1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
|
/* Target-dependent code for GNU/Linux on MIPS processors.
Copyright (C) 2001-2017 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbcore.h"
#include "target.h"
#include "solib-svr4.h"
#include "osabi.h"
#include "mips-tdep.h"
#include "frame.h"
#include "regcache.h"
#include "trad-frame.h"
#include "tramp-frame.h"
#include "gdbtypes.h"
#include "objfiles.h"
#include "solib.h"
#include "solist.h"
#include "symtab.h"
#include "target-descriptions.h"
#include "regset.h"
#include "mips-linux-tdep.h"
#include "glibc-tdep.h"
#include "linux-tdep.h"
#include "xml-syscall.h"
#include "gdb_signals.h"
static struct target_so_ops mips_svr4_so_ops;
/* This enum represents the signals' numbers on the MIPS
architecture. It just contains the signal definitions which are
different from the generic implementation.
It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
from the Linux kernel tree. */
enum
{
MIPS_LINUX_SIGEMT = 7,
MIPS_LINUX_SIGBUS = 10,
MIPS_LINUX_SIGSYS = 12,
MIPS_LINUX_SIGUSR1 = 16,
MIPS_LINUX_SIGUSR2 = 17,
MIPS_LINUX_SIGCHLD = 18,
MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
MIPS_LINUX_SIGPWR = 19,
MIPS_LINUX_SIGWINCH = 20,
MIPS_LINUX_SIGURG = 21,
MIPS_LINUX_SIGIO = 22,
MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
MIPS_LINUX_SIGSTOP = 23,
MIPS_LINUX_SIGTSTP = 24,
MIPS_LINUX_SIGCONT = 25,
MIPS_LINUX_SIGTTIN = 26,
MIPS_LINUX_SIGTTOU = 27,
MIPS_LINUX_SIGVTALRM = 28,
MIPS_LINUX_SIGPROF = 29,
MIPS_LINUX_SIGXCPU = 30,
MIPS_LINUX_SIGXFSZ = 31,
MIPS_LINUX_SIGRTMIN = 32,
MIPS_LINUX_SIGRT64 = 64,
MIPS_LINUX_SIGRTMAX = 127,
};
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure
from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
at. The pc is copied into PC. This routine returns 1 on
success. */
#define MIPS_LINUX_JB_ELEMENT_SIZE 4
#define MIPS_LINUX_JB_PC 0
static int
mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
CORE_ADDR jb_addr;
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
if (target_read_memory ((jb_addr
+ MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
return 0;
*pc = extract_unsigned_integer (buf,
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
byte_order);
return 1;
}
/* Transform the bits comprising a 32-bit register to the right size
for regcache_raw_supply(). This is needed when mips_isa_regsize()
is 8. */
static void
supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[MAX_REGISTER_SIZE];
store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
extract_signed_integer ((const gdb_byte *) addr, 4,
byte_order));
regcache_raw_supply (regcache, regnum, buf);
}
/* Unpack an elf_gregset_t into GDB's register cache. */
void
mips_supply_gregset (struct regcache *regcache,
const mips_elf_gregset_t *gregsetp)
{
int regi;
const mips_elf_greg_t *regp = *gregsetp;
struct gdbarch *gdbarch = get_regcache_arch (regcache);
for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
if (mips_linux_restart_reg_p (gdbarch))
supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
regp + EF_CP0_EPC);
supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
regp + EF_CP0_BADVADDR);
supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
regp + EF_CP0_CAUSE);
/* Fill the inaccessible zero register with zero. */
regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
}
static void
mips_supply_gregset_wrapper (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips_elf_gregset_t));
mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
}
/* Pack our registers (or one register) into an elf_gregset_t. */
void
mips_fill_gregset (const struct regcache *regcache,
mips_elf_gregset_t *gregsetp, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int regaddr, regi;
mips_elf_greg_t *regp = *gregsetp;
void *dst;
if (regno == -1)
{
memset (regp, 0, sizeof (mips_elf_gregset_t));
for (regi = 1; regi < 32; regi++)
mips_fill_gregset (regcache, gregsetp, regi);
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
return;
}
if (regno > 0 && regno < 32)
{
dst = regp + regno + EF_REG0;
regcache_raw_collect (regcache, regno, dst);
return;
}
if (regno == mips_regnum (gdbarch)->lo)
regaddr = EF_LO;
else if (regno == mips_regnum (gdbarch)->hi)
regaddr = EF_HI;
else if (regno == mips_regnum (gdbarch)->pc)
regaddr = EF_CP0_EPC;
else if (regno == mips_regnum (gdbarch)->badvaddr)
regaddr = EF_CP0_BADVADDR;
else if (regno == MIPS_PS_REGNUM)
regaddr = EF_CP0_STATUS;
else if (regno == mips_regnum (gdbarch)->cause)
regaddr = EF_CP0_CAUSE;
else if (mips_linux_restart_reg_p (gdbarch)
&& regno == MIPS_RESTART_REGNUM)
regaddr = EF_REG0;
else
regaddr = -1;
if (regaddr != -1)
{
dst = regp + regaddr;
regcache_raw_collect (regcache, regno, dst);
}
}
static void
mips_fill_gregset_wrapper (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips_elf_gregset_t));
mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
}
/* Likewise, unpack an elf_fpregset_t. */
void
mips_supply_fpregset (struct regcache *regcache,
const mips_elf_fpregset_t *fpregsetp)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int regi;
for (regi = 0; regi < 32; regi++)
regcache_raw_supply (regcache,
gdbarch_fp0_regnum (gdbarch) + regi,
*fpregsetp + regi);
regcache_raw_supply (regcache,
mips_regnum (gdbarch)->fp_control_status,
*fpregsetp + 32);
/* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
regcache->raw_supply_zeroed
(mips_regnum (gdbarch)->fp_implementation_revision);
}
static void
mips_supply_fpregset_wrapper (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips_elf_fpregset_t));
mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
}
/* Likewise, pack one or all floating point registers into an
elf_fpregset_t. */
void
mips_fill_fpregset (const struct regcache *regcache,
mips_elf_fpregset_t *fpregsetp, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
char *to;
if ((regno >= gdbarch_fp0_regnum (gdbarch))
&& (regno < gdbarch_fp0_regnum (gdbarch) + 32))
{
to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
regcache_raw_collect (regcache, regno, to);
}
else if (regno == mips_regnum (gdbarch)->fp_control_status)
{
to = (char *) (*fpregsetp + 32);
regcache_raw_collect (regcache, regno, to);
}
else if (regno == -1)
{
int regi;
for (regi = 0; regi < 32; regi++)
mips_fill_fpregset (regcache, fpregsetp,
gdbarch_fp0_regnum (gdbarch) + regi);
mips_fill_fpregset (regcache, fpregsetp,
mips_regnum (gdbarch)->fp_control_status);
}
}
static void
mips_fill_fpregset_wrapper (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips_elf_fpregset_t));
mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
}
/* Support for 64-bit ABIs. */
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure
from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
at. The pc is copied into PC. This routine returns 1 on
success. */
/* Details about jmp_buf. */
#define MIPS64_LINUX_JB_PC 0
static int
mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
CORE_ADDR jb_addr;
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte *buf
= (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
buf,
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
return 0;
*pc = extract_unsigned_integer (buf,
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
byte_order);
return 1;
}
/* Register set support functions. These operate on standard 64-bit
regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
target will still use the 64-bit format for PTRACE_GETREGS. */
/* Supply a 64-bit register. */
static void
supply_64bit_reg (struct regcache *regcache, int regnum,
const gdb_byte *buf)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
&& register_size (gdbarch, regnum) == 4)
regcache_raw_supply (regcache, regnum, buf + 4);
else
regcache_raw_supply (regcache, regnum, buf);
}
/* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
void
mips64_supply_gregset (struct regcache *regcache,
const mips64_elf_gregset_t *gregsetp)
{
int regi;
const mips64_elf_greg_t *regp = *gregsetp;
struct gdbarch *gdbarch = get_regcache_arch (regcache);
for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
(const gdb_byte *) (regp + regi));
if (mips_linux_restart_reg_p (gdbarch))
supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
(const gdb_byte *) (regp + MIPS64_EF_REG0));
supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
(const gdb_byte *) (regp + MIPS64_EF_LO));
supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
(const gdb_byte *) (regp + MIPS64_EF_HI));
supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
(const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
(const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
supply_64bit_reg (regcache, MIPS_PS_REGNUM,
(const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
(const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
/* Fill the inaccessible zero register with zero. */
regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
}
static void
mips64_supply_gregset_wrapper (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips64_elf_gregset_t));
mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
}
/* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
void
mips64_fill_gregset (const struct regcache *regcache,
mips64_elf_gregset_t *gregsetp, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int regaddr, regi;
mips64_elf_greg_t *regp = *gregsetp;
void *dst;
if (regno == -1)
{
memset (regp, 0, sizeof (mips64_elf_gregset_t));
for (regi = 1; regi < 32; regi++)
mips64_fill_gregset (regcache, gregsetp, regi);
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
mips64_fill_gregset (regcache, gregsetp,
mips_regnum (gdbarch)->badvaddr);
mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
return;
}
if (regno > 0 && regno < 32)
regaddr = regno + MIPS64_EF_REG0;
else if (regno == mips_regnum (gdbarch)->lo)
regaddr = MIPS64_EF_LO;
else if (regno == mips_regnum (gdbarch)->hi)
regaddr = MIPS64_EF_HI;
else if (regno == mips_regnum (gdbarch)->pc)
regaddr = MIPS64_EF_CP0_EPC;
else if (regno == mips_regnum (gdbarch)->badvaddr)
regaddr = MIPS64_EF_CP0_BADVADDR;
else if (regno == MIPS_PS_REGNUM)
regaddr = MIPS64_EF_CP0_STATUS;
else if (regno == mips_regnum (gdbarch)->cause)
regaddr = MIPS64_EF_CP0_CAUSE;
else if (mips_linux_restart_reg_p (gdbarch)
&& regno == MIPS_RESTART_REGNUM)
regaddr = MIPS64_EF_REG0;
else
regaddr = -1;
if (regaddr != -1)
{
gdb_byte buf[MAX_REGISTER_SIZE];
LONGEST val;
regcache_raw_collect (regcache, regno, buf);
val = extract_signed_integer (buf, register_size (gdbarch, regno),
byte_order);
dst = regp + regaddr;
store_signed_integer ((gdb_byte *) dst, 8, byte_order, val);
}
}
static void
mips64_fill_gregset_wrapper (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips64_elf_gregset_t));
mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
}
/* Likewise, unpack an elf_fpregset_t. */
void
mips64_supply_fpregset (struct regcache *regcache,
const mips64_elf_fpregset_t *fpregsetp)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int regi;
/* See mips_linux_o32_sigframe_init for a description of the
peculiar FP register layout. */
if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
for (regi = 0; regi < 32; regi++)
{
const gdb_byte *reg_ptr
= (const gdb_byte *) (*fpregsetp + (regi & ~1));
if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
reg_ptr += 4;
regcache_raw_supply (regcache,
gdbarch_fp0_regnum (gdbarch) + regi,
reg_ptr);
}
else
for (regi = 0; regi < 32; regi++)
regcache_raw_supply (regcache,
gdbarch_fp0_regnum (gdbarch) + regi,
(const char *) (*fpregsetp + regi));
supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
(const gdb_byte *) (*fpregsetp + 32));
/* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
include it - but the result of PTRACE_GETFPREGS does. The best we
can do is to assume that its value is present. */
supply_32bit_reg (regcache,
mips_regnum (gdbarch)->fp_implementation_revision,
(const gdb_byte *) (*fpregsetp + 32) + 4);
}
static void
mips64_supply_fpregset_wrapper (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
}
/* Likewise, pack one or all floating point registers into an
elf_fpregset_t. */
void
mips64_fill_fpregset (const struct regcache *regcache,
mips64_elf_fpregset_t *fpregsetp, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte *to;
if ((regno >= gdbarch_fp0_regnum (gdbarch))
&& (regno < gdbarch_fp0_regnum (gdbarch) + 32))
{
/* See mips_linux_o32_sigframe_init for a description of the
peculiar FP register layout. */
if (register_size (gdbarch, regno) == 4)
{
int regi = regno - gdbarch_fp0_regnum (gdbarch);
to = (gdb_byte *) (*fpregsetp + (regi & ~1));
if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
to += 4;
regcache_raw_collect (regcache, regno, to);
}
else
{
to = (gdb_byte *) (*fpregsetp + regno
- gdbarch_fp0_regnum (gdbarch));
regcache_raw_collect (regcache, regno, to);
}
}
else if (regno == mips_regnum (gdbarch)->fp_control_status)
{
gdb_byte buf[MAX_REGISTER_SIZE];
LONGEST val;
regcache_raw_collect (regcache, regno, buf);
val = extract_signed_integer (buf, register_size (gdbarch, regno),
byte_order);
to = (gdb_byte *) (*fpregsetp + 32);
store_signed_integer (to, 4, byte_order, val);
}
else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
{
gdb_byte buf[MAX_REGISTER_SIZE];
LONGEST val;
regcache_raw_collect (regcache, regno, buf);
val = extract_signed_integer (buf, register_size (gdbarch, regno),
byte_order);
to = (gdb_byte *) (*fpregsetp + 32) + 4;
store_signed_integer (to, 4, byte_order, val);
}
else if (regno == -1)
{
int regi;
for (regi = 0; regi < 32; regi++)
mips64_fill_fpregset (regcache, fpregsetp,
gdbarch_fp0_regnum (gdbarch) + regi);
mips64_fill_fpregset (regcache, fpregsetp,
mips_regnum (gdbarch)->fp_control_status);
mips64_fill_fpregset (regcache, fpregsetp,
mips_regnum (gdbarch)->fp_implementation_revision);
}
}
static void
mips64_fill_fpregset_wrapper (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
}
static const struct regset mips_linux_gregset =
{
NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
};
static const struct regset mips64_linux_gregset =
{
NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
};
static const struct regset mips_linux_fpregset =
{
NULL, mips_supply_fpregset_wrapper, mips_fill_fpregset_wrapper
};
static const struct regset mips64_linux_fpregset =
{
NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
};
static void
mips_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
iterate_over_regset_sections_cb *cb,
void *cb_data,
const struct regcache *regcache)
{
if (register_size (gdbarch, MIPS_ZERO_REGNUM) == 4)
{
cb (".reg", sizeof (mips_elf_gregset_t), &mips_linux_gregset,
NULL, cb_data);
cb (".reg2", sizeof (mips_elf_fpregset_t), &mips_linux_fpregset,
NULL, cb_data);
}
else
{
cb (".reg", sizeof (mips64_elf_gregset_t), &mips64_linux_gregset,
NULL, cb_data);
cb (".reg2", sizeof (mips64_elf_fpregset_t), &mips64_linux_fpregset,
NULL, cb_data);
}
}
static const struct target_desc *
mips_linux_core_read_description (struct gdbarch *gdbarch,
struct target_ops *target,
bfd *abfd)
{
asection *section = bfd_get_section_by_name (abfd, ".reg");
if (! section)
return NULL;
switch (bfd_section_size (abfd, section))
{
case sizeof (mips_elf_gregset_t):
return mips_tdesc_gp32;
case sizeof (mips64_elf_gregset_t):
return mips_tdesc_gp64;
default:
return NULL;
}
}
/* Check the code at PC for a dynamic linker lazy resolution stub.
GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
section uniformly since version 2.15. If the pc is in that section,
then we are in such a stub. Before that ".stub" was used in 32-bit
ELF binaries, however we do not bother checking for that since we
have never had and that case should be extremely rare these days.
Instead we pattern-match on the code generated by GNU ld. They look
like this:
lw t9,0x8010(gp)
addu t7,ra
jalr t9,ra
addiu t8,zero,INDEX
(with the appropriate doubleword instructions for N64). As any lazy
resolution stubs in microMIPS binaries will always be in a
".MIPS.stubs" section we only ever verify standard MIPS patterns. */
static int
mips_linux_in_dynsym_stub (CORE_ADDR pc)
{
gdb_byte buf[28], *p;
ULONGEST insn, insn1;
int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
if (in_mips_stubs_section (pc))
return 1;
read_memory (pc - 12, buf, 28);
if (n64)
{
/* ld t9,0x8010(gp) */
insn1 = 0xdf998010;
}
else
{
/* lw t9,0x8010(gp) */
insn1 = 0x8f998010;
}
p = buf + 12;
while (p >= buf)
{
insn = extract_unsigned_integer (p, 4, byte_order);
if (insn == insn1)
break;
p -= 4;
}
if (p < buf)
return 0;
insn = extract_unsigned_integer (p + 4, 4, byte_order);
if (n64)
{
/* 'daddu t7,ra' or 'or t7, ra, zero'*/
if (insn != 0x03e0782d || insn != 0x03e07825)
return 0;
}
else
{
/* 'addu t7,ra' or 'or t7, ra, zero'*/
if (insn != 0x03e07821 || insn != 0x03e07825)
return 0;
}
insn = extract_unsigned_integer (p + 8, 4, byte_order);
/* jalr t9,ra */
if (insn != 0x0320f809)
return 0;
insn = extract_unsigned_integer (p + 12, 4, byte_order);
if (n64)
{
/* daddiu t8,zero,0 */
if ((insn & 0xffff0000) != 0x64180000)
return 0;
}
else
{
/* addiu t8,zero,0 */
if ((insn & 0xffff0000) != 0x24180000)
return 0;
}
return 1;
}
/* Return non-zero iff PC belongs to the dynamic linker resolution
code, a PLT entry, or a lazy binding stub. */
static int
mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
{
/* Check whether PC is in the dynamic linker. This also checks
whether it is in the .plt section, used by non-PIC executables. */
if (svr4_in_dynsym_resolve_code (pc))
return 1;
/* Likewise for the stubs. They live in the .MIPS.stubs section these
days, so we check if the PC is within, than fall back to a pattern
match. */
if (mips_linux_in_dynsym_stub (pc))
return 1;
return 0;
}
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
implementation of this triggers at "fixup" from the same objfile as
"_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
"__dl_runtime_resolve" directly. An unresolved lazy binding
stub will point to _dl_runtime_resolve, which will first call
__dl_runtime_resolve, and then pass control to the resolved
function. */
static CORE_ADDR
mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct bound_minimal_symbol resolver;
resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
if (resolver.minsym && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
return frame_unwind_caller_pc (get_current_frame ());
return glibc_skip_solib_resolver (gdbarch, pc);
}
/* Signal trampoline support. There are four supported layouts for a
signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
n64 rt_sigframe. We handle them all independently; not the most
efficient way, but simplest. First, declare all the unwinders. */
static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func);
static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func);
static int mips_linux_sigframe_validate (const struct tramp_frame *self,
struct frame_info *this_frame,
CORE_ADDR *pc);
static int micromips_linux_sigframe_validate (const struct tramp_frame *self,
struct frame_info *this_frame,
CORE_ADDR *pc);
#define MIPS_NR_LINUX 4000
#define MIPS_NR_N64_LINUX 5000
#define MIPS_NR_N32_LINUX 6000
#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
#define MIPS_INST_SYSCALL 0x0000000c
#define MICROMIPS_INST_LI_V0 0x3040
#define MICROMIPS_INST_POOL32A 0x0000
#define MICROMIPS_INST_SYSCALL 0x8b7c
static const struct tramp_frame mips_linux_o32_sigframe = {
SIGTRAMP_FRAME,
4,
{
{ MIPS_INST_LI_V0_SIGRETURN, -1 },
{ MIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_o32_sigframe_init,
mips_linux_sigframe_validate
};
static const struct tramp_frame mips_linux_o32_rt_sigframe = {
SIGTRAMP_FRAME,
4,
{
{ MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
{ MIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 } },
mips_linux_o32_sigframe_init,
mips_linux_sigframe_validate
};
static const struct tramp_frame mips_linux_n32_rt_sigframe = {
SIGTRAMP_FRAME,
4,
{
{ MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
{ MIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_n32n64_sigframe_init,
mips_linux_sigframe_validate
};
static const struct tramp_frame mips_linux_n64_rt_sigframe = {
SIGTRAMP_FRAME,
4,
{
{ MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
{ MIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_n32n64_sigframe_init,
mips_linux_sigframe_validate
};
static const struct tramp_frame micromips_linux_o32_sigframe = {
SIGTRAMP_FRAME,
2,
{
{ MICROMIPS_INST_LI_V0, -1 },
{ MIPS_NR_sigreturn, -1 },
{ MICROMIPS_INST_POOL32A, -1 },
{ MICROMIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_o32_sigframe_init,
micromips_linux_sigframe_validate
};
static const struct tramp_frame micromips_linux_o32_rt_sigframe = {
SIGTRAMP_FRAME,
2,
{
{ MICROMIPS_INST_LI_V0, -1 },
{ MIPS_NR_rt_sigreturn, -1 },
{ MICROMIPS_INST_POOL32A, -1 },
{ MICROMIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_o32_sigframe_init,
micromips_linux_sigframe_validate
};
static const struct tramp_frame micromips_linux_n32_rt_sigframe = {
SIGTRAMP_FRAME,
2,
{
{ MICROMIPS_INST_LI_V0, -1 },
{ MIPS_NR_N32_rt_sigreturn, -1 },
{ MICROMIPS_INST_POOL32A, -1 },
{ MICROMIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_n32n64_sigframe_init,
micromips_linux_sigframe_validate
};
static const struct tramp_frame micromips_linux_n64_rt_sigframe = {
SIGTRAMP_FRAME,
2,
{
{ MICROMIPS_INST_LI_V0, -1 },
{ MIPS_NR_N64_rt_sigreturn, -1 },
{ MICROMIPS_INST_POOL32A, -1 },
{ MICROMIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_n32n64_sigframe_init,
micromips_linux_sigframe_validate
};
/* *INDENT-OFF* */
/* The unwinder for o32 signal frames. The legacy structures look
like this:
struct sigframe {
u32 sf_ass[4]; [argument save space for o32]
u32 sf_code[2]; [signal trampoline or fill]
struct sigcontext sf_sc;
sigset_t sf_mask;
};
Pre-2.6.12 sigcontext:
struct sigcontext {
unsigned int sc_regmask; [Unused]
unsigned int sc_status;
unsigned long long sc_pc;
unsigned long long sc_regs[32];
unsigned long long sc_fpregs[32];
unsigned int sc_ownedfp;
unsigned int sc_fpc_csr;
unsigned int sc_fpc_eir; [Unused]
unsigned int sc_used_math;
unsigned int sc_ssflags; [Unused]
[Alignment hole of four bytes]
unsigned long long sc_mdhi;
unsigned long long sc_mdlo;
unsigned int sc_cause; [Unused]
unsigned int sc_badvaddr; [Unused]
unsigned long sc_sigset[4]; [kernel's sigset_t]
};
Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
struct sigcontext {
unsigned int sc_regmask; [Unused]
unsigned int sc_status; [Unused]
unsigned long long sc_pc;
unsigned long long sc_regs[32];
unsigned long long sc_fpregs[32];
unsigned int sc_acx;
unsigned int sc_fpc_csr;
unsigned int sc_fpc_eir; [Unused]
unsigned int sc_used_math;
unsigned int sc_dsp;
[Alignment hole of four bytes]
unsigned long long sc_mdhi;
unsigned long long sc_mdlo;
unsigned long sc_hi1;
unsigned long sc_lo1;
unsigned long sc_hi2;
unsigned long sc_lo2;
unsigned long sc_hi3;
unsigned long sc_lo3;
};
The RT signal frames look like this:
struct rt_sigframe {
u32 rs_ass[4]; [argument save space for o32]
u32 rs_code[2] [signal trampoline or fill]
struct siginfo rs_info;
struct ucontext rs_uc;
};
struct ucontext {
unsigned long uc_flags;
struct ucontext *uc_link;
stack_t uc_stack;
[Alignment hole of four bytes]
struct sigcontext uc_mcontext;
sigset_t uc_sigmask;
}; */
/* *INDENT-ON* */
#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
#define RTSIGFRAME_SIGINFO_SIZE 128
#define STACK_T_SIZE (3 * 4)
#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ RTSIGFRAME_SIGINFO_SIZE \
+ UCONTEXT_SIGCONTEXT_OFFSET)
#define SIGCONTEXT_PC (1 * 8)
#define SIGCONTEXT_REGS (2 * 8)
#define SIGCONTEXT_FPREGS (34 * 8)
#define SIGCONTEXT_FPCSR (66 * 8 + 4)
#define SIGCONTEXT_DSPCTL (68 * 8 + 0)
#define SIGCONTEXT_HI (69 * 8)
#define SIGCONTEXT_LO (70 * 8)
#define SIGCONTEXT_CAUSE (71 * 8 + 0)
#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
#define SIGCONTEXT_HI1 (71 * 8 + 0)
#define SIGCONTEXT_LO1 (71 * 8 + 4)
#define SIGCONTEXT_HI2 (72 * 8 + 0)
#define SIGCONTEXT_LO2 (72 * 8 + 4)
#define SIGCONTEXT_HI3 (73 * 8 + 0)
#define SIGCONTEXT_LO3 (73 * 8 + 4)
#define SIGCONTEXT_REG_SIZE 8
static void
mips_linux_o32_sigframe_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
int ireg;
CORE_ADDR frame_sp = get_frame_sp (this_frame);
CORE_ADDR sigcontext_base;
const struct mips_regnum *regs = mips_regnum (gdbarch);
CORE_ADDR regs_base;
if (self == &mips_linux_o32_sigframe
|| self == µmips_linux_o32_sigframe)
sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
else
sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
/* I'm not proud of this hack. Eventually we will have the
infrastructure to indicate the size of saved registers on a
per-frame basis, but right now we don't; the kernel saves eight
bytes but we only want four. Use regs_base to access any
64-bit fields. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
regs_base = sigcontext_base + 4;
else
regs_base = sigcontext_base;
if (mips_linux_restart_reg_p (gdbarch))
trad_frame_set_reg_addr (this_cache,
(MIPS_RESTART_REGNUM
+ gdbarch_num_regs (gdbarch)),
regs_base + SIGCONTEXT_REGS);
for (ireg = 1; ireg < 32; ireg++)
trad_frame_set_reg_addr (this_cache,
(ireg + MIPS_ZERO_REGNUM
+ gdbarch_num_regs (gdbarch)),
(regs_base + SIGCONTEXT_REGS
+ ireg * SIGCONTEXT_REG_SIZE));
/* The way that floating point registers are saved, unfortunately,
depends on the architecture the kernel is built for. For the r3000 and
tx39, four bytes of each register are at the beginning of each of the
32 eight byte slots. For everything else, the registers are saved
using double precision; only the even-numbered slots are initialized,
and the high bits are the odd-numbered register. Assume the latter
layout, since we can't tell, and it's much more common. Which bits are
the "high" bits depends on endianness. */
for (ireg = 0; ireg < 32; ireg++)
if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
trad_frame_set_reg_addr (this_cache,
ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
(sigcontext_base + SIGCONTEXT_FPREGS + 4
+ (ireg & ~1) * SIGCONTEXT_REG_SIZE));
else
trad_frame_set_reg_addr (this_cache,
ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
(sigcontext_base + SIGCONTEXT_FPREGS
+ (ireg & ~1) * SIGCONTEXT_REG_SIZE));
trad_frame_set_reg_addr (this_cache,
regs->pc + gdbarch_num_regs (gdbarch),
regs_base + SIGCONTEXT_PC);
trad_frame_set_reg_addr (this_cache,
(regs->fp_control_status
+ gdbarch_num_regs (gdbarch)),
sigcontext_base + SIGCONTEXT_FPCSR);
if (regs->dspctl != -1)
trad_frame_set_reg_addr (this_cache,
regs->dspctl + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_DSPCTL);
trad_frame_set_reg_addr (this_cache,
regs->hi + gdbarch_num_regs (gdbarch),
regs_base + SIGCONTEXT_HI);
trad_frame_set_reg_addr (this_cache,
regs->lo + gdbarch_num_regs (gdbarch),
regs_base + SIGCONTEXT_LO);
if (regs->dspacc != -1)
{
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_HI1);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_LO1);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_HI2);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_LO2);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_HI3);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_LO3);
}
else
{
trad_frame_set_reg_addr (this_cache,
regs->cause + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_CAUSE);
trad_frame_set_reg_addr (this_cache,
regs->badvaddr + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_BADVADDR);
}
/* Choice of the bottom of the sigframe is somewhat arbitrary. */
trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
}
/* *INDENT-OFF* */
/* For N32/N64 things look different. There is no non-rt signal frame.
struct rt_sigframe_n32 {
u32 rs_ass[4]; [ argument save space for o32 ]
u32 rs_code[2]; [ signal trampoline or fill ]
struct siginfo rs_info;
struct ucontextn32 rs_uc;
};
struct ucontextn32 {
u32 uc_flags;
s32 uc_link;
stack32_t uc_stack;
struct sigcontext uc_mcontext;
sigset_t uc_sigmask; [ mask last for extensibility ]
};
struct rt_sigframe {
u32 rs_ass[4]; [ argument save space for o32 ]
u32 rs_code[2]; [ signal trampoline ]
struct siginfo rs_info;
struct ucontext rs_uc;
};
struct ucontext {
unsigned long uc_flags;
struct ucontext *uc_link;
stack_t uc_stack;
struct sigcontext uc_mcontext;
sigset_t uc_sigmask; [ mask last for extensibility ]
};
And the sigcontext is different (this is for both n32 and n64):
struct sigcontext {
unsigned long long sc_regs[32];
unsigned long long sc_fpregs[32];
unsigned long long sc_mdhi;
unsigned long long sc_hi1;
unsigned long long sc_hi2;
unsigned long long sc_hi3;
unsigned long long sc_mdlo;
unsigned long long sc_lo1;
unsigned long long sc_lo2;
unsigned long long sc_lo3;
unsigned long long sc_pc;
unsigned int sc_fpc_csr;
unsigned int sc_used_math;
unsigned int sc_dsp;
unsigned int sc_reserved;
};
That is the post-2.6.12 definition of the 64-bit sigcontext; before
then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
included too. */
/* *INDENT-ON* */
#define N32_STACK_T_SIZE STACK_T_SIZE
#define N64_STACK_T_SIZE (2 * 8 + 4)
#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ RTSIGFRAME_SIGINFO_SIZE \
+ N32_UCONTEXT_SIGCONTEXT_OFFSET)
#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ RTSIGFRAME_SIGINFO_SIZE \
+ N64_UCONTEXT_SIGCONTEXT_OFFSET)
#define N64_SIGCONTEXT_REGS (0 * 8)
#define N64_SIGCONTEXT_FPREGS (32 * 8)
#define N64_SIGCONTEXT_HI (64 * 8)
#define N64_SIGCONTEXT_HI1 (65 * 8)
#define N64_SIGCONTEXT_HI2 (66 * 8)
#define N64_SIGCONTEXT_HI3 (67 * 8)
#define N64_SIGCONTEXT_LO (68 * 8)
#define N64_SIGCONTEXT_LO1 (69 * 8)
#define N64_SIGCONTEXT_LO2 (70 * 8)
#define N64_SIGCONTEXT_LO3 (71 * 8)
#define N64_SIGCONTEXT_PC (72 * 8)
#define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
#define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
#define N64_SIGCONTEXT_REG_SIZE 8
static void
mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
int ireg;
CORE_ADDR frame_sp = get_frame_sp (this_frame);
CORE_ADDR sigcontext_base;
const struct mips_regnum *regs = mips_regnum (gdbarch);
if (self == &mips_linux_n32_rt_sigframe
|| self == µmips_linux_n32_rt_sigframe)
sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
else
sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
if (mips_linux_restart_reg_p (gdbarch))
trad_frame_set_reg_addr (this_cache,
(MIPS_RESTART_REGNUM
+ gdbarch_num_regs (gdbarch)),
sigcontext_base + N64_SIGCONTEXT_REGS);
for (ireg = 1; ireg < 32; ireg++)
trad_frame_set_reg_addr (this_cache,
(ireg + MIPS_ZERO_REGNUM
+ gdbarch_num_regs (gdbarch)),
(sigcontext_base + N64_SIGCONTEXT_REGS
+ ireg * N64_SIGCONTEXT_REG_SIZE));
for (ireg = 0; ireg < 32; ireg++)
trad_frame_set_reg_addr (this_cache,
ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
(sigcontext_base + N64_SIGCONTEXT_FPREGS
+ ireg * N64_SIGCONTEXT_REG_SIZE));
trad_frame_set_reg_addr (this_cache,
regs->pc + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_PC);
trad_frame_set_reg_addr (this_cache,
(regs->fp_control_status
+ gdbarch_num_regs (gdbarch)),
sigcontext_base + N64_SIGCONTEXT_FPCSR);
trad_frame_set_reg_addr (this_cache,
regs->hi + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_HI);
trad_frame_set_reg_addr (this_cache,
regs->lo + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_LO);
if (regs->dspacc != -1)
{
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_HI1);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_LO1);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_HI2);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_LO2);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_HI3);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_LO3);
}
if (regs->dspctl != -1)
trad_frame_set_reg_addr (this_cache,
regs->dspctl + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_DSPCTL);
/* Choice of the bottom of the sigframe is somewhat arbitrary. */
trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
}
/* Implement struct tramp_frame's "validate" method for standard MIPS code. */
static int
mips_linux_sigframe_validate (const struct tramp_frame *self,
struct frame_info *this_frame,
CORE_ADDR *pc)
{
return mips_pc_is_mips (*pc);
}
/* Implement struct tramp_frame's "validate" method for microMIPS code. */
static int
micromips_linux_sigframe_validate (const struct tramp_frame *self,
struct frame_info *this_frame,
CORE_ADDR *pc)
{
if (mips_pc_is_micromips (get_frame_arch (this_frame), *pc))
{
*pc = mips_unmake_compact_addr (*pc);
return 1;
}
else
return 0;
}
/* Implement the "write_pc" gdbarch method. */
static void
mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
mips_write_pc (regcache, pc);
/* Clear the syscall restart flag. */
if (mips_linux_restart_reg_p (gdbarch))
regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
}
/* Return 1 if MIPS_RESTART_REGNUM is usable. */
int
mips_linux_restart_reg_p (struct gdbarch *gdbarch)
{
/* If we do not have a target description with registers, then
MIPS_RESTART_REGNUM will not be included in the register set. */
if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
return 0;
/* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
either be GPR-sized or missing. */
return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
}
/* When FRAME is at a syscall instruction, return the PC of the next
instruction to be executed. */
static CORE_ADDR
mips_linux_syscall_next_pc (struct frame_info *frame)
{
CORE_ADDR pc = get_frame_pc (frame);
ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
/* If we are about to make a sigreturn syscall, use the unwinder to
decode the signal frame. */
if (v0 == MIPS_NR_sigreturn
|| v0 == MIPS_NR_rt_sigreturn
|| v0 == MIPS_NR_N64_rt_sigreturn
|| v0 == MIPS_NR_N32_rt_sigreturn)
return frame_unwind_caller_pc (get_current_frame ());
return pc + 4;
}
/* Return the current system call's number present in the
v0 register. When the function fails, it returns -1. */
static LONGEST
mips_linux_get_syscall_number (struct gdbarch *gdbarch,
ptid_t ptid)
{
struct regcache *regcache = get_thread_regcache (ptid);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
/* The content of a register */
gdb_byte buf[8];
/* The result */
LONGEST ret;
/* Make sure we're in a known ABI */
gdb_assert (tdep->mips_abi == MIPS_ABI_O32
|| tdep->mips_abi == MIPS_ABI_N32
|| tdep->mips_abi == MIPS_ABI_N64);
gdb_assert (regsize <= sizeof (buf));
/* Getting the system call number from the register.
syscall number is in v0 or $2. */
regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
ret = extract_signed_integer (buf, regsize, byte_order);
return ret;
}
/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
gdbarch.h. */
static int
mips_gdb_signal_to_target (struct gdbarch *gdbarch,
enum gdb_signal signal)
{
switch (signal)
{
case GDB_SIGNAL_EMT:
return MIPS_LINUX_SIGEMT;
case GDB_SIGNAL_BUS:
return MIPS_LINUX_SIGBUS;
case GDB_SIGNAL_SYS:
return MIPS_LINUX_SIGSYS;
case GDB_SIGNAL_USR1:
return MIPS_LINUX_SIGUSR1;
case GDB_SIGNAL_USR2:
return MIPS_LINUX_SIGUSR2;
case GDB_SIGNAL_CHLD:
return MIPS_LINUX_SIGCHLD;
case GDB_SIGNAL_PWR:
return MIPS_LINUX_SIGPWR;
case GDB_SIGNAL_WINCH:
return MIPS_LINUX_SIGWINCH;
case GDB_SIGNAL_URG:
return MIPS_LINUX_SIGURG;
case GDB_SIGNAL_IO:
return MIPS_LINUX_SIGIO;
case GDB_SIGNAL_POLL:
return MIPS_LINUX_SIGPOLL;
case GDB_SIGNAL_STOP:
return MIPS_LINUX_SIGSTOP;
case GDB_SIGNAL_TSTP:
return MIPS_LINUX_SIGTSTP;
case GDB_SIGNAL_CONT:
return MIPS_LINUX_SIGCONT;
case GDB_SIGNAL_TTIN:
return MIPS_LINUX_SIGTTIN;
case GDB_SIGNAL_TTOU:
return MIPS_LINUX_SIGTTOU;
case GDB_SIGNAL_VTALRM:
return MIPS_LINUX_SIGVTALRM;
case GDB_SIGNAL_PROF:
return MIPS_LINUX_SIGPROF;
case GDB_SIGNAL_XCPU:
return MIPS_LINUX_SIGXCPU;
case GDB_SIGNAL_XFSZ:
return MIPS_LINUX_SIGXFSZ;
/* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
therefore we have to handle it here. */
case GDB_SIGNAL_REALTIME_32:
return MIPS_LINUX_SIGRTMIN;
}
if (signal >= GDB_SIGNAL_REALTIME_33
&& signal <= GDB_SIGNAL_REALTIME_63)
{
int offset = signal - GDB_SIGNAL_REALTIME_33;
return MIPS_LINUX_SIGRTMIN + 1 + offset;
}
else if (signal >= GDB_SIGNAL_REALTIME_64
&& signal <= GDB_SIGNAL_REALTIME_127)
{
int offset = signal - GDB_SIGNAL_REALTIME_64;
return MIPS_LINUX_SIGRT64 + offset;
}
return linux_gdb_signal_to_target (gdbarch, signal);
}
/* Translate signals based on MIPS signal values.
Adapted from gdb/common/signals.c. */
static enum gdb_signal
mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
{
switch (signal)
{
case MIPS_LINUX_SIGEMT:
return GDB_SIGNAL_EMT;
case MIPS_LINUX_SIGBUS:
return GDB_SIGNAL_BUS;
case MIPS_LINUX_SIGSYS:
return GDB_SIGNAL_SYS;
case MIPS_LINUX_SIGUSR1:
return GDB_SIGNAL_USR1;
case MIPS_LINUX_SIGUSR2:
return GDB_SIGNAL_USR2;
case MIPS_LINUX_SIGCHLD:
return GDB_SIGNAL_CHLD;
case MIPS_LINUX_SIGPWR:
return GDB_SIGNAL_PWR;
case MIPS_LINUX_SIGWINCH:
return GDB_SIGNAL_WINCH;
case MIPS_LINUX_SIGURG:
return GDB_SIGNAL_URG;
/* No way to differentiate between SIGIO and SIGPOLL.
Therefore, we just handle the first one. */
case MIPS_LINUX_SIGIO:
return GDB_SIGNAL_IO;
case MIPS_LINUX_SIGSTOP:
return GDB_SIGNAL_STOP;
case MIPS_LINUX_SIGTSTP:
return GDB_SIGNAL_TSTP;
case MIPS_LINUX_SIGCONT:
return GDB_SIGNAL_CONT;
case MIPS_LINUX_SIGTTIN:
return GDB_SIGNAL_TTIN;
case MIPS_LINUX_SIGTTOU:
return GDB_SIGNAL_TTOU;
case MIPS_LINUX_SIGVTALRM:
return GDB_SIGNAL_VTALRM;
case MIPS_LINUX_SIGPROF:
return GDB_SIGNAL_PROF;
case MIPS_LINUX_SIGXCPU:
return GDB_SIGNAL_XCPU;
case MIPS_LINUX_SIGXFSZ:
return GDB_SIGNAL_XFSZ;
}
if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
{
/* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
int offset = signal - MIPS_LINUX_SIGRTMIN;
if (offset == 0)
return GDB_SIGNAL_REALTIME_32;
else if (offset < 32)
return (enum gdb_signal) (offset - 1
+ (int) GDB_SIGNAL_REALTIME_33);
else
return (enum gdb_signal) (offset - 32
+ (int) GDB_SIGNAL_REALTIME_64);
}
return linux_gdb_signal_from_target (gdbarch, signal);
}
/* Initialize one of the GNU/Linux OS ABIs. */
static void
mips_linux_init_abi (struct gdbarch_info info,
struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum mips_abi abi = mips_abi (gdbarch);
struct tdesc_arch_data *tdesc_data
= (struct tdesc_arch_data *) info.tdep_info;
linux_init_abi (info, gdbarch);
/* Get the syscall number from the arch's register. */
set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
switch (abi)
{
case MIPS_ABI_O32:
set_gdbarch_get_longjmp_target (gdbarch,
mips_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
tramp_frame_prepend_unwinder (gdbarch, µmips_linux_o32_sigframe);
tramp_frame_prepend_unwinder (gdbarch,
µmips_linux_o32_rt_sigframe);
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
set_xml_syscall_file_name (gdbarch, "syscalls/mips-o32-linux.xml");
break;
case MIPS_ABI_N32:
set_gdbarch_get_longjmp_target (gdbarch,
mips_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
set_gdbarch_long_double_bit (gdbarch, 128);
/* These floatformats should probably be renamed. MIPS uses
the same 128-bit IEEE floating point format that IA-64 uses,
except that the quiet/signalling NaN bit is reversed (GDB
does not distinguish between quiet and signalling NaNs). */
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
tramp_frame_prepend_unwinder (gdbarch,
µmips_linux_n32_rt_sigframe);
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
set_xml_syscall_file_name (gdbarch, "syscalls/mips-n32-linux.xml");
break;
case MIPS_ABI_N64:
set_gdbarch_get_longjmp_target (gdbarch,
mips64_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_lp64_fetch_link_map_offsets);
set_gdbarch_long_double_bit (gdbarch, 128);
/* These floatformats should probably be renamed. MIPS uses
the same 128-bit IEEE floating point format that IA-64 uses,
except that the quiet/signalling NaN bit is reversed (GDB
does not distinguish between quiet and signalling NaNs). */
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
tramp_frame_prepend_unwinder (gdbarch,
µmips_linux_n64_rt_sigframe);
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
set_xml_syscall_file_name (gdbarch, "syscalls/mips-n64-linux.xml");
break;
default:
break;
}
set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
/* Enable TLS support. */
set_gdbarch_fetch_tls_load_module_address (gdbarch,
svr4_fetch_objfile_link_map);
/* Initialize this lazily, to avoid an initialization order
dependency on solib-svr4.c's _initialize routine. */
if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
{
mips_svr4_so_ops = svr4_so_ops;
mips_svr4_so_ops.in_dynsym_resolve_code
= mips_linux_in_dynsym_resolve_code;
}
set_solib_ops (gdbarch, &mips_svr4_so_ops);
set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
set_gdbarch_core_read_description (gdbarch,
mips_linux_core_read_description);
set_gdbarch_iterate_over_regset_sections
(gdbarch, mips_linux_iterate_over_regset_sections);
set_gdbarch_gdb_signal_from_target (gdbarch,
mips_gdb_signal_from_target);
set_gdbarch_gdb_signal_to_target (gdbarch,
mips_gdb_signal_to_target);
tdep->syscall_next_pc = mips_linux_syscall_next_pc;
if (tdesc_data)
{
const struct tdesc_feature *feature;
/* If we have target-described registers, then we can safely
reserve a number for MIPS_RESTART_REGNUM (whether it is
described or not). */
gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
/* If it's present, then assign it to the reserved number. */
feature = tdesc_find_feature (info.target_desc,
"org.gnu.gdb.mips.linux");
if (feature != NULL)
tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
"restart");
}
}
/* Provide a prototype to silence -Wmissing-prototypes. */
extern initialize_file_ftype _initialize_mips_linux_tdep;
void
_initialize_mips_linux_tdep (void)
{
const struct bfd_arch_info *arch_info;
for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
arch_info != NULL;
arch_info = arch_info->next)
{
gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
GDB_OSABI_LINUX,
mips_linux_init_abi);
}
}
|