSERT indicates whether this is an insertion or a deletion.
   Return 0 if succeed.  */

static int
aarch64_handle_unaligned_watchpoint (enum target_hw_bp_type type,
				     CORE_ADDR addr, int len, int is_insert,
				     struct aarch64_debug_reg_state *state)
{
  CORE_ADDR addr_orig = addr;

  while (len > 0)
    {
      CORE_ADDR aligned_addr;
      int aligned_offset, aligned_len, ret;
      CORE_ADDR addr_orig_next = addr_orig;

      aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_offset,
				&aligned_len, &addr, &len, &addr_orig_next);

      if (is_insert)
	ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
						 aligned_offset,
						 aligned_len, addr_orig);
      else
	ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
						 aligned_offset,
						 aligned_len, addr_orig);

      if (show_debug_regs)
	debug_printf ("handle_unaligned_watchpoint: is_insert: %d\n"
		      "                             "
		      "aligned_addr: %s, aligned_len: %d\n"
		      "                                "
		      "addr_orig: %s\n"
		      "                                "
		      "next_addr: %s,    next_len: %d\n"
		      "                           "
		      "addr_orig_next: %s\n",
		      is_insert, core_addr_to_string_nz (aligned_addr),
		      aligned_len, core_addr_to_string_nz (addr_orig),
		      core_addr_to_string_nz (addr), len,
		      core_addr_to_string_nz (addr_orig_next));

      addr_orig = addr_orig_next;

      if (ret != 0)
	return ret;
    }

  return 0;
}

int
aarch64_handle_watchpoint (enum target_hw_bp_type type, CORE_ADDR addr,
			   int len, int is_insert,
			   struct aarch64_debug_reg_state *state)
{
  if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
    return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert,
					      state);
  else
    return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert,
						state);
}

/* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
   registers with data from *STATE.  */

void
aarch64_linux_set_debug_regs (struct aarch64_debug_reg_state *state,
			      int tid, int watchpoint)
{
  int i, count;
  struct iovec iov;
  struct user_hwdebug_state regs;
  const CORE_ADDR *addr;
  const unsigned int *ctrl;

  memset (&regs, 0, sizeof (regs));
  iov.iov_base = &regs;
  count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
  addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
  ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
  if (count == 0)
    return;
  iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs)
		 + count * sizeof (regs.dbg_regs[0]));

  for (i = 0; i < count; i++)
    {
      regs.dbg_regs[i].addr = addr[i];
      regs.dbg_regs[i].ctrl = ctrl[i];
    }

  if (ptrace (PTRACE_SETREGSET, tid,
	      watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
	      (void *) &iov))
    {
      /* Handle Linux kernels with the PR external/20207 bug.  */
      if (watchpoint && errno == EINVAL
	  && kernel_supports_any_contiguous_range)
	{
	  kernel_supports_any_contiguous_range = false;
	  aarch64_downgrade_regs (state);
	  aarch64_linux_set_debug_regs (state, tid, watchpoint);
	  return;
	}
      error (_("Unexpected error setting hardware debug registers"));
    }
}

/* Print the values of the cached breakpoint/watchpoint registers.  */

void
aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
			      const char *func, CORE_ADDR addr,
			      int len, enum target_hw_bp_type type)
{
  int i;

  debug_printf ("%s", func);
  if (addr || len)
    debug_printf (" (addr=0x%08lx, len=%d, type=%s)",
		  (unsigned long) addr, len,
		  type == hw_write ? "hw-write-watchpoint"
		  : (type == hw_read ? "hw-read-watchpoint"
		     : (type == hw_access ? "hw-access-watchpoint"
			: (type == hw_execute ? "hw-breakpoint"
			   : "??unknown??"))));
  debug_printf (":\n");

  debug_printf ("\tBREAKPOINTs:\n");
  for (i = 0; i < aarch64_num_bp_regs; i++)
    debug_printf ("\tBP%d: addr=%s, ctrl=0x%08x, ref.count=%d\n",
		  i, core_addr_to_string_nz (state->dr_addr_bp[i]),
		  state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);

  debug_printf ("\tWATCHPOINTs:\n");
  for (i = 0; i < aarch64_num_wp_regs; i++)
    debug_printf ("\tWP%d: addr=%s (orig=%s), ctrl=0x%08x, ref.count=%d\n",
		  i, core_addr_to_string_nz (state->dr_addr_wp[i]),
		  core_addr_to_string_nz (state->dr_addr_orig_wp[i]),
		  state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
}

/* Get the hardware debug register capacity information from the
   process represented by TID.  */

void
aarch64_linux_get_debug_reg_capacity (int tid)
{
  struct iovec iov;
  struct user_hwdebug_state dreg_state;

  iov.iov_base = &dreg_state;
  iov.iov_len = sizeof (dreg_state);

  /* Get hardware watchpoint register info.  */
  if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_WATCH, &iov) == 0
      && (AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8
	  || AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8_1
	  || AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8_2))
    {
      aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
      if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
	{
	  warning (_("Unexpected number of hardware watchpoint registers"
		     " reported by ptrace, got %d, expected %d."),
		   aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
	  aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
	}
    }
  else
    {
      warning (_("Unable to determine the number of hardware watchpoints"
		 " available."));
      aarch64_num_wp_regs = 0;
    }

  /* Get hardware breakpoint register info.  */
  if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_HW_BREAK, &iov) == 0
      && (AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8
	  || AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8_1
	  || AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8_2))
    {
      aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
      if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
	{
	  warning (_("Unexpected number of hardware breakpoint registers"
		     " reported by ptrace, got %d, expected %d."),
		   aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
	  aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
	}
    }
  else
    {
      warning (_("Unable to determine the number of hardware breakpoints"
		 " available."));
      aarch64_num_bp_regs = 0;
    }
}

/* Return true if we can watch a memory region that starts address
   ADDR and whose length is LEN in bytes.  */

int
aarch64_linux_region_ok_for_watchpoint (CORE_ADDR addr, int len)
{
  CORE_ADDR aligned_addr;

  /* Can not set watchpoints for zero or negative lengths.  */
  if (len <= 0)
    return 0;

  /* Must have hardware watchpoint debug register(s).  */
  if (aarch64_num_wp_regs == 0)
    return 0;

  /* We support unaligned watchpoint address and arbitrary length,
     as long as the size of the whole watched area after alignment
     doesn't exceed size of the total area that all watchpoint debug
     registers can watch cooperatively.

     This is a very relaxed rule, but unfortunately there are
     limitations, e.g. false-positive hits, due to limited support of
     hardware debug registers in the kernel.  See comment above
     aarch64_align_watchpoint for more information.  */

  aligned_addr = addr & ~(AARCH64_HWP_MAX_LEN_PER_REG - 1);
  if (aligned_addr + aarch64_num_wp_regs * AARCH64_HWP_MAX_LEN_PER_REG
      < addr + len)
    return 0;

  /* All tests passed so we are likely to be able to set the watchpoint.
     The reason that it is 'likely' rather than 'must' is because
     we don't check the current usage of the watchpoint registers, and
     there may not be enough registers available for this watchpoint.
     Ideally we should check the cached debug register state, however
     the checking is costly.  */
  return 1;
}