aboutsummaryrefslogtreecommitdiff
path: root/gdb/mn10300-tdep.c
blob: 50a72074311772da4d02f32cbe70886e21194501 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.

   Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
   2007, 2008 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "dis-asm.h"
#include "gdbtypes.h"
#include "regcache.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "gdbcore.h"	/* for write_memory_unsigned_integer */
#include "value.h"
#include "gdbtypes.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "symtab.h"
#include "dwarf2-frame.h"
#include "osabi.h"
#include "infcall.h"
#include "target.h"

#include "mn10300-tdep.h"

/* Forward decl.  */
extern struct trad_frame_cache *mn10300_frame_unwind_cache (struct frame_info*,
							    void **);

/* Compute the alignment required by a type.  */

static int
mn10300_type_align (struct type *type)
{
  int i, align = 1;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_SET:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_FLT:
    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
      return TYPE_LENGTH (type);

    case TYPE_CODE_COMPLEX:
      return TYPE_LENGTH (type) / 2;

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      for (i = 0; i < TYPE_NFIELDS (type); i++)
	{
	  int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
	  while (align < falign)
	    align <<= 1;
	}
      return align;

    case TYPE_CODE_ARRAY:
      /* HACK!  Structures containing arrays, even small ones, are not
	 elligible for returning in registers.  */
      return 256;

    case TYPE_CODE_TYPEDEF:
      return mn10300_type_align (check_typedef (type));

    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
}

/* Should call_function allocate stack space for a struct return?  */
static int
mn10300_use_struct_convention (struct type *type)
{
  /* Structures bigger than a pair of words can't be returned in
     registers.  */
  if (TYPE_LENGTH (type) > 8)
    return 1;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      /* Structures with a single field are handled as the field
	 itself.  */
      if (TYPE_NFIELDS (type) == 1)
	return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));

      /* Structures with word or double-word size are passed in memory, as
	 long as they require at least word alignment.  */
      if (mn10300_type_align (type) >= 4)
	return 0;

      return 1;

      /* Arrays are addressable, so they're never returned in
	 registers.  This condition can only hold when the array is
	 the only field of a struct or union.  */
    case TYPE_CODE_ARRAY:
      return 1;

    case TYPE_CODE_TYPEDEF:
      return mn10300_use_struct_convention (check_typedef (type));

    default:
      return 0;
    }
}

static void
mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
			    struct regcache *regcache, const void *valbuf)
{
  int len = TYPE_LENGTH (type);
  int reg, regsz;
  
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    reg = 4;
  else
    reg = 0;

  regsz = register_size (gdbarch, reg);

  if (len <= regsz)
    regcache_raw_write_part (regcache, reg, 0, len, valbuf);
  else if (len <= 2 * regsz)
    {
      regcache_raw_write (regcache, reg, valbuf);
      gdb_assert (regsz == register_size (gdbarch, reg + 1));
      regcache_raw_write_part (regcache, reg+1, 0,
			       len - regsz, (char *) valbuf + regsz);
    }
  else
    internal_error (__FILE__, __LINE__,
		    _("Cannot store return value %d bytes long."), len);
}

static void
mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
			      struct regcache *regcache, void *valbuf)
{
  char buf[MAX_REGISTER_SIZE];
  int len = TYPE_LENGTH (type);
  int reg, regsz;

  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    reg = 4;
  else
    reg = 0;

  regsz = register_size (gdbarch, reg);
  if (len <= regsz)
    {
      regcache_raw_read (regcache, reg, buf);
      memcpy (valbuf, buf, len);
    }
  else if (len <= 2 * regsz)
    {
      regcache_raw_read (regcache, reg, buf);
      memcpy (valbuf, buf, regsz);
      gdb_assert (regsz == register_size (gdbarch, reg + 1));
      regcache_raw_read (regcache, reg + 1, buf);
      memcpy ((char *) valbuf + regsz, buf, len - regsz);
    }
  else
    internal_error (__FILE__, __LINE__,
		    _("Cannot extract return value %d bytes long."), len);
}

/* Determine, for architecture GDBARCH, how a return value of TYPE
   should be returned.  If it is supposed to be returned in registers,
   and READBUF is non-zero, read the appropriate value from REGCACHE,
   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
   from WRITEBUF into REGCACHE.  */

static enum return_value_convention
mn10300_return_value (struct gdbarch *gdbarch, struct type *func_type,
		      struct type *type, struct regcache *regcache,
		      gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (mn10300_use_struct_convention (type))
    return RETURN_VALUE_STRUCT_CONVENTION;

  if (readbuf)
    mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
  if (writebuf)
    mn10300_store_return_value (gdbarch, type, regcache, writebuf);

  return RETURN_VALUE_REGISTER_CONVENTION;
}

static char *
register_name (int reg, char **regs, long sizeof_regs)
{
  if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
    return NULL;
  else
    return regs[reg];
}

static const char *
mn10300_generic_register_name (struct gdbarch *gdbarch, int reg)
{
  static char *regs[] =
  { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
    "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "fp"
  };
  return register_name (reg, regs, sizeof regs);
}


static const char *
am33_register_name (struct gdbarch *gdbarch, int reg)
{
  static char *regs[] =
  { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
    "sp", "pc", "mdr", "psw", "lir", "lar", "",
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
  };
  return register_name (reg, regs, sizeof regs);
}

static const char *
am33_2_register_name (struct gdbarch *gdbarch, int reg)
{
  static char *regs[] =
  {
    "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
    "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
    "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
    "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
    "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
    "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
    "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
    "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
  };
  return register_name (reg, regs, sizeof regs);
}

static struct type *
mn10300_register_type (struct gdbarch *gdbarch, int reg)
{
  return builtin_type (gdbarch)->builtin_int;
}

static CORE_ADDR
mn10300_read_pc (struct regcache *regcache)
{
  ULONGEST val;
  regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val);
  return val;
}

static void
mn10300_write_pc (struct regcache *regcache, CORE_ADDR val)
{
  regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val);
}

/* The breakpoint instruction must be the same size as the smallest
   instruction in the instruction set.

   The Matsushita mn10x00 processors have single byte instructions
   so we need a single byte breakpoint.  Matsushita hasn't defined
   one, so we defined it ourselves.  */

const static unsigned char *
mn10300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
			    int *bp_size)
{
  static char breakpoint[] = {0xff};
  *bp_size = 1;
  return breakpoint;
}

/* Set offsets of saved registers.
   This is a helper function for mn10300_analyze_prologue.  */

static void
set_reg_offsets (struct frame_info *fi, 
		  void **this_cache, 
		  int movm_args,
		  int fpregmask,
		  int stack_extra_size,
		  int frame_in_fp)
{
  struct gdbarch *gdbarch;
  struct trad_frame_cache *cache;
  int offset = 0;
  CORE_ADDR base;

  if (fi == NULL || this_cache == NULL)
    return;

  cache = mn10300_frame_unwind_cache (fi, this_cache);
  if (cache == NULL)
    return;
  gdbarch = get_frame_arch (fi);

  if (frame_in_fp)
    {
      base = get_frame_register_unsigned (fi, E_A3_REGNUM);
    }
  else
    {
      base = get_frame_register_unsigned (fi, E_SP_REGNUM)
	       + stack_extra_size;
    }

  trad_frame_set_this_base (cache, base);

  if (AM33_MODE (gdbarch) == 2)
    {
      /* If bit N is set in fpregmask, fsN is saved on the stack.
	 The floating point registers are saved in ascending order.
	 For example:  fs16 <- Frame Pointer
	               fs17    Frame Pointer + 4 */
      if (fpregmask != 0)
	{
	  int i;
	  for (i = 0; i < 32; i++)
	    {
	      if (fpregmask & (1 << i))
		{
		  trad_frame_set_reg_addr (cache, E_FS0_REGNUM + i,
					   base + offset);
		  offset += 4;
		}
	    }
	}
    }


  if (movm_args & movm_other_bit)
    {
      /* The `other' bit leaves a blank area of four bytes at the
         beginning of its block of saved registers, making it 32 bytes
         long in total.  */
      trad_frame_set_reg_addr (cache, E_LAR_REGNUM,    base + offset + 4);
      trad_frame_set_reg_addr (cache, E_LIR_REGNUM,    base + offset + 8);
      trad_frame_set_reg_addr (cache, E_MDR_REGNUM,    base + offset + 12);
      trad_frame_set_reg_addr (cache, E_A0_REGNUM + 1, base + offset + 16);
      trad_frame_set_reg_addr (cache, E_A0_REGNUM,     base + offset + 20);
      trad_frame_set_reg_addr (cache, E_D0_REGNUM + 1, base + offset + 24);
      trad_frame_set_reg_addr (cache, E_D0_REGNUM,     base + offset + 28);
      offset += 32;
    }

  if (movm_args & movm_a3_bit)
    {
      trad_frame_set_reg_addr (cache, E_A3_REGNUM, base + offset);
      offset += 4;
    }
  if (movm_args & movm_a2_bit)
    {
      trad_frame_set_reg_addr (cache, E_A2_REGNUM, base + offset);
      offset += 4;
    }
  if (movm_args & movm_d3_bit)
    {
      trad_frame_set_reg_addr (cache, E_D3_REGNUM, base + offset);
      offset += 4;
    }
  if (movm_args & movm_d2_bit)
    {
      trad_frame_set_reg_addr (cache, E_D2_REGNUM, base + offset);
      offset += 4;
    }
  if (AM33_MODE (gdbarch))
    {
      if (movm_args & movm_exother_bit)
        {
	  trad_frame_set_reg_addr (cache, E_MCVF_REGNUM, base + offset);
	  trad_frame_set_reg_addr (cache, E_MCRL_REGNUM, base + offset + 4);
	  trad_frame_set_reg_addr (cache, E_MCRH_REGNUM, base + offset + 8);
	  trad_frame_set_reg_addr (cache, E_MDRQ_REGNUM, base + offset + 12);
	  trad_frame_set_reg_addr (cache, E_E1_REGNUM,   base + offset + 16);
	  trad_frame_set_reg_addr (cache, E_E0_REGNUM,   base + offset + 20);
          offset += 24;
        }
      if (movm_args & movm_exreg1_bit)
        {
	  trad_frame_set_reg_addr (cache, E_E7_REGNUM, base + offset);
	  trad_frame_set_reg_addr (cache, E_E6_REGNUM, base + offset + 4);
	  trad_frame_set_reg_addr (cache, E_E5_REGNUM, base + offset + 8);
	  trad_frame_set_reg_addr (cache, E_E4_REGNUM, base + offset + 12);
          offset += 16;
        }
      if (movm_args & movm_exreg0_bit)
        {
	  trad_frame_set_reg_addr (cache, E_E3_REGNUM, base + offset);
	  trad_frame_set_reg_addr (cache, E_E2_REGNUM, base + offset + 4);
          offset += 8;
        }
    }
  /* The last (or first) thing on the stack will be the PC.  */
  trad_frame_set_reg_addr (cache, E_PC_REGNUM, base + offset);
  /* Save the SP in the 'traditional' way.  
     This will be the same location where the PC is saved.  */
  trad_frame_set_reg_value (cache, E_SP_REGNUM, base + offset);
}

/* The main purpose of this file is dealing with prologues to extract
   information about stack frames and saved registers.

   In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
   function is pretty readable, and has a nice explanation of how the
   prologue is generated.  The prologues generated by that code will
   have the following form (NOTE: the current code doesn't handle all
   this!):

   + If this is an old-style varargs function, then its arguments
     need to be flushed back to the stack:
     
        mov d0,(4,sp)
        mov d1,(4,sp)

   + If we use any of the callee-saved registers, save them now.
     
        movm [some callee-saved registers],(sp)

   + If we have any floating-point registers to save:

     - Decrement the stack pointer to reserve space for the registers.
       If the function doesn't need a frame pointer, we may combine
       this with the adjustment that reserves space for the frame.

        add -SIZE, sp

     - Save the floating-point registers.  We have two possible
       strategies:

       . Save them at fixed offset from the SP:

        fmov fsN,(OFFSETN,sp)
        fmov fsM,(OFFSETM,sp)
        ...

       Note that, if OFFSETN happens to be zero, you'll get the
       different opcode: fmov fsN,(sp)

       . Or, set a0 to the start of the save area, and then use
       post-increment addressing to save the FP registers.

        mov sp, a0
        add SIZE, a0
        fmov fsN,(a0+)
        fmov fsM,(a0+)
        ...

   + If the function needs a frame pointer, we set it here.

        mov sp, a3

   + Now we reserve space for the stack frame proper.  This could be
     merged into the `add -SIZE, sp' instruction for FP saves up
     above, unless we needed to set the frame pointer in the previous
     step, or the frame is so large that allocating the whole thing at
     once would put the FP register save slots out of reach of the
     addressing mode (128 bytes).
      
        add -SIZE, sp        

   One day we might keep the stack pointer constant, that won't
   change the code for prologues, but it will make the frame
   pointerless case much more common.  */

/* Analyze the prologue to determine where registers are saved,
   the end of the prologue, etc etc.  Return the end of the prologue
   scanned.

   We store into FI (if non-null) several tidbits of information:

   * stack_size -- size of this stack frame.  Note that if we stop in
   certain parts of the prologue/epilogue we may claim the size of the
   current frame is zero.  This happens when the current frame has
   not been allocated yet or has already been deallocated.

   * fsr -- Addresses of registers saved in the stack by this frame.

   * status -- A (relatively) generic status indicator.  It's a bitmask
   with the following bits: 

   MY_FRAME_IN_SP: The base of the current frame is actually in
   the stack pointer.  This can happen for frame pointerless
   functions, or cases where we're stopped in the prologue/epilogue
   itself.  For these cases mn10300_analyze_prologue will need up
   update fi->frame before returning or analyzing the register
   save instructions.

   MY_FRAME_IN_FP: The base of the current frame is in the
   frame pointer register ($a3).

   NO_MORE_FRAMES: Set this if the current frame is "start" or
   if the first instruction looks like mov <imm>,sp.  This tells
   frame chain to not bother trying to unwind past this frame.  */

static CORE_ADDR
mn10300_analyze_prologue (struct gdbarch *gdbarch, struct frame_info *fi, 
			  void **this_cache, 
			  CORE_ADDR pc)
{
  CORE_ADDR func_addr, func_end, addr, stop;
  long stack_extra_size = 0;
  int imm_size;
  unsigned char buf[4];
  int status;
  int movm_args = 0;
  int fpregmask = 0;
  char *name;
  int frame_in_fp = 0;

  /* Use the PC in the frame if it's provided to look up the
     start of this function.

     Note: kevinb/2003-07-16: We used to do the following here:
	pc = (fi ? get_frame_pc (fi) : pc);
     But this is (now) badly broken when called from analyze_dummy_frame().
  */
  if (fi)
    {
      pc = (pc ? pc : get_frame_pc (fi));
    }

  /* Find the start of this function.  */
  status = find_pc_partial_function (pc, &name, &func_addr, &func_end);

  /* Do nothing if we couldn't find the start of this function 

     MVS: comment went on to say "or if we're stopped at the first
     instruction in the prologue" -- but code doesn't reflect that, 
     and I don't want to do that anyway.  */
  if (status == 0)
    {
      addr = pc;
      goto finish_prologue;
    }

  /* If we're in start, then give up.  */
  if (strcmp (name, "start") == 0)
    {
      addr = pc;
      goto finish_prologue;
    }

  /* Figure out where to stop scanning.  */
  stop = fi ? pc : func_end;

  /* Don't walk off the end of the function.  */
  stop = stop > func_end ? func_end : stop;

  /* Start scanning on the first instruction of this function.  */
  addr = func_addr;

  /* Suck in two bytes.  */
  if (addr + 2 > stop || !safe_frame_unwind_memory (fi, addr, buf, 2))
    goto finish_prologue;

  /* First see if this insn sets the stack pointer from a register; if
     so, it's probably the initialization of the stack pointer in _start,
     so mark this as the bottom-most frame.  */
  if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
    {
      goto finish_prologue;
    }

  /* Now look for movm [regs],sp, which saves the callee saved registers.

     At this time we don't know if fi->frame is valid, so we only note
     that we encountered a movm instruction.  Later, we'll set the entries
     in fsr.regs as needed.  */
  if (buf[0] == 0xcf)
    {
      /* Extract the register list for the movm instruction.  */
      movm_args = buf[1];

      addr += 2;

      /* Quit now if we're beyond the stop point.  */
      if (addr >= stop)
	goto finish_prologue;

      /* Get the next two bytes so the prologue scan can continue.  */
      if (!safe_frame_unwind_memory (fi, addr, buf, 2))
	goto finish_prologue;
    }

  /* Check for "mov pc, a2", an instruction found in optimized, position
     independent code.  Skip it if found.  */
  if (buf[0] == 0xf0 && buf[1] == 0x2e)
    {
      addr += 2;

      /* Quit now if we're beyond the stop point.  */
      if (addr >= stop)
	goto finish_prologue;

      /* Get the next two bytes so the prologue scan can continue.  */
      status = target_read_memory (addr, buf, 2);
      if (status != 0)
	goto finish_prologue;
    }

  if (AM33_MODE (gdbarch) == 2)
    {
      /* Determine if any floating point registers are to be saved.
	 Look for one of the following three prologue formats:

	[movm [regs],(sp)] [movm [regs],(sp)] [movm [regs],(sp)]

	 add -SIZE,sp       add -SIZE,sp       add -SIZE,sp
	 fmov fs#,(sp)      mov sp,a0/a1       mov sp,a0/a1
	 fmov fs#,(#,sp)    fmov fs#,(a0/a1+)  add SIZE2,a0/a1
	 ...                ...                fmov fs#,(a0/a1+)
	 ...                ...                ...
	 fmov fs#,(#,sp)    fmov fs#,(a0/a1+)  fmov fs#,(a0/a1+)

	[mov sp,a3]        [mov sp,a3]
	[add -SIZE2,sp]    [add -SIZE2,sp]                                 */

      /* Remember the address at which we started in the event that we
	 don't ultimately find an fmov instruction.  Once we're certain
	 that we matched one of the above patterns, we'll set
	 ``restore_addr'' to the appropriate value.  Note: At one time
	 in the past, this code attempted to not adjust ``addr'' until
	 there was a fair degree of certainty that the pattern would be
	 matched.  However, that code did not wait until an fmov instruction
	 was actually encountered.  As a consequence, ``addr'' would
	 sometimes be advanced even when no fmov instructions were found.  */
      CORE_ADDR restore_addr = addr;
      int fmov_found = 0;

      /* First, look for add -SIZE,sp (i.e. add imm8,sp  (0xf8feXX)
                                         or add imm16,sp (0xfafeXXXX)
                                         or add imm32,sp (0xfcfeXXXXXXXX)) */
      imm_size = 0;
      if (buf[0] == 0xf8 && buf[1] == 0xfe)
	imm_size = 1;
      else if (buf[0] == 0xfa && buf[1] == 0xfe)
	imm_size = 2;
      else if (buf[0] == 0xfc && buf[1] == 0xfe)
	imm_size = 4;
      if (imm_size != 0)
	{
	  /* An "add -#,sp" instruction has been found. "addr + 2 + imm_size"
	     is the address of the next instruction. Don't modify "addr" until
	     the next "floating point prologue" instruction is found. If this
	     is not a prologue that saves floating point registers we need to
	     be able to back out of this bit of code and continue with the
	     prologue analysis. */
	  if (addr + 2 + imm_size < stop)
	    {
	      if (!safe_frame_unwind_memory (fi, addr + 2 + imm_size, buf, 3))
		goto finish_prologue;
	      if ((buf[0] & 0xfc) == 0x3c)
		{
		  /* Occasionally, especially with C++ code, the "fmov"
		     instructions will be preceded by "mov sp,aN"
		     (aN => a0, a1, a2, or a3).

		     This is a one byte instruction:  mov sp,aN = 0011 11XX
		     where XX is the register number.

		     Skip this instruction by incrementing addr.  The "fmov"
		     instructions will have the form "fmov fs#,(aN+)" in this
		     case, but that will not necessitate a change in the
		     "fmov" parsing logic below. */

		  addr++;

		  if ((buf[1] & 0xfc) == 0x20)
		    {
		      /* Occasionally, especially with C++ code compiled with
			 the -fomit-frame-pointer or -O3 options, the
			 "mov sp,aN" instruction will be followed by an
			 "add #,aN" instruction. This indicates the
			 "stack_size", the size of the portion of the stack
			 containing the arguments. This instruction format is:
			 add #,aN = 0010 00XX YYYY YYYY
			 where XX        is the register number
			       YYYY YYYY is the constant.
			 Note the size of the stack (as a negative number) in
			 the frame info structure. */
		      if (fi)
			stack_extra_size += -buf[2];

		      addr += 2;
		    }
		}

	      if ((buf[0] & 0xfc) == 0x3c ||
		  buf[0] == 0xf9 || buf[0] == 0xfb)
		{
		  /* An "fmov" instruction has been found indicating that this
		     prologue saves floating point registers (or, as described
		     above, a "mov sp,aN" and possible "add #,aN" have been
		     found and we will assume an "fmov" follows). Process the
		     consecutive "fmov" instructions. */
		  for (addr += 2 + imm_size;;addr += imm_size)
		    {
		      int regnum;

		      /* Read the "fmov" instruction. */
		      if (addr >= stop ||
			  !safe_frame_unwind_memory (fi, addr, buf, 4))
			goto finish_prologue;

		      if (buf[0] != 0xf9 && buf[0] != 0xfb)
			break;

		      /* An fmov instruction has just been seen.  We can
		         now really commit to the pattern match.  */

		      fmov_found = 1;

		      /* Get the floating point register number from the 
			 2nd and 3rd bytes of the "fmov" instruction:
			 Machine Code: 0000 00X0 YYYY 0000 =>
			 Regnum: 000X YYYY */
		      regnum = (buf[1] & 0x02) << 3;
		      regnum |= ((buf[2] & 0xf0) >> 4) & 0x0f;

		      /* Add this register number to the bit mask of floating
			 point registers that have been saved. */
		      fpregmask |= 1 << regnum;
		  
		      /* Determine the length of this "fmov" instruction.
			 fmov fs#,(sp)   => 3 byte instruction
			 fmov fs#,(#,sp) => 4 byte instruction */
		      imm_size = (buf[0] == 0xf9) ? 3 : 4;
		    }
		}
	    }
	}
      /* If no fmov instructions were found by the above sequence, reset
         the state and pretend that the above bit of code never happened.  */
      if (!fmov_found)
	{
	  addr = restore_addr;
	  status = target_read_memory (addr, buf, 2);
	  if (status != 0)
	    goto finish_prologue;
	  stack_extra_size = 0;
	}
    }

  /* Now see if we set up a frame pointer via "mov sp,a3" */
  if (buf[0] == 0x3f)
    {
      addr += 1;

      /* The frame pointer is now valid.  */
      if (fi)
	{
	  frame_in_fp = 1;
	}

      /* Quit now if we're beyond the stop point.  */
      if (addr >= stop)
	goto finish_prologue;

      /* Get two more bytes so scanning can continue.  */
      if (!safe_frame_unwind_memory (fi, addr, buf, 2))
	goto finish_prologue;
    }

  /* Next we should allocate the local frame.  No more prologue insns
     are found after allocating the local frame.

     Search for add imm8,sp (0xf8feXX)
     or add imm16,sp (0xfafeXXXX)
     or add imm32,sp (0xfcfeXXXXXXXX).

     If none of the above was found, then this prologue has no 
     additional stack.  */

  imm_size = 0;
  if (buf[0] == 0xf8 && buf[1] == 0xfe)
    imm_size = 1;
  else if (buf[0] == 0xfa && buf[1] == 0xfe)
    imm_size = 2;
  else if (buf[0] == 0xfc && buf[1] == 0xfe)
    imm_size = 4;

  if (imm_size != 0)
    {
      /* Suck in imm_size more bytes, they'll hold the size of the
         current frame.  */
      if (!safe_frame_unwind_memory (fi, addr + 2, buf, imm_size))
	goto finish_prologue;

      /* Note the size of the stack.  */
      stack_extra_size -= extract_signed_integer (buf, imm_size);

      /* We just consumed 2 + imm_size bytes.  */
      addr += 2 + imm_size;

      /* No more prologue insns follow, so begin preparation to return.  */
      goto finish_prologue;
    }
  /* Do the essentials and get out of here.  */
 finish_prologue:
  /* Note if/where callee saved registers were saved.  */
  if (fi)
    set_reg_offsets (fi, this_cache, movm_args, fpregmask, stack_extra_size,
		     frame_in_fp);
  return addr;
}

/* Function: skip_prologue
   Return the address of the first inst past the prologue of the function.  */

static CORE_ADDR
mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  return mn10300_analyze_prologue (gdbarch, NULL, NULL, pc);
}

/* Simple frame_unwind_cache.  
   This finds the "extra info" for the frame.  */
struct trad_frame_cache *
mn10300_frame_unwind_cache (struct frame_info *this_frame,
			    void **this_prologue_cache)
{
  struct gdbarch *gdbarch;
  struct trad_frame_cache *cache;
  CORE_ADDR pc, start, end;
  void *cache_p;

  if (*this_prologue_cache)
    return (*this_prologue_cache);

  gdbarch = get_frame_arch (this_frame);
  cache_p = trad_frame_cache_zalloc (this_frame);
  pc = get_frame_register_unsigned (this_frame, E_PC_REGNUM);
  mn10300_analyze_prologue (gdbarch, this_frame, &cache_p, pc);
  cache = cache_p;

  if (find_pc_partial_function (pc, NULL, &start, &end))
    trad_frame_set_id (cache, 
		       frame_id_build (trad_frame_get_this_base (cache), 
				       start));
  else
    {
      start = get_frame_func (this_frame);
      trad_frame_set_id (cache,
			 frame_id_build (trad_frame_get_this_base (cache),
					 start));
    }

  (*this_prologue_cache) = cache;
  return cache;
}

/* Here is a dummy implementation.  */
static struct frame_id
mn10300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
  CORE_ADDR pc = get_frame_register_unsigned (this_frame, E_PC_REGNUM);
  return frame_id_build (sp, pc);
}

/* Trad frame implementation.  */
static void
mn10300_frame_this_id (struct frame_info *this_frame,
		       void **this_prologue_cache,
		       struct frame_id *this_id)
{
  struct trad_frame_cache *cache = 
    mn10300_frame_unwind_cache (this_frame, this_prologue_cache);

  trad_frame_get_id (cache, this_id);
}

static struct value *
mn10300_frame_prev_register (struct frame_info *this_frame,
			     void **this_prologue_cache, int regnum)
{
  struct trad_frame_cache *cache =
    mn10300_frame_unwind_cache (this_frame, this_prologue_cache);

  return trad_frame_get_register (cache, this_frame, regnum);
}

static const struct frame_unwind mn10300_frame_unwind = {
  NORMAL_FRAME,
  mn10300_frame_this_id, 
  mn10300_frame_prev_register,
  NULL,
  default_frame_sniffer
};

static CORE_ADDR
mn10300_frame_base_address (struct frame_info *this_frame,
			    void **this_prologue_cache)
{
  struct trad_frame_cache *cache = 
    mn10300_frame_unwind_cache (this_frame, this_prologue_cache);

  return trad_frame_get_this_base (cache);
}

static const struct frame_base mn10300_frame_base = {
  &mn10300_frame_unwind, 
  mn10300_frame_base_address, 
  mn10300_frame_base_address,
  mn10300_frame_base_address
};

static CORE_ADDR
mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST pc;

  pc = frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
  return pc;
}

static CORE_ADDR
mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST sp;

  sp = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
  return sp;
}

static void
mn10300_frame_unwind_init (struct gdbarch *gdbarch)
{
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind);
  frame_base_set_default (gdbarch, &mn10300_frame_base);
  set_gdbarch_dummy_id (gdbarch, mn10300_dummy_id);
  set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
}

/* Function: push_dummy_call
 *
 * Set up machine state for a target call, including
 * function arguments, stack, return address, etc.
 *
 */

static CORE_ADDR
mn10300_push_dummy_call (struct gdbarch *gdbarch, 
			 struct value *target_func,
			 struct regcache *regcache,
			 CORE_ADDR bp_addr, 
			 int nargs, struct value **args,
			 CORE_ADDR sp, 
			 int struct_return,
			 CORE_ADDR struct_addr)
{
  const int push_size = register_size (gdbarch, E_PC_REGNUM);
  int regs_used;
  int len, arg_len; 
  int stack_offset = 0;
  int argnum;
  char *val, valbuf[MAX_REGISTER_SIZE];

  /* This should be a nop, but align the stack just in case something
     went wrong.  Stacks are four byte aligned on the mn10300.  */
  sp &= ~3;

  /* Now make space on the stack for the args.

     XXX This doesn't appear to handle pass-by-invisible reference
     arguments.  */
  regs_used = struct_return ? 1 : 0;
  for (len = 0, argnum = 0; argnum < nargs; argnum++)
    {
      arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
      while (regs_used < 2 && arg_len > 0)
	{
	  regs_used++;
	  arg_len -= push_size;
	}
      len += arg_len;
    }

  /* Allocate stack space.  */
  sp -= len;

  if (struct_return)
    {
      regs_used = 1;
      regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr);
    }
  else
    regs_used = 0;

  /* Push all arguments onto the stack. */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      /* FIXME what about structs?  Unions?  */
      if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
	  && TYPE_LENGTH (value_type (*args)) > 8)
	{
	  /* Change to pointer-to-type.  */
	  arg_len = push_size;
	  store_unsigned_integer (valbuf, push_size, 
				  VALUE_ADDRESS (*args));
	  val = &valbuf[0];
	}
      else
	{
	  arg_len = TYPE_LENGTH (value_type (*args));
	  val = (char *) value_contents (*args);
	}

      while (regs_used < 2 && arg_len > 0)
	{
	  regcache_cooked_write_unsigned (regcache, regs_used, 
				  extract_unsigned_integer (val, push_size));
	  val += push_size;
	  arg_len -= push_size;
	  regs_used++;
	}

      while (arg_len > 0)
	{
	  write_memory (sp + stack_offset, val, push_size);
	  arg_len -= push_size;
	  val += push_size;
	  stack_offset += push_size;
	}

      args++;
    }

  /* Make space for the flushback area.  */
  sp -= 8;

  /* Push the return address that contains the magic breakpoint.  */
  sp -= 4;
  write_memory_unsigned_integer (sp, push_size, bp_addr);

  /* The CPU also writes the return address always into the
     MDR register on "call".  */
  regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr);

  /* Update $sp.  */
  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);

  /* On the mn10300, it's possible to move some of the stack adjustment
     and saving of the caller-save registers out of the prologue and
     into the call sites.  (When using gcc, this optimization can
     occur when using the -mrelax switch.) If this occurs, the dwarf2
     info will reflect this fact.  We can test to see if this is the
     case by creating a new frame using the current stack pointer and
     the address of the function that we're about to call.  We then
     unwind SP and see if it's different than the SP of our newly
     created frame.  If the SP values are the same, the caller is not
     expected to allocate any additional stack.  On the other hand, if
     the SP values are different, the difference determines the
     additional stack that must be allocated.
     
     Note that we don't update the return value though because that's
     the value of the stack just after pushing the arguments, but prior
     to performing the call.  This value is needed in order to
     construct the frame ID of the dummy call.   */
  {
    CORE_ADDR func_addr = find_function_addr (target_func, NULL);
    CORE_ADDR unwound_sp 
      = mn10300_unwind_sp (gdbarch, create_new_frame (sp, func_addr));
    if (sp != unwound_sp)
      regcache_cooked_write_unsigned (regcache, E_SP_REGNUM,
                                      sp - (unwound_sp - sp));
  }

  return sp;
}

/* If DWARF2 is a register number appearing in Dwarf2 debug info, then
   mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
   register number.  Why don't Dwarf2 and GDB use the same numbering?
   Who knows?  But since people have object files lying around with
   the existing Dwarf2 numbering, and other people have written stubs
   to work with the existing GDB, neither of them can change.  So we
   just have to cope.  */
static int
mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2)
{
  /* This table is supposed to be shaped like the gdbarch_register_name
     initializer in gcc/config/mn10300/mn10300.h.  Registers which
     appear in GCC's numbering, but have no counterpart in GDB's
     world, are marked with a -1.  */
  static int dwarf2_to_gdb[] = {
    0,  1,  2,  3,  4,  5,  6,  7, -1, 8,
    15, 16, 17, 18, 19, 20, 21, 22,
    32, 33, 34, 35, 36, 37, 38, 39,
    40, 41, 42, 43, 44, 45, 46, 47,
    48, 49, 50, 51, 52, 53, 54, 55,
    56, 57, 58, 59, 60, 61, 62, 63,
    9
  };

  if (dwarf2 < 0
      || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb))
    {
      warning (_("Bogus register number in debug info: %d"), dwarf2);
      return -1;
    }

  return dwarf2_to_gdb[dwarf2];
}

static struct gdbarch *
mn10300_gdbarch_init (struct gdbarch_info info,
		      struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int num_regs;

  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  tdep = xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);

  switch (info.bfd_arch_info->mach)
    {
    case 0:
    case bfd_mach_mn10300:
      set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
      tdep->am33_mode = 0;
      num_regs = 32;
      break;
    case bfd_mach_am33:
      set_gdbarch_register_name (gdbarch, am33_register_name);
      tdep->am33_mode = 1;
      num_regs = 32;
      break;
    case bfd_mach_am33_2:
      set_gdbarch_register_name (gdbarch, am33_2_register_name);
      tdep->am33_mode = 2;
      num_regs = 64;
      set_gdbarch_fp0_regnum (gdbarch, 32);
      break;
    default:
      internal_error (__FILE__, __LINE__,
		      _("mn10300_gdbarch_init: Unknown mn10300 variant"));
      break;
    }

  /* Registers.  */
  set_gdbarch_num_regs (gdbarch, num_regs);
  set_gdbarch_register_type (gdbarch, mn10300_register_type);
  set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
  set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
  set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);

  /* Stack unwinding.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  /* Breakpoints.  */
  set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
  /* decr_pc_after_break? */
  /* Disassembly.  */
  set_gdbarch_print_insn (gdbarch, print_insn_mn10300);

  /* Stage 2 */
  set_gdbarch_return_value (gdbarch, mn10300_return_value);
  
  /* Stage 3 -- get target calls working.  */
  set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
  /* set_gdbarch_return_value (store, extract) */


  mn10300_frame_unwind_init (gdbarch);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  return gdbarch;
}
 
/* Dump out the mn10300 specific architecture information. */

static void
mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
		      tdep->am33_mode);
}

void
_initialize_mn10300_tdep (void)
{
  gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
}