aboutsummaryrefslogtreecommitdiff
path: root/gdb/mn10300-tdep.c
blob: fe32fa08b2f98bc0366ccb044d678ad820940d18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
   Copyright 1996, 1997 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"

/* Info gleaned from scanning a function's prologue.  */

struct pifsr			/* Info about one saved reg */
{
  int framereg;			/* Frame reg (SP or FP) */
  int offset;			/* Offset from framereg */
  int reg;			/* Saved register number */
};

struct prologue_info
{
  int framereg;
  int frameoffset;
  int start_function;
  struct pifsr *pifsrs;
};

static CORE_ADDR mn10300_scan_prologue PARAMS ((CORE_ADDR pc, 
					     struct prologue_info *fs));

/* Function: scan_prologue
   Scan the prologue of the function that contains PC, and record what
   we find in PI.  PI->fsr must be zeroed by the called.  Returns the
   pc after the prologue.  Note that the addresses saved in pi->fsr
   are actually just frame relative (negative offsets from the frame
   pointer).  This is because we don't know the actual value of the
   frame pointer yet.  In some circumstances, the frame pointer can't
   be determined till after we have scanned the prologue.  */

static CORE_ADDR
mn10300_scan_prologue (pc, pi)
     CORE_ADDR pc;
     struct prologue_info *pi;
{
  CORE_ADDR func_addr, prologue_end, current_pc;
  struct pifsr *pifsr;
  int fp_used;

  printf("mn10300_scan_prologue start\n");

  /* First, figure out the bounds of the prologue so that we can limit the
     search to something reasonable.  */

  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
      struct symtab_and_line sal;

      sal = find_pc_line (func_addr, 0);

      if (func_addr == entry_point_address ())
	pi->start_function = 1;
      else
	pi->start_function = 0;

#if 0
      if (sal.line == 0)
	prologue_end = pc;
      else
	prologue_end = sal.end;
#else
      prologue_end = pc;
#endif
    }
  else
    {				/* We're in the boondocks */
      func_addr = pc - 100;
      prologue_end = pc;
    }

  prologue_end = min (prologue_end, pc);

  /* Now, search the prologue looking for instructions that setup fp, save
     rp, adjust sp and such.  We also record the frame offset of any saved
     registers. */ 

  pi->frameoffset = 0;
  pi->framereg = SP_REGNUM;
  fp_used = 0;
  pifsr = pi->pifsrs;

  for (current_pc = func_addr; current_pc < prologue_end; current_pc += 2)
    {
      int insn;

      insn = read_memory_unsigned_integer (current_pc, 2);

      if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
	  || (insn & 0xffe0) == 0x0060 /* jmp */
	  || (insn & 0x0780) == 0x0580)	/* branch */
	break;			/* Ran into end of prologue */
      if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
	pi->frameoffset = ((insn & 0x1f) ^ 0x10) - 0x10;
      else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi <imm>,sp,sp */
	pi->frameoffset = read_memory_integer (current_pc + 2, 2);
      else if (insn == ((FP_REGNUM << 11) | 0x0000 | 12)) /* mov r12,fp */
	{
	  fp_used = 1;
	  pi->framereg = FP_REGNUM;
	}
      else if ((insn & 0x07ff) == (0x0760 | SP_REGNUM)	/* st.w <reg>,<offset>[sp] */
	       || (fp_used
		   && (insn & 0x07ff) == (0x0760 | FP_REGNUM))) /* st.w <reg>,<offset>[fp] */
	if (pifsr)
	  {
	    pifsr->framereg = insn & 0x1f;
	    pifsr->reg = (insn >> 11) & 0x1f; /* Extract <reg> */

	    pifsr->offset = read_memory_integer (current_pc + 2, 2) & ~1;

	    pifsr++;
	  }

      if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
	current_pc += 2;
    }

  if (pifsr)
    pifsr->framereg = 0;	/* Tie off last entry */

  printf("mn10300_scan_prologue end \n");

  return current_pc;
}

/* Function: init_extra_frame_info
   Setup the frame's frame pointer, pc, and frame addresses for saved
   registers.  Most of the work is done in scan_prologue().

   Note that when we are called for the last frame (currently active frame),
   that fi->pc and fi->frame will already be setup.  However, fi->frame will
   be valid only if this routine uses FP.  For previous frames, fi-frame will
   always be correct (since that is derived from mn10300_frame_chain ()).

   We can be called with the PC in the call dummy under two circumstances.
   First, during normal backtracing, second, while figuring out the frame
   pointer just prior to calling the target function (see run_stack_dummy).  */

void
mn10300_init_extra_frame_info (fi)
     struct frame_info *fi;
{
  struct prologue_info pi;
  struct pifsr pifsrs[NUM_REGS + 1], *pifsr;
  int reg;

  printf("mn10300_init_extra_frame_info start\n");

  if (fi->next)
    fi->pc = FRAME_SAVED_PC (fi->next);

  memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);

  /* The call dummy doesn't save any registers on the stack, so we can return
     now.  */
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
      return;

  pi.pifsrs = pifsrs;

  mn10300_scan_prologue (fi->pc, &pi);

  if (!fi->next && pi.framereg == SP_REGNUM)
    fi->frame = read_register (pi.framereg) - pi.frameoffset;

  for (pifsr = pifsrs; pifsr->framereg; pifsr++)
    {
      fi->fsr.regs[pifsr->reg] = pifsr->offset + fi->frame;

      if (pifsr->framereg == SP_REGNUM)
	fi->fsr.regs[pifsr->reg] += pi.frameoffset;
    }

  printf("mn10300_init_extra_frame_info end\n");
}

/* Function: frame_chain
   Figure out the frame prior to FI.  Unfortunately, this involves
   scanning the prologue of the caller, which will also be done
   shortly by mn10300_init_extra_frame_info.  For the dummy frame, we
   just return the stack pointer that was in use at the time the
   function call was made.  */

CORE_ADDR
mn10300_frame_chain (fi)
     struct frame_info *fi;
{
  struct prologue_info pi;
  CORE_ADDR callers_pc, fp;

  printf("mn10300_frame_chain start\n"); 

  /* First, find out who called us */
  callers_pc = FRAME_SAVED_PC (fi);
  /* If caller is a call-dummy, then our FP bears no relation to his FP! */
  fp = mn10300_find_callers_reg (fi, FP_REGNUM);
  if (PC_IN_CALL_DUMMY(callers_pc, fp, fp))
    return fp;	/* caller is call-dummy: return oldest value of FP */

  /* Caller is NOT a call-dummy, so everything else should just work.
     Even if THIS frame is a call-dummy! */
  pi.pifsrs = NULL;

  mn10300_scan_prologue (callers_pc, &pi);

  printf("mn10300_frame_chain end\n"); 

  if (pi.start_function)
    return 0;			/* Don't chain beyond the start function */

  if (pi.framereg == FP_REGNUM)
    return mn10300_find_callers_reg (fi, pi.framereg);

  return fi->frame - pi.frameoffset;
}

/* Function: find_callers_reg
   Find REGNUM on the stack.  Otherwise, it's in an active register.
   One thing we might want to do here is to check REGNUM against the
   clobber mask, and somehow flag it as invalid if it isn't saved on
   the stack somewhere.  This would provide a graceful failure mode
   when trying to get the value of caller-saves registers for an inner
   frame.  */

CORE_ADDR
mn10300_find_callers_reg (fi, regnum)
     struct frame_info *fi;
     int regnum;
{
  printf("mn10300_find_callers_reg\n"); 

  for (; fi; fi = fi->next)
    if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
      return generic_read_register_dummy (fi->pc, fi->frame, regnum);
    else if (fi->fsr.regs[regnum] != 0)
      return read_memory_unsigned_integer (fi->fsr.regs[regnum], 
					   REGISTER_RAW_SIZE(regnum));

  return read_register (regnum);
}

/* Function: skip_prologue
   Return the address of the first code past the prologue of the function.  */

CORE_ADDR
mn10300_skip_prologue (pc)
     CORE_ADDR pc;
{
  CORE_ADDR func_addr, func_end;

  printf("mn10300_skip_prologue\n"); 

  /* See what the symbol table says */

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      struct symtab_and_line sal;

      sal = find_pc_line (func_addr, 0);

      if (sal.line != 0 && sal.end < func_end)
	return sal.end;
      else
	/* Either there's no line info, or the line after the prologue is after
	   the end of the function.  In this case, there probably isn't a
	   prologue.  */
	return pc;
    }

/* We can't find the start of this function, so there's nothing we can do. */
  return pc;
}

/* Function: pop_frame
   This routine gets called when either the user uses the `return'
   command, or the call dummy breakpoint gets hit.  */

void
mn10300_pop_frame (frame)
     struct frame_info *frame;
{
  int regnum;

  printf("mn10300_pop_frame start\n"); 

  if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
    generic_pop_dummy_frame ();
  else
    {
      write_register (PC_REGNUM, FRAME_SAVED_PC (frame));

      for (regnum = 0; regnum < NUM_REGS; regnum++)
	if (frame->fsr.regs[regnum] != 0)
	  write_register (regnum,
			  read_memory_unsigned_integer (frame->fsr.regs[regnum],
							REGISTER_RAW_SIZE(regnum)));

      write_register (SP_REGNUM, FRAME_FP (frame));
    }

  flush_cached_frames ();

  printf("mn10300_pop_frame end\n"); 
}

/* Function: push_arguments
   Setup arguments for a call to the target.  Arguments go in
   order on the stack.
*/

CORE_ADDR
mn10300_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     value_ptr *args;
     CORE_ADDR sp;
     unsigned char struct_return;
     CORE_ADDR struct_addr;
{
  int argnum = 0;
  int len = 0;
  int stack_offset = 0;  /* copy args to this offset onto stack */

  printf("mn10300_push_arguments start\n"); 

  /* First, just for safety, make sure stack is aligned */
  sp &= ~3;

  /* Now make space on the stack for the args. */
  for (argnum = 0; argnum < nargs; argnum++)
    len += ((TYPE_LENGTH(VALUE_TYPE(args[argnum])) + 3) & ~3);

  sp -= len;

  /* Push all arguments onto the stack. */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      int len;
      char *val;

      if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
	  && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
	{
	  /* for now, pretend structs aren't special */
          len = TYPE_LENGTH (VALUE_TYPE (*args));
          val = (char *)VALUE_CONTENTS (*args);
	}
      else
	{
	  len = TYPE_LENGTH (VALUE_TYPE (*args));
	  val = (char *)VALUE_CONTENTS (*args);
	}

      while (len > 0)
	{
	  write_memory (sp + stack_offset, val, 4);

	  len -= 4;
	  val += 4;
	  stack_offset += 4;
	}
      args++;
    }

  printf("mn10300_push_arguments end\n"); 

  return sp;
}

/* Function: push_return_address (pc)
   Set up the return address for the inferior function call.
   Needed for targets where we don't actually execute a JSR/BSR instruction */
 
CORE_ADDR
mn10300_push_return_address (pc, sp)
     CORE_ADDR pc;
     CORE_ADDR sp;
{
  printf("mn10300_push_return_address\n"); 

  /* write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ()); */
  return sp;
}
 
/* Function: frame_saved_pc 
   Find the caller of this frame.  We do this by seeing if RP_REGNUM
   is saved in the stack anywhere, otherwise we get it from the
   registers.  If the inner frame is a dummy frame, return its PC
   instead of RP, because that's where "caller" of the dummy-frame
   will be found.  */

CORE_ADDR
mn10300_frame_saved_pc (fi)
     struct frame_info *fi;
{
  printf("mn10300_frame_saved_pc\n"); 

/*  if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame)) */
    return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM);
/*  else
    return mn10300_find_callers_reg (fi, RP_REGNUM);
*/
}

void
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
     char *raw_buffer;
     int *optimized;
     CORE_ADDR *addrp;
     struct frame_info *frame;
     int regnum;
     enum lval_type *lval;
{
  printf("get_saved_register\n"); 

  generic_get_saved_register (raw_buffer, optimized, addrp, 
			      frame, regnum, lval);
}

/* Function: fix_call_dummy
   Pokes the callee function's address into the CALL_DUMMY assembly stub.
   Assumes that the CALL_DUMMY looks like this:
	jarl <offset24>, r31
	trap
   */

int
mn10300_fix_call_dummy (dummy, sp, fun, nargs, args, type, gcc_p)
     char *dummy;
     CORE_ADDR sp;
     CORE_ADDR fun;
     int nargs;
     value_ptr *args;
     struct type *type;
     int gcc_p;
{
  long offset24;

  printf("mn10300_fix_call_dummy start\n"); 

  offset24 = (long) fun - (long) entry_point_address ();
  offset24 &= 0x3fffff;
  offset24 |= 0xff800000;	/* jarl <offset24>, r31 */

  store_unsigned_integer ((unsigned int *)&dummy[2], 2, offset24 & 0xffff);
  store_unsigned_integer ((unsigned int *)&dummy[0], 2, offset24 >> 16);

  printf("mn10300_fix_call_dummy end\n"); 

  return 0;
}

void
_initialize_mn10300_tdep ()
{
  printf("_initialize_mn10300_tdep\n"); 

  tm_print_insn = print_insn_mn10300;
}