aboutsummaryrefslogtreecommitdiff
path: root/gdb/mt-tdep.c
blob: a75227c31a0fc5cc63b6356173c55b24c2e9d78e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
/* Target-dependent code for Morpho mt processor, for GDB.

   Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* Contributed by Michael Snyder, msnyder@redhat.com.  */

#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "symtab.h"
#include "dis-asm.h"
#include "arch-utils.h"
#include "gdbtypes.h"
#include "gdb_string.h"
#include "regcache.h"
#include "reggroups.h"
#include "gdbcore.h"
#include "trad-frame.h"
#include "inferior.h"
#include "dwarf2-frame.h"
#include "infcall.h"
#include "gdb_assert.h"
#include "language.h"
#include "valprint.h"

enum mt_arch_constants
{
  MT_MAX_STRUCT_SIZE = 16
};

enum mt_gdb_regnums
{
  MT_R0_REGNUM,			/* 32 bit regs.  */
  MT_R1_REGNUM,
  MT_1ST_ARGREG = MT_R1_REGNUM,
  MT_R2_REGNUM,
  MT_R3_REGNUM,
  MT_R4_REGNUM,
  MT_LAST_ARGREG = MT_R4_REGNUM,
  MT_R5_REGNUM,
  MT_R6_REGNUM,
  MT_R7_REGNUM,
  MT_R8_REGNUM,
  MT_R9_REGNUM,
  MT_R10_REGNUM,
  MT_R11_REGNUM,
  MT_R12_REGNUM,
  MT_FP_REGNUM = MT_R12_REGNUM,
  MT_R13_REGNUM,
  MT_SP_REGNUM = MT_R13_REGNUM,
  MT_R14_REGNUM,
  MT_RA_REGNUM = MT_R14_REGNUM,
  MT_R15_REGNUM,
  MT_IRA_REGNUM = MT_R15_REGNUM,
  MT_PC_REGNUM,

  /* Interrupt Enable pseudo-register, exported by SID.  */
  MT_INT_ENABLE_REGNUM,
  /* End of CPU regs.  */

  MT_NUM_CPU_REGS,

  /* Co-processor registers.  */
  MT_COPRO_REGNUM = MT_NUM_CPU_REGS,	/* 16 bit regs.  */
  MT_CPR0_REGNUM,
  MT_CPR1_REGNUM,
  MT_CPR2_REGNUM,
  MT_CPR3_REGNUM,
  MT_CPR4_REGNUM,
  MT_CPR5_REGNUM,
  MT_CPR6_REGNUM,
  MT_CPR7_REGNUM,
  MT_CPR8_REGNUM,
  MT_CPR9_REGNUM,
  MT_CPR10_REGNUM,
  MT_CPR11_REGNUM,
  MT_CPR12_REGNUM,
  MT_CPR13_REGNUM,
  MT_CPR14_REGNUM,
  MT_CPR15_REGNUM,
  MT_BYPA_REGNUM,		/* 32 bit regs.  */
  MT_BYPB_REGNUM,
  MT_BYPC_REGNUM,
  MT_FLAG_REGNUM,
  MT_CONTEXT_REGNUM,		/* 38 bits (treat as array of
				   six bytes).  */
  MT_MAC_REGNUM,			/* 32 bits.  */
  MT_Z1_REGNUM,			/* 16 bits.  */
  MT_Z2_REGNUM,			/* 16 bits.  */
  MT_ICHANNEL_REGNUM,		/* 32 bits.  */
  MT_ISCRAMB_REGNUM,		/* 32 bits.  */
  MT_QSCRAMB_REGNUM,		/* 32 bits.  */
  MT_OUT_REGNUM,			/* 16 bits.  */
  MT_EXMAC_REGNUM,		/* 32 bits (8 used).  */
  MT_QCHANNEL_REGNUM,		/* 32 bits.  */
  MT_ZI2_REGNUM,                /* 16 bits.  */
  MT_ZQ2_REGNUM,                /* 16 bits.  */
  MT_CHANNEL2_REGNUM,           /* 32 bits.  */
  MT_ISCRAMB2_REGNUM,           /* 32 bits.  */
  MT_QSCRAMB2_REGNUM,           /* 32 bits.  */
  MT_QCHANNEL2_REGNUM,          /* 32 bits.  */

  /* Number of real registers.  */
  MT_NUM_REGS,

  /* Pseudo-registers.  */
  MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
  MT_MAC_PSEUDOREG_REGNUM,
  MT_COPRO_PSEUDOREG_ARRAY,

  MT_COPRO_PSEUDOREG_DIM_1 = 2,
  MT_COPRO_PSEUDOREG_DIM_2 = 8,
  /* The number of pseudo-registers for each coprocessor.  These
     include the real coprocessor registers, the pseudo-registe for
     the coprocessor number, and the pseudo-register for the MAC.  */
  MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
  /* The register number of the MAC, relative to a given coprocessor.  */
  MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,

  /* Two pseudo-regs ('coprocessor' and 'mac').  */
  MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
			    * MT_COPRO_PSEUDOREG_DIM_1
			    * MT_COPRO_PSEUDOREG_DIM_2)
};

/* Return name of register number specified by REGNUM.  */

static const char *
mt_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *const register_names[] = {
    /* CPU regs.  */
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "pc", "IE",
    /* Co-processor regs.  */
    "",				/* copro register.  */
    "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
    "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
    "bypa", "bypb", "bypc", "flag", "context", "" /* mac.  */ , "z1", "z2",
    "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac.  */ , "Qchannel",
    "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
    /* Pseudo-registers.  */
    "coprocessor", "MAC"
  };
  static const char *array_names[MT_COPRO_PSEUDOREG_REGS
				 * MT_COPRO_PSEUDOREG_DIM_1
				 * MT_COPRO_PSEUDOREG_DIM_2];

  if (regnum < 0)
    return "";
  if (regnum < ARRAY_SIZE (register_names))
    return register_names[regnum];
  if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
    return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
  
  {
    char *name;
    const char *stub;
    unsigned dim_1;
    unsigned dim_2;
    unsigned index;
    
    regnum -= MT_COPRO_PSEUDOREG_ARRAY;
    index = regnum % MT_COPRO_PSEUDOREG_REGS;
    dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
    dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
	     %  MT_COPRO_PSEUDOREG_DIM_1);
    
    if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
      stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
    else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
      stub = "";
    else
      stub = register_names[index + MT_CPR0_REGNUM];
    if (!*stub)
      {
	array_names[regnum] = stub;
	return stub;
      }
    name = xmalloc (30);
    sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
    array_names[regnum] = name;
    return name;
  }
}

/* Return the type of a coprocessor register.  */

static struct type *
mt_copro_register_type (struct gdbarch *arch, int regnum)
{
  switch (regnum)
    {
    case MT_INT_ENABLE_REGNUM:
    case MT_ICHANNEL_REGNUM:
    case MT_QCHANNEL_REGNUM:
    case MT_ISCRAMB_REGNUM:
    case MT_QSCRAMB_REGNUM:
      return builtin_type_int32;
    case MT_BYPA_REGNUM:
    case MT_BYPB_REGNUM:
    case MT_BYPC_REGNUM:
    case MT_Z1_REGNUM:
    case MT_Z2_REGNUM:
    case MT_OUT_REGNUM:
    case MT_ZI2_REGNUM:
    case MT_ZQ2_REGNUM:
      return builtin_type_int16;
    case MT_EXMAC_REGNUM:
    case MT_MAC_REGNUM:
      return builtin_type_uint32;
    case MT_CONTEXT_REGNUM:
      return builtin_type (arch)->builtin_long_long;
    case MT_FLAG_REGNUM:
      return builtin_type (arch)->builtin_unsigned_char;
    default:
      if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
	return builtin_type_int16;
      else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
	{
	  if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
	      || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
	    return builtin_type_uint64;
	  else
	    return builtin_type_uint32;
	}
      else
	return builtin_type_uint32;
    }
}

/* Given ARCH and a register number specified by REGNUM, return the
   type of that register.  */

static struct type *
mt_register_type (struct gdbarch *arch, int regnum)
{
  static struct type *copro_type = NULL;

  if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
    {
      if (copro_type == NULL)
	{
	  struct type *temp;
	  temp = create_range_type (NULL, builtin_type_int32, 0, 1);
	  copro_type = create_array_type (NULL, builtin_type_int16, temp);
	}
      switch (regnum)
	{
	case MT_PC_REGNUM:
	case MT_RA_REGNUM:
	case MT_IRA_REGNUM:
	  return builtin_type (arch)->builtin_func_ptr;
	case MT_SP_REGNUM:
	case MT_FP_REGNUM:
	  return builtin_type (arch)->builtin_data_ptr;
	case MT_COPRO_REGNUM:
	case MT_COPRO_PSEUDOREG_REGNUM:
	  return copro_type;
	case MT_MAC_PSEUDOREG_REGNUM:
	  return mt_copro_register_type (arch,
					 MT_CPR0_REGNUM
					 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
	default:
	  if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
	    return builtin_type_int32;
	  else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
	    return mt_copro_register_type (arch, regnum);
	  else
	    {
	      regnum -= MT_COPRO_PSEUDOREG_ARRAY;
	      regnum %= MT_COPRO_PSEUDOREG_REGS;
	      regnum += MT_CPR0_REGNUM;
	      return mt_copro_register_type (arch, regnum);
	    }
	}
    }
  internal_error (__FILE__, __LINE__,
		  _("mt_register_type: illegal register number %d"), regnum);
}

/* Return true if register REGNUM is a member of the register group
   specified by GROUP.  */

static int
mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			 struct reggroup *group)
{
  /* Groups of registers that can be displayed via "info reg".  */
  if (group == all_reggroup)
    return (regnum >= 0
	    && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
	    && mt_register_name (gdbarch, regnum)[0] != '\0');

  if (group == general_reggroup)
    return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);

  if (group == float_reggroup)
    return 0;			/* No float regs.  */

  if (group == vector_reggroup)
    return 0;			/* No vector regs.  */

  /* For any that are not handled above.  */
  return default_register_reggroup_p (gdbarch, regnum, group);
}

/* Return the return value convention used for a given type TYPE.
   Optionally, fetch or set the return value via READBUF or
   WRITEBUF respectively using REGCACHE for the register
   values.  */

static enum return_value_convention
mt_return_value (struct gdbarch *gdbarch, struct type *func_type,
		 struct type *type, struct regcache *regcache,
		 gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (TYPE_LENGTH (type) > 4)
    {
      /* Return values > 4 bytes are returned in memory, 
         pointed to by R11.  */
      if (readbuf)
	{
	  ULONGEST addr;

	  regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
	  read_memory (addr, readbuf, TYPE_LENGTH (type));
	}

      if (writebuf)
	{
	  ULONGEST addr;

	  regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
	  write_memory (addr, writebuf, TYPE_LENGTH (type));
	}

      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }
  else
    {
      if (readbuf)
	{
	  ULONGEST temp;

	  /* Return values of <= 4 bytes are returned in R11.  */
	  regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp);
	}

      if (writebuf)
	{
	  if (TYPE_LENGTH (type) < 4)
	    {
	      gdb_byte buf[4];
	      /* Add leading zeros to the value.  */
	      memset (buf, 0, sizeof (buf));
	      memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
		      writebuf, TYPE_LENGTH (type));
	      regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
	    }
	  else			/* (TYPE_LENGTH (type) == 4 */
	    regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

/* If the input address, PC, is in a function prologue, return the
   address of the end of the prologue, otherwise return the input
   address.

   Note:  PC is likely to be the function start, since this function
   is mainly used for advancing a breakpoint to the first line, or
   stepping to the first line when we have stepped into a function
   call.  */

static CORE_ADDR
mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr = 0, func_end = 0;
  char *func_name;
  unsigned long instr;

  if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
    {
      struct symtab_and_line sal;
      struct symbol *sym;

      /* Found a function.  */
      sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
      if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
	{
	  /* Don't use this trick for assembly source files.  */
	  sal = find_pc_line (func_addr, 0);

	  if (sal.end && sal.end < func_end)
	    {
	      /* Found a line number, use it as end of prologue.  */
	      return sal.end;
	    }
	}
    }

  /* No function symbol, or no line symbol.  Use prologue scanning method.  */
  for (;; pc += 4)
    {
      instr = read_memory_unsigned_integer (pc, 4);
      if (instr == 0x12000000)	/* nop */
	continue;
      if (instr == 0x12ddc000)	/* copy sp into fp */
	continue;
      instr >>= 16;
      if (instr == 0x05dd)	/* subi sp, sp, imm */
	continue;
      if (instr >= 0x43c0 && instr <= 0x43df)	/* push */
	continue;
      /* Not an obvious prologue instruction.  */
      break;
    }

  return pc;
}

/* The breakpoint instruction must be the same size as the smallest
   instruction in the instruction set.

   The BP for ms1 is defined as 0x68000000 (BREAK).
   The BP for ms2 is defined as 0x69000000 (illegal)  */

static const gdb_byte *
mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
		       int *bp_size)
{
  static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
  static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };

  *bp_size = 4;
  if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
    return ms2_breakpoint;
  
  return ms1_breakpoint;
}

/* Select the correct coprocessor register bank.  Return the pseudo
   regnum we really want to read.  */

static int
mt_select_coprocessor (struct gdbarch *gdbarch,
			struct regcache *regcache, int regno)
{
  unsigned index, base;
  gdb_byte copro[4];

  /* Get the copro pseudo regnum. */
  regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
  base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
	  + extract_signed_integer (&copro[2], 2));

  regno -= MT_COPRO_PSEUDOREG_ARRAY;
  index = regno % MT_COPRO_PSEUDOREG_REGS;
  regno /= MT_COPRO_PSEUDOREG_REGS;
  if (base != regno)
    {
      /* Select the correct coprocessor register bank.  Invalidate the
	 coprocessor register cache.  */
      unsigned ix;

      store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2);
      store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2);
      regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
      
      /* We must flush the cache, as it is now invalid.  */
      for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
	regcache_invalidate (regcache, ix);
    }
  
  return index;
}

/* Fetch the pseudo registers:

   There are two regular pseudo-registers:
   1) The 'coprocessor' pseudo-register (which mirrors the 
   "real" coprocessor register sent by the target), and
   2) The 'MAC' pseudo-register (which represents the union
   of the original 32 bit target MAC register and the new
   8-bit extended-MAC register).

   Additionally there is an array of coprocessor registers which track
   the coprocessor registers for each coprocessor.  */

static void
mt_pseudo_register_read (struct gdbarch *gdbarch,
			  struct regcache *regcache, int regno, gdb_byte *buf)
{
  switch (regno)
    {
    case MT_COPRO_REGNUM:
    case MT_COPRO_PSEUDOREG_REGNUM:
      regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
      break;
    case MT_MAC_REGNUM:
    case MT_MAC_PSEUDOREG_REGNUM:
      if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
	  || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
	{
	  ULONGEST oldmac = 0, ext_mac = 0;
	  ULONGEST newmac;

	  regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
	  regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
	  newmac =
	    (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
	  store_signed_integer (buf, 8, newmac);
	}
      else
	regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
      break;
    default:
      {
	unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
	
	if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
	  mt_pseudo_register_read (gdbarch, regcache,
				   MT_MAC_PSEUDOREG_REGNUM, buf);
	else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
	  regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
      }
      break;
    }
}

/* Write the pseudo registers:

   Mt pseudo-registers are stored directly to the target.  The
   'coprocessor' register is special, because when it is modified, all
   the other coprocessor regs must be flushed from the reg cache.  */

static void
mt_pseudo_register_write (struct gdbarch *gdbarch,
			   struct regcache *regcache,
			   int regno, const gdb_byte *buf)
{
  int i;

  switch (regno)
    {
    case MT_COPRO_REGNUM:
    case MT_COPRO_PSEUDOREG_REGNUM:
      regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
      for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
	regcache_invalidate (regcache, i);
      break;
    case MT_MAC_REGNUM:
    case MT_MAC_PSEUDOREG_REGNUM:
      if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
	  || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
	{
	  /* The 8-byte MAC pseudo-register must be broken down into two
	     32-byte registers.  */
	  unsigned int oldmac, ext_mac;
	  ULONGEST newmac;

	  newmac = extract_unsigned_integer (buf, 8);
	  oldmac = newmac & 0xffffffff;
	  ext_mac = (newmac >> 32) & 0xff;
	  regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
	  regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
	}
      else
	regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
      break;
    default:
      {
	unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
	
	if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
	  mt_pseudo_register_write (gdbarch, regcache,
				    MT_MAC_PSEUDOREG_REGNUM, buf);
	else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
	  regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
      }
      break;
    }
}

static CORE_ADDR
mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
  /* Register size is 4 bytes.  */
  return align_down (sp, 4);
}

/* Implements the "info registers" command.   When ``all'' is non-zero,
   the coprocessor registers will be printed in addition to the rest
   of the registers.  */

static void
mt_registers_info (struct gdbarch *gdbarch,
		   struct ui_file *file,
		   struct frame_info *frame, int regnum, int all)
{
  if (regnum == -1)
    {
      int lim;

      lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;

      for (regnum = 0; regnum < lim; regnum++)
	{
	  /* Don't display the Qchannel register since it will be displayed
	     along with Ichannel.  (See below.)  */
	  if (regnum == MT_QCHANNEL_REGNUM)
	    continue;

	  mt_registers_info (gdbarch, file, frame, regnum, all);

	  /* Display the Qchannel register immediately after Ichannel.  */
	  if (regnum == MT_ICHANNEL_REGNUM)
	    mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
	}
    }
  else
    {
      if (regnum == MT_EXMAC_REGNUM)
	return;
      else if (regnum == MT_CONTEXT_REGNUM)
	{
	  /* Special output handling for 38-bit context register.  */
	  unsigned char *buff;
	  unsigned int *bytes, i, regsize;

	  regsize = register_size (gdbarch, regnum);

	  buff = alloca (regsize);
	  bytes = alloca (regsize * sizeof (*bytes));

	  frame_register_read (frame, regnum, buff);

	  fputs_filtered (gdbarch_register_name
			  (gdbarch, regnum), file);
	  print_spaces_filtered (15 - strlen (gdbarch_register_name
					        (gdbarch, regnum)),
				 file);
	  fputs_filtered ("0x", file);

	  for (i = 0; i < regsize; i++)
	    fprintf_filtered (file, "%02x", (unsigned int)
			      extract_unsigned_integer (buff + i, 1));
	  fputs_filtered ("\t", file);
	  print_longest (file, 'd', 0,
			 extract_unsigned_integer (buff, regsize));
	  fputs_filtered ("\n", file);
	}
      else if (regnum == MT_COPRO_REGNUM
               || regnum == MT_COPRO_PSEUDOREG_REGNUM)
	{
	  /* Special output handling for the 'coprocessor' register.  */
	  gdb_byte *buf;
	  struct value_print_options opts;

	  buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
	  frame_register_read (frame, MT_COPRO_REGNUM, buf);
	  /* And print.  */
	  regnum = MT_COPRO_PSEUDOREG_REGNUM;
	  fputs_filtered (gdbarch_register_name (gdbarch, regnum),
			  file);
	  print_spaces_filtered (15 - strlen (gdbarch_register_name
					        (gdbarch, regnum)),
				 file);
	  get_raw_print_options (&opts);
	  opts.deref_ref = 1;
	  val_print (register_type (gdbarch, regnum), buf,
		     0, 0, file, 0, &opts,
		     current_language);
	  fputs_filtered ("\n", file);
	}
      else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
	{
	  ULONGEST oldmac, ext_mac, newmac;
	  gdb_byte buf[3 * sizeof (LONGEST)];

	  /* Get the two "real" mac registers.  */
	  frame_register_read (frame, MT_MAC_REGNUM, buf);
	  oldmac = extract_unsigned_integer
	    (buf, register_size (gdbarch, MT_MAC_REGNUM));
	  if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
	      || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
	    {
	      frame_register_read (frame, MT_EXMAC_REGNUM, buf);
	      ext_mac = extract_unsigned_integer
		(buf, register_size (gdbarch, MT_EXMAC_REGNUM));
	    }
	  else
	    ext_mac = 0;

	  /* Add them together.  */
	  newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);

	  /* And print.  */
	  regnum = MT_MAC_PSEUDOREG_REGNUM;
	  fputs_filtered (gdbarch_register_name (gdbarch, regnum),
			  file);
	  print_spaces_filtered (15 - strlen (gdbarch_register_name
					      (gdbarch, regnum)),
				 file);
	  fputs_filtered ("0x", file);
	  print_longest (file, 'x', 0, newmac);
	  fputs_filtered ("\t", file);
	  print_longest (file, 'u', 0, newmac);
	  fputs_filtered ("\n", file);
	}
      else
	default_print_registers_info (gdbarch, file, frame, regnum, all);
    }
}

/* Set up the callee's arguments for an inferior function call.  The
   arguments are pushed on the stack or are placed in registers as
   appropriate.  It also sets up the return address (which points to
   the call dummy breakpoint).

   Returns the updated (and aligned) stack pointer.  */

static CORE_ADDR
mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		     struct regcache *regcache, CORE_ADDR bp_addr,
		     int nargs, struct value **args, CORE_ADDR sp,
		     int struct_return, CORE_ADDR struct_addr)
{
#define wordsize 4
  gdb_byte buf[MT_MAX_STRUCT_SIZE];
  int argreg = MT_1ST_ARGREG;
  int split_param_len = 0;
  int stack_dest = sp;
  int slacklen;
  int typelen;
  int i, j;

  /* First handle however many args we can fit into MT_1ST_ARGREG thru
     MT_LAST_ARGREG.  */
  for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
    {
      const gdb_byte *val;
      typelen = TYPE_LENGTH (value_type (args[i]));
      switch (typelen)
	{
	case 1:
	case 2:
	case 3:
	case 4:
	  regcache_cooked_write_unsigned (regcache, argreg++,
					  extract_unsigned_integer
					  (value_contents (args[i]),
					   wordsize));
	  break;
	case 8:
	case 12:
	case 16:
	  val = value_contents (args[i]);
	  while (typelen > 0)
	    {
	      if (argreg <= MT_LAST_ARGREG)
		{
		  /* This word of the argument is passed in a register.  */
		  regcache_cooked_write_unsigned (regcache, argreg++,
						  extract_unsigned_integer
						  (val, wordsize));
		  typelen -= wordsize;
		  val += wordsize;
		}
	      else
		{
		  /* Remainder of this arg must be passed on the stack
		     (deferred to do later).  */
		  split_param_len = typelen;
		  memcpy (buf, val, typelen);
		  break;	/* No more args can be handled in regs.  */
		}
	    }
	  break;
	default:
	  /* By reverse engineering of gcc output, args bigger than
	     16 bytes go on the stack, and their address is passed
	     in the argreg.  */
	  stack_dest -= typelen;
	  write_memory (stack_dest, value_contents (args[i]), typelen);
	  regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
	  break;
	}
    }

  /* Next, the rest of the arguments go onto the stack, in reverse order.  */
  for (j = nargs - 1; j >= i; j--)
    {
      gdb_byte *val;
      
      /* Right-justify the value in an aligned-length buffer.  */
      typelen = TYPE_LENGTH (value_type (args[j]));
      slacklen = (wordsize - (typelen % wordsize)) % wordsize;
      val = alloca (typelen + slacklen);
      memcpy (val, value_contents (args[j]), typelen);
      memset (val + typelen, 0, slacklen);
      /* Now write this data to the stack.  */
      stack_dest -= typelen + slacklen;
      write_memory (stack_dest, val, typelen + slacklen);
    }

  /* Finally, if a param needs to be split between registers and stack, 
     write the second half to the stack now.  */
  if (split_param_len != 0)
    {
      stack_dest -= split_param_len;
      write_memory (stack_dest, buf, split_param_len);
    }

  /* Set up return address (provided to us as bp_addr).  */
  regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);

  /* Store struct return address, if given.  */
  if (struct_return && struct_addr != 0)
    regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);

  /* Set aside 16 bytes for the callee to save regs 1-4.  */
  stack_dest -= 16;

  /* Update the stack pointer.  */
  regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);

  /* And that should do it.  Return the new stack pointer.  */
  return stack_dest;
}


/* The 'unwind_cache' data structure.  */

struct mt_unwind_cache
{
  /* The previous frame's inner most stack address.  
     Used as this frame ID's stack_addr.  */
  CORE_ADDR prev_sp;
  CORE_ADDR frame_base;
  int framesize;
  int frameless_p;

  /* Table indicating the location of each and every register.  */
  struct trad_frame_saved_reg *saved_regs;
};

/* Initialize an unwind_cache.  Build up the saved_regs table etc. for
   the frame.  */

static struct mt_unwind_cache *
mt_frame_unwind_cache (struct frame_info *this_frame,
			void **this_prologue_cache)
{
  struct gdbarch *gdbarch;
  struct mt_unwind_cache *info;
  CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
  unsigned long instr, upper_half, delayed_store = 0;
  int regnum, offset;
  ULONGEST sp, fp;

  if ((*this_prologue_cache))
    return (*this_prologue_cache);

  gdbarch = get_frame_arch (this_frame);
  info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
  (*this_prologue_cache) = info;

  info->prev_sp = 0;
  info->framesize = 0;
  info->frame_base = 0;
  info->frameless_p = 1;
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* Grab the frame-relative values of SP and FP, needed below. 
     The frame_saved_register function will find them on the
     stack or in the registers as appropriate.  */
  sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
  fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);

  start_addr = get_frame_func (this_frame);

  /* Return early if GDB couldn't find the function.  */
  if (start_addr == 0)
    return info;

  end_addr = get_frame_pc (this_frame);
  prologue_end_addr = skip_prologue_using_sal (start_addr);
  if (end_addr == 0)
  for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
    {
      instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
      if (delayed_store)	/* previous instr was a push */
	{
	  upper_half = delayed_store >> 16;
	  regnum = upper_half & 0xf;
	  offset = delayed_store & 0xffff;
	  switch (upper_half & 0xfff0)
	    {
	    case 0x43c0:	/* push using frame pointer */
	      info->saved_regs[regnum].addr = offset;
	      break;
	    case 0x43d0:	/* push using stack pointer */
	      info->saved_regs[regnum].addr = offset;
	      break;
	    default:		/* lint */
	      break;
	    }
	  delayed_store = 0;
	}

      switch (instr)
	{
	case 0x12000000:	/* NO-OP */
	  continue;
	case 0x12ddc000:	/* copy sp into fp */
	  info->frameless_p = 0;	/* Record that the frame pointer is in use.  */
	  continue;
	default:
	  upper_half = instr >> 16;
	  if (upper_half == 0x05dd ||	/* subi  sp, sp, imm */
	      upper_half == 0x07dd)	/* subui sp, sp, imm */
	    {
	      /* Record the frame size.  */
	      info->framesize = instr & 0xffff;
	      continue;
	    }
	  if ((upper_half & 0xfff0) == 0x43c0 ||	/* frame push */
	      (upper_half & 0xfff0) == 0x43d0)	/* stack push */
	    {
	      /* Save this instruction, but don't record the 
	         pushed register as 'saved' until we see the
	         next instruction.  That's because of deferred stores
	         on this target -- GDB won't be able to read the register
	         from the stack until one instruction later.  */
	      delayed_store = instr;
	      continue;
	    }
	  /* Not a prologue instruction.  Is this the end of the prologue?
	     This is the most difficult decision; when to stop scanning. 

	     If we have no line symbol, then the best thing we can do
	     is to stop scanning when we encounter an instruction that
	     is not likely to be a part of the prologue. 

	     But if we do have a line symbol, then we should 
	     keep scanning until we reach it (or we reach end_addr).  */

	  if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
	    continue;		/* Keep scanning, recording saved_regs etc.  */
	  else
	    break;		/* Quit scanning: breakpoint can be set here.  */
	}
    }

  /* Special handling for the "saved" address of the SP:
     The SP is of course never saved on the stack at all, so
     by convention what we put here is simply the previous 
     _value_ of the SP (as opposed to an address where the
     previous value would have been pushed).  This will also
     give us the frame base address.  */

  if (info->frameless_p)
    {
      info->frame_base = sp + info->framesize;
      info->prev_sp = sp + info->framesize;
    }
  else
    {
      info->frame_base = fp + info->framesize;
      info->prev_sp = fp + info->framesize;
    }
  /* Save prev_sp in saved_regs as a value, not as an address.  */
  trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);

  /* Now convert frame offsets to actual addresses (not offsets).  */
  for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
    if (trad_frame_addr_p (info->saved_regs, regnum))
      info->saved_regs[regnum].addr += info->frame_base - info->framesize;

  /* The call instruction moves the caller's PC in the callee's RA reg.
     Since this is an unwind, do the reverse.  Copy the location of RA
     into PC (the address / regnum) so that a request for PC will be
     converted into a request for the RA.  */
  info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];

  return info;
}

static CORE_ADDR
mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST pc;

  pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
  return pc;
}

static CORE_ADDR
mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST sp;

  sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
  return sp;
}

/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
   frame.  The frame ID's base needs to match the TOS value saved by
   save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint.  */

static struct frame_id
mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
  return frame_id_build (sp, get_frame_pc (this_frame));
}

/* Given a GDB frame, determine the address of the calling function's
   frame.  This will be used to create a new GDB frame struct.  */

static void
mt_frame_this_id (struct frame_info *this_frame,
		   void **this_prologue_cache, struct frame_id *this_id)
{
  struct mt_unwind_cache *info =
    mt_frame_unwind_cache (this_frame, this_prologue_cache);

  if (!(info == NULL || info->prev_sp == 0))
    (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));

  return;
}

static struct value *
mt_frame_prev_register (struct frame_info *this_frame,
			 void **this_prologue_cache, int regnum)
{
  struct mt_unwind_cache *info =
    mt_frame_unwind_cache (this_frame, this_prologue_cache);

  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}

static CORE_ADDR
mt_frame_base_address (struct frame_info *this_frame,
			void **this_prologue_cache)
{
  struct mt_unwind_cache *info =
    mt_frame_unwind_cache (this_frame, this_prologue_cache);

  return info->frame_base;
}

/* This is a shared interface:  the 'frame_unwind' object is what's
   returned by the 'sniffer' function, and in turn specifies how to
   get a frame's ID and prev_regs.

   This exports the 'prev_register' and 'this_id' methods.  */

static const struct frame_unwind mt_frame_unwind = {
  NORMAL_FRAME,
  mt_frame_this_id,
  mt_frame_prev_register,
  NULL,
  default_frame_sniffer
};

/* Another shared interface:  the 'frame_base' object specifies how to
   unwind a frame and secure the base addresses for frame objects
   (locals, args).  */

static struct frame_base mt_frame_base = {
  &mt_frame_unwind,
  mt_frame_base_address,
  mt_frame_base_address,
  mt_frame_base_address
};

static struct gdbarch *
mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;

  /* Find a candidate among the list of pre-declared architectures.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found, create a new architecture from the information
     provided.  */
  gdbarch = gdbarch_alloc (&info, NULL);

  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);

  set_gdbarch_register_name (gdbarch, mt_register_name);
  set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
  set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
  set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
  set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_print_insn (gdbarch, print_insn_mt);
  set_gdbarch_register_type (gdbarch, mt_register_type);
  set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);

  set_gdbarch_return_value (gdbarch, mt_return_value);
  set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);

  set_gdbarch_frame_align (gdbarch, mt_frame_align);

  set_gdbarch_print_registers_info (gdbarch, mt_registers_info);

  set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);

  /* Target builtin data types.  */
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_ptr_bit (gdbarch, 32);

  /* Register the DWARF 2 sniffer first, and then the traditional prologue
     based sniffer.  */
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
  frame_base_set_default (gdbarch, &mt_frame_base);

  /* Register the 'unwind_pc' method.  */
  set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);

  /* Methods for saving / extracting a dummy frame's ID.  
     The ID's stack address must match the SP value returned by
     PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
  set_gdbarch_dummy_id (gdbarch, mt_dummy_id);

  return gdbarch;
}

void
_initialize_mt_tdep (void)
{
  register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
}