aboutsummaryrefslogtreecommitdiff
path: root/gdb/mips-linux-tdep.c
blob: 2407cc7c21f76bbc6e07e6bbe349dfd2c4aa793c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
/* Target-dependent code for GNU/Linux on MIPS processors.

   Copyright (C) 2001, 2002, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor,
   Boston, MA 02110-1301, USA.  */

#include "defs.h"
#include "gdbcore.h"
#include "target.h"
#include "solib-svr4.h"
#include "osabi.h"
#include "mips-tdep.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "frame.h"
#include "regcache.h"
#include "trad-frame.h"
#include "tramp-frame.h"
#include "gdbtypes.h"
#include "solib.h"
#include "symtab.h"
#include "mips-linux-tdep.h"

/* Figure out where the longjmp will land.
   We expect the first arg to be a pointer to the jmp_buf structure
   from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
   at.  The pc is copied into PC.  This routine returns 1 on
   success.  */

#define MIPS_LINUX_JB_ELEMENT_SIZE 4
#define MIPS_LINUX_JB_PC 0

static int
mips_linux_get_longjmp_target (CORE_ADDR *pc)
{
  CORE_ADDR jb_addr;
  char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];

  jb_addr = read_register (MIPS_A0_REGNUM);

  if (target_read_memory (jb_addr
			  + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
			  buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
    return 0;

  *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);

  return 1;
}

/* Transform the bits comprising a 32-bit register to the right size
   for regcache_raw_supply().  This is needed when mips_isa_regsize()
   is 8.  */

static void
supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
{
  gdb_byte buf[MAX_REGISTER_SIZE];
  store_signed_integer (buf, register_size (current_gdbarch, regnum),
                        extract_signed_integer (addr, 4));
  regcache_raw_supply (regcache, regnum, buf);
}

/* Unpack an elf_gregset_t into GDB's register cache.  */

void
mips_supply_gregset (struct regcache *regcache,
		     const mips_elf_gregset_t *gregsetp)
{
  int regi;
  const mips_elf_greg_t *regp = *gregsetp;
  char zerobuf[MAX_REGISTER_SIZE];

  memset (zerobuf, 0, MAX_REGISTER_SIZE);

  for (regi = EF_REG0; regi <= EF_REG31; regi++)
    supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);

  supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->lo,
		    regp + EF_LO);
  supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->hi,
		    regp + EF_HI);

  supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->pc,
		    regp + EF_CP0_EPC);
  supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->badvaddr,
		    regp + EF_CP0_BADVADDR);
  supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
  supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->cause,
		    regp + EF_CP0_CAUSE);

  /* Fill inaccessible registers with zero.  */
  regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
  for (regi = MIPS_FIRST_EMBED_REGNUM;
       regi < MIPS_LAST_EMBED_REGNUM;
       regi++)
    regcache_raw_supply (regcache, regi, zerobuf);
}

/* Pack our registers (or one register) into an elf_gregset_t.  */

void
mips_fill_gregset (const struct regcache *regcache,
		   mips_elf_gregset_t *gregsetp, int regno)
{
  int regaddr, regi;
  mips_elf_greg_t *regp = *gregsetp;
  void *dst;

  if (regno == -1)
    {
      memset (regp, 0, sizeof (mips_elf_gregset_t));
      for (regi = 0; regi < 32; regi++)
	mips_fill_gregset (regcache, gregsetp, regi);
      mips_fill_gregset (regcache, gregsetp,
			 mips_regnum (current_gdbarch)->lo);
      mips_fill_gregset (regcache, gregsetp,
			 mips_regnum (current_gdbarch)->hi);
      mips_fill_gregset (regcache, gregsetp,
			 mips_regnum (current_gdbarch)->pc);
      mips_fill_gregset (regcache, gregsetp,
			 mips_regnum (current_gdbarch)->badvaddr);
      mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
      mips_fill_gregset (regcache, gregsetp,
			 mips_regnum (current_gdbarch)->cause);
      return;
   }

  if (regno < 32)
    {
      dst = regp + regno + EF_REG0;
      regcache_raw_collect (regcache, regno, dst);
      return;
    }

  if (regno == mips_regnum (current_gdbarch)->lo)
    regaddr = EF_LO;
  else if (regno == mips_regnum (current_gdbarch)->hi)
    regaddr = EF_HI;
  else if (regno == mips_regnum (current_gdbarch)->pc)
    regaddr = EF_CP0_EPC;
  else if (regno == mips_regnum (current_gdbarch)->badvaddr)
    regaddr = EF_CP0_BADVADDR;
  else if (regno == MIPS_PS_REGNUM)
    regaddr = EF_CP0_STATUS;
  else if (regno == mips_regnum (current_gdbarch)->cause)
    regaddr = EF_CP0_CAUSE;
  else
    regaddr = -1;

  if (regaddr != -1)
    {
      dst = regp + regaddr;
      regcache_raw_collect (regcache, regno, dst);
    }
}

/* Likewise, unpack an elf_fpregset_t.  */

void
mips_supply_fpregset (struct regcache *regcache,
		      const mips_elf_fpregset_t *fpregsetp)
{
  int regi;
  char zerobuf[MAX_REGISTER_SIZE];

  memset (zerobuf, 0, MAX_REGISTER_SIZE);

  for (regi = 0; regi < 32; regi++)
    regcache_raw_supply (regcache, FP0_REGNUM + regi, *fpregsetp + regi);

  regcache_raw_supply (regcache,
		       mips_regnum (current_gdbarch)->fp_control_status,
		       *fpregsetp + 32);

  /* FIXME: how can we supply FCRIR?  The ABI doesn't tell us.  */
  regcache_raw_supply (regcache,
		       mips_regnum (current_gdbarch)->fp_implementation_revision,
		       zerobuf);
}

/* Likewise, pack one or all floating point registers into an
   elf_fpregset_t.  */

void
mips_fill_fpregset (const struct regcache *regcache,
		    mips_elf_fpregset_t *fpregsetp, int regno)
{
  char *from, *to;

  if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
    {
      to = (char *) (*fpregsetp + regno - FP0_REGNUM);
      regcache_raw_collect (regcache, regno, to);
    }
  else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
    {
      to = (char *) (*fpregsetp + 32);
      regcache_raw_collect (regcache, regno, to);
    }
  else if (regno == -1)
    {
      int regi;

      for (regi = 0; regi < 32; regi++)
	mips_fill_fpregset (regcache, fpregsetp, FP0_REGNUM + regi);
      mips_fill_fpregset (regcache, fpregsetp,
			  mips_regnum (current_gdbarch)->fp_control_status);
    }
}

/* Support for 64-bit ABIs.  */

/* Figure out where the longjmp will land.
   We expect the first arg to be a pointer to the jmp_buf structure
   from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
   at.  The pc is copied into PC.  This routine returns 1 on
   success.  */

/* Details about jmp_buf.  */

#define MIPS64_LINUX_JB_PC 0

static int
mips64_linux_get_longjmp_target (CORE_ADDR *pc)
{
  CORE_ADDR jb_addr;
  void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
  int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;

  jb_addr = read_register (MIPS_A0_REGNUM);

  if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
			  buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
    return 0;

  *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);

  return 1;
}

/* Register set support functions.  These operate on standard 64-bit
   regsets, but work whether the target is 32-bit or 64-bit.  A 32-bit
   target will still use the 64-bit format for PTRACE_GETREGS.  */

/* Supply a 64-bit register.  */

void
supply_64bit_reg (struct regcache *regcache, int regnum,
		  const gdb_byte *buf)
{
  if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
      && register_size (current_gdbarch, regnum) == 4)
    regcache_raw_supply (regcache, regnum, buf + 4);
  else
    regcache_raw_supply (regcache, regnum, buf);
}

/* Unpack a 64-bit elf_gregset_t into GDB's register cache.  */

void
mips64_supply_gregset (struct regcache *regcache,
		       const mips64_elf_gregset_t *gregsetp)
{
  int regi;
  const mips64_elf_greg_t *regp = *gregsetp;
  gdb_byte zerobuf[MAX_REGISTER_SIZE];

  memset (zerobuf, 0, MAX_REGISTER_SIZE);

  for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
    supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
		      (const gdb_byte *)(regp + regi));

  supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->lo,
		    (const gdb_byte *) (regp + MIPS64_EF_LO));
  supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->hi,
		    (const gdb_byte *) (regp + MIPS64_EF_HI));

  supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->pc,
		    (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
  supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->badvaddr,
		    (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
  supply_64bit_reg (regcache, MIPS_PS_REGNUM,
		    (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
  supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->cause,
		    (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));

  /* Fill inaccessible registers with zero.  */
  regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
  for (regi = MIPS_FIRST_EMBED_REGNUM;
       regi < MIPS_LAST_EMBED_REGNUM;
       regi++)
    regcache_raw_supply (regcache, regi, zerobuf);
}

/* Pack our registers (or one register) into a 64-bit elf_gregset_t.  */

void
mips64_fill_gregset (const struct regcache *regcache,
		     mips64_elf_gregset_t *gregsetp, int regno)
{
  int regaddr, regi;
  mips64_elf_greg_t *regp = *gregsetp;
  void *src, *dst;

  if (regno == -1)
    {
      memset (regp, 0, sizeof (mips64_elf_gregset_t));
      for (regi = 0; regi < 32; regi++)
        mips64_fill_gregset (regcache, gregsetp, regi);
      mips64_fill_gregset (regcache, gregsetp,
			   mips_regnum (current_gdbarch)->lo);
      mips64_fill_gregset (regcache, gregsetp,
			   mips_regnum (current_gdbarch)->hi);
      mips64_fill_gregset (regcache, gregsetp,
			   mips_regnum (current_gdbarch)->pc);
      mips64_fill_gregset (regcache, gregsetp,
			   mips_regnum (current_gdbarch)->badvaddr);
      mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
      mips64_fill_gregset (regcache, gregsetp,
			   mips_regnum (current_gdbarch)->cause);
      return;
   }

  if (regno < 32)
    regaddr = regno + MIPS64_EF_REG0;
  else if (regno == mips_regnum (current_gdbarch)->lo)
    regaddr = MIPS64_EF_LO;
  else if (regno == mips_regnum (current_gdbarch)->hi)
    regaddr = MIPS64_EF_HI;
  else if (regno == mips_regnum (current_gdbarch)->pc)
    regaddr = MIPS64_EF_CP0_EPC;
  else if (regno == mips_regnum (current_gdbarch)->badvaddr)
    regaddr = MIPS64_EF_CP0_BADVADDR;
  else if (regno == MIPS_PS_REGNUM)
    regaddr = MIPS64_EF_CP0_STATUS;
  else if (regno == mips_regnum (current_gdbarch)->cause)
    regaddr = MIPS64_EF_CP0_CAUSE;
  else
    regaddr = -1;

  if (regaddr != -1)
    {
      gdb_byte buf[MAX_REGISTER_SIZE];
      LONGEST val;

      regcache_raw_collect (regcache, regno, buf);
      val = extract_signed_integer (buf,
				    register_size (current_gdbarch, regno));
      dst = regp + regaddr;
      store_signed_integer (dst, 8, val);
    }
}

/* Likewise, unpack an elf_fpregset_t.  */

void
mips64_supply_fpregset (struct regcache *regcache,
			const mips64_elf_fpregset_t *fpregsetp)
{
  int regi;

  /* See mips_linux_o32_sigframe_init for a description of the
     peculiar FP register layout.  */
  if (register_size (current_gdbarch, FP0_REGNUM) == 4)
    for (regi = 0; regi < 32; regi++)
      {
	const gdb_byte *reg_ptr = (const gdb_byte *)(*fpregsetp + (regi & ~1));
	if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (regi & 1))
	  reg_ptr += 4;
	regcache_raw_supply (regcache, FP0_REGNUM + regi, reg_ptr);
      }
  else
    for (regi = 0; regi < 32; regi++)
      regcache_raw_supply (regcache, FP0_REGNUM + regi,
			   (const char *)(*fpregsetp + regi));

  supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->fp_control_status,
		    (const gdb_byte *)(*fpregsetp + 32));

  /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
     include it - but the result of PTRACE_GETFPREGS does.  The best we
     can do is to assume that its value is present.  */
  supply_32bit_reg (regcache,
		    mips_regnum (current_gdbarch)->fp_implementation_revision,
		    (const gdb_byte *)(*fpregsetp + 32) + 4);
}

/* Likewise, pack one or all floating point registers into an
   elf_fpregset_t.  */

void
mips64_fill_fpregset (const struct regcache *regcache,
		      mips64_elf_fpregset_t *fpregsetp, int regno)
{
  gdb_byte *to;

  if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
    {
      /* See mips_linux_o32_sigframe_init for a description of the
	 peculiar FP register layout.  */
      if (register_size (current_gdbarch, regno) == 4)
	{
	  int regi = regno - FP0_REGNUM;

	  to = (gdb_byte *) (*fpregsetp + (regi & ~1));
	  if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (regi & 1))
	    to += 4;
	  regcache_raw_collect (regcache, regno, to);
	}
      else
	{
	  to = (gdb_byte *) (*fpregsetp + regno - FP0_REGNUM);
	  regcache_raw_collect (regcache, regno, to);
	}
    }
  else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
    {
      gdb_byte buf[MAX_REGISTER_SIZE];
      LONGEST val;

      regcache_raw_collect (regcache, regno, buf);
      val = extract_signed_integer (buf,
				    register_size (current_gdbarch, regno));
      to = (gdb_byte *) (*fpregsetp + 32);
      store_signed_integer (to, 4, val);
    }
  else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
    {
      gdb_byte buf[MAX_REGISTER_SIZE];
      LONGEST val;

      regcache_raw_collect (regcache, regno, buf);
      val = extract_signed_integer (buf,
				    register_size (current_gdbarch, regno));
      to = (gdb_byte *) (*fpregsetp + 32) + 4;
      store_signed_integer (to, 4, val);
    }
  else if (regno == -1)
    {
      int regi;

      for (regi = 0; regi < 32; regi++)
	mips64_fill_fpregset (regcache, fpregsetp, FP0_REGNUM + regi);
      mips64_fill_fpregset (regcache, fpregsetp,
			    mips_regnum (current_gdbarch)->fp_control_status);
      mips64_fill_fpregset (regcache, fpregsetp,
			    (mips_regnum (current_gdbarch)
			     ->fp_implementation_revision));
    }
}


/*  Use a local version of this function to get the correct types for
    regsets, until multi-arch core support is ready.  */

static void
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
		      int which, CORE_ADDR reg_addr)
{
  mips_elf_gregset_t gregset;
  mips_elf_fpregset_t fpregset;
  mips64_elf_gregset_t gregset64;
  mips64_elf_fpregset_t fpregset64;

  if (which == 0)
    {
      if (core_reg_size == sizeof (gregset))
	{
	  memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
	  mips_supply_gregset (current_regcache,
			       (const mips_elf_gregset_t *) &gregset);
	}
      else if (core_reg_size == sizeof (gregset64))
	{
	  memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
	  mips64_supply_gregset (current_regcache,
				 (const mips64_elf_gregset_t *) &gregset64);
	}
      else
	{
	  warning (_("wrong size gregset struct in core file"));
	}
    }
  else if (which == 2)
    {
      if (core_reg_size == sizeof (fpregset))
	{
	  memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
	  mips_supply_fpregset (current_regcache,
				(const mips_elf_fpregset_t *) &fpregset);
	}
      else if (core_reg_size == sizeof (fpregset64))
	{
	  memcpy ((char *) &fpregset64, core_reg_sect,
		  sizeof (fpregset64));
	  mips64_supply_fpregset (current_regcache,
				  (const mips64_elf_fpregset_t *) &fpregset64);
	}
      else
	{
	  warning (_("wrong size fpregset struct in core file"));
	}
    }
}

/* Register that we are able to handle ELF file formats using standard
   procfs "regset" structures.  */

static struct core_fns regset_core_fns =
{
  bfd_target_elf_flavour,		/* core_flavour */
  default_check_format,			/* check_format */
  default_core_sniffer,			/* core_sniffer */
  fetch_core_registers,			/* core_read_registers */
  NULL					/* next */
};


/* Check the code at PC for a dynamic linker lazy resolution stub.
   Because they aren't in the .plt section, we pattern-match on the
   code generated by GNU ld.  They look like this:

   lw t9,0x8010(gp)
   addu t7,ra
   jalr t9,ra
   addiu t8,zero,INDEX

   (with the appropriate doubleword instructions for N64).  Also
   return the dynamic symbol index used in the last instruction.  */

static int
mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
{
  unsigned char buf[28], *p;
  ULONGEST insn, insn1;
  int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64);

  read_memory (pc - 12, buf, 28);

  if (n64)
    {
      /* ld t9,0x8010(gp) */
      insn1 = 0xdf998010;
    }
  else
    {
      /* lw t9,0x8010(gp) */
      insn1 = 0x8f998010;
    }

  p = buf + 12;
  while (p >= buf)
    {
      insn = extract_unsigned_integer (p, 4);
      if (insn == insn1)
	break;
      p -= 4;
    }
  if (p < buf)
    return 0;

  insn = extract_unsigned_integer (p + 4, 4);
  if (n64)
    {
      /* daddu t7,ra */
      if (insn != 0x03e0782d)
	return 0;
    }
  else
    {
      /* addu t7,ra */
      if (insn != 0x03e07821)
	return 0;
    }

  insn = extract_unsigned_integer (p + 8, 4);
  /* jalr t9,ra */
  if (insn != 0x0320f809)
    return 0;

  insn = extract_unsigned_integer (p + 12, 4);
  if (n64)
    {
      /* daddiu t8,zero,0 */
      if ((insn & 0xffff0000) != 0x64180000)
	return 0;
    }
  else
    {
      /* addiu t8,zero,0 */
      if ((insn & 0xffff0000) != 0x24180000)
	return 0;
    }

  return (insn & 0xffff);
}

/* Return non-zero iff PC belongs to the dynamic linker resolution
   code or to a stub.  */

int
mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
{
  /* Check whether PC is in the dynamic linker.  This also checks
     whether it is in the .plt section, which MIPS does not use.  */
  if (in_solib_dynsym_resolve_code (pc))
    return 1;

  /* Pattern match for the stub.  It would be nice if there were a
     more efficient way to avoid this check.  */
  if (mips_linux_in_dynsym_stub (pc, NULL))
    return 1;

  return 0;
}

/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
   and glibc_skip_solib_resolver in glibc-tdep.c.  The normal glibc
   implementation of this triggers at "fixup" from the same objfile as
   "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
   "__dl_runtime_resolve" directly.  An unresolved PLT entry will
   point to _dl_runtime_resolve, which will first call
   __dl_runtime_resolve, and then pass control to the resolved
   function.  */

static CORE_ADDR
mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct minimal_symbol *resolver;

  resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);

  if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
    return frame_pc_unwind (get_current_frame ());

  return 0;
}

/* Signal trampoline support.  There are four supported layouts for a
   signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
   n64 rt_sigframe.  We handle them all independently; not the most
   efficient way, but simplest.  First, declare all the unwinders.  */

static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
					  struct frame_info *next_frame,
					  struct trad_frame_cache *this_cache,
					  CORE_ADDR func);

static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
					     struct frame_info *next_frame,
					     struct trad_frame_cache *this_cache,
					     CORE_ADDR func);

#define MIPS_NR_LINUX 4000
#define MIPS_NR_N64_LINUX 5000
#define MIPS_NR_N32_LINUX 6000

#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211

#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
#define MIPS_INST_SYSCALL 0x0000000c

static const struct tramp_frame mips_linux_o32_sigframe = {
  SIGTRAMP_FRAME,
  4,
  {
    { MIPS_INST_LI_V0_SIGRETURN, -1 },
    { MIPS_INST_SYSCALL, -1 },
    { TRAMP_SENTINEL_INSN, -1 }
  },
  mips_linux_o32_sigframe_init
};

static const struct tramp_frame mips_linux_o32_rt_sigframe = {
  SIGTRAMP_FRAME,
  4,
  {
    { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
    { MIPS_INST_SYSCALL, -1 },
    { TRAMP_SENTINEL_INSN, -1 } },
  mips_linux_o32_sigframe_init
};

static const struct tramp_frame mips_linux_n32_rt_sigframe = {
  SIGTRAMP_FRAME,
  4,
  {
    { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
    { MIPS_INST_SYSCALL, -1 },
    { TRAMP_SENTINEL_INSN, -1 }
  },
  mips_linux_n32n64_sigframe_init
};

static const struct tramp_frame mips_linux_n64_rt_sigframe = {
  SIGTRAMP_FRAME,
  4,
  {
    { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
    { MIPS_INST_SYSCALL, -1 },
    { TRAMP_SENTINEL_INSN, -1 }
  },
  mips_linux_n32n64_sigframe_init
};

/* *INDENT-OFF* */
/* The unwinder for o32 signal frames.  The legacy structures look
   like this:

   struct sigframe {
     u32 sf_ass[4];            [argument save space for o32]
     u32 sf_code[2];           [signal trampoline]
     struct sigcontext sf_sc;
     sigset_t sf_mask;
   };

   struct sigcontext {
        unsigned int       sc_regmask;          [Unused]
        unsigned int       sc_status;
        unsigned long long sc_pc;
        unsigned long long sc_regs[32];
        unsigned long long sc_fpregs[32];
        unsigned int       sc_ownedfp;
        unsigned int       sc_fpc_csr;
        unsigned int       sc_fpc_eir;          [Unused]
        unsigned int       sc_used_math;
        unsigned int       sc_ssflags;          [Unused]
	[Alignment hole of four bytes]
        unsigned long long sc_mdhi;
        unsigned long long sc_mdlo;

        unsigned int       sc_cause;            [Unused]
        unsigned int       sc_badvaddr;         [Unused]

        unsigned long      sc_sigset[4];        [kernel's sigset_t]
   };

   The RT signal frames look like this:

   struct rt_sigframe {
     u32 rs_ass[4];            [argument save space for o32]
     u32 rs_code[2]            [signal trampoline]
     struct siginfo rs_info;
     struct ucontext rs_uc;
   };

   struct ucontext {
     unsigned long     uc_flags;
     struct ucontext  *uc_link;
     stack_t           uc_stack;
     [Alignment hole of four bytes]
     struct sigcontext uc_mcontext;
     sigset_t          uc_sigmask;
   };  */
/* *INDENT-ON* */

#define SIGFRAME_CODE_OFFSET         (4 * 4)
#define SIGFRAME_SIGCONTEXT_OFFSET   (6 * 4)

#define RTSIGFRAME_SIGINFO_SIZE      128
#define STACK_T_SIZE                 (3 * 4)
#define UCONTEXT_SIGCONTEXT_OFFSET   (2 * 4 + STACK_T_SIZE + 4)
#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
				      + RTSIGFRAME_SIGINFO_SIZE \
				      + UCONTEXT_SIGCONTEXT_OFFSET)

#define SIGCONTEXT_PC       (1 * 8)
#define SIGCONTEXT_REGS     (2 * 8)
#define SIGCONTEXT_FPREGS   (34 * 8)
#define SIGCONTEXT_FPCSR    (66 * 8 + 4)
#define SIGCONTEXT_HI       (69 * 8)
#define SIGCONTEXT_LO       (70 * 8)
#define SIGCONTEXT_CAUSE    (71 * 8 + 0)
#define SIGCONTEXT_BADVADDR (71 * 8 + 4)

#define SIGCONTEXT_REG_SIZE 8

static void
mips_linux_o32_sigframe_init (const struct tramp_frame *self,
			      struct frame_info *next_frame,
			      struct trad_frame_cache *this_cache,
			      CORE_ADDR func)
{
  int ireg, reg_position;
  CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
  const struct mips_regnum *regs = mips_regnum (current_gdbarch);
  CORE_ADDR regs_base;

  if (self == &mips_linux_o32_sigframe)
    sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET;
  else
    sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET;

  /* I'm not proud of this hack.  Eventually we will have the
     infrastructure to indicate the size of saved registers on a
     per-frame basis, but right now we don't; the kernel saves eight
     bytes but we only want four.  Use regs_base to access any
     64-bit fields.  */
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    regs_base = sigcontext_base + 4;
  else
    regs_base = sigcontext_base;

#if 0
  trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
			   regs_base + SIGCONTEXT_REGS);
#endif

  for (ireg = 1; ireg < 32; ireg++)
    trad_frame_set_reg_addr (this_cache,
			     ireg + MIPS_ZERO_REGNUM + NUM_REGS,
			     regs_base + SIGCONTEXT_REGS
			     + ireg * SIGCONTEXT_REG_SIZE);

  /* The way that floating point registers are saved, unfortunately,
     depends on the architecture the kernel is built for.  For the r3000 and
     tx39, four bytes of each register are at the beginning of each of the
     32 eight byte slots.  For everything else, the registers are saved
     using double precision; only the even-numbered slots are initialized,
     and the high bits are the odd-numbered register.  Assume the latter
     layout, since we can't tell, and it's much more common.  Which bits are
     the "high" bits depends on endianness.  */
  for (ireg = 0; ireg < 32; ireg++)
    if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (ireg & 1))
      trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
			       sigcontext_base + SIGCONTEXT_FPREGS + 4
			       + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
    else
      trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
			       sigcontext_base + SIGCONTEXT_FPREGS
			       + (ireg & ~1) * SIGCONTEXT_REG_SIZE);

  trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
			   regs_base + SIGCONTEXT_PC);

  trad_frame_set_reg_addr (this_cache,
			   regs->fp_control_status + NUM_REGS,
			   sigcontext_base + SIGCONTEXT_FPCSR);
  trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
			   regs_base + SIGCONTEXT_HI);
  trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
			   regs_base + SIGCONTEXT_LO);
  trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
			   sigcontext_base + SIGCONTEXT_CAUSE);
  trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
			   sigcontext_base + SIGCONTEXT_BADVADDR);

  /* Choice of the bottom of the sigframe is somewhat arbitrary.  */
  trad_frame_set_id (this_cache,
		     frame_id_build (func - SIGFRAME_CODE_OFFSET,
				     func));
}

/* *INDENT-OFF* */
/* For N32/N64 things look different.  There is no non-rt signal frame.

  struct rt_sigframe_n32 {
    u32 rs_ass[4];                  [ argument save space for o32 ]
    u32 rs_code[2];                 [ signal trampoline ]
    struct siginfo rs_info;
    struct ucontextn32 rs_uc;
  };

  struct ucontextn32 {
    u32                 uc_flags;
    s32                 uc_link;
    stack32_t           uc_stack;
    struct sigcontext   uc_mcontext;
    sigset_t            uc_sigmask;   [ mask last for extensibility ]
  };

  struct rt_sigframe_n32 {
    u32 rs_ass[4];                  [ argument save space for o32 ]
    u32 rs_code[2];                 [ signal trampoline ]
    struct siginfo rs_info;
    struct ucontext rs_uc;
  };

  struct ucontext {
    unsigned long     uc_flags;
    struct ucontext  *uc_link;
    stack_t           uc_stack;
    struct sigcontext uc_mcontext;
    sigset_t          uc_sigmask;   [ mask last for extensibility ]
  };

  And the sigcontext is different (this is for both n32 and n64):

  struct sigcontext {
    unsigned long long sc_regs[32];
    unsigned long long sc_fpregs[32];
    unsigned long long sc_mdhi;
    unsigned long long sc_mdlo;
    unsigned long long sc_pc;
    unsigned int       sc_status;
    unsigned int       sc_fpc_csr;
    unsigned int       sc_fpc_eir;
    unsigned int       sc_used_math;
    unsigned int       sc_cause;
    unsigned int       sc_badvaddr;
  };  */
/* *INDENT-ON* */

#define N32_STACK_T_SIZE		STACK_T_SIZE
#define N64_STACK_T_SIZE		(2 * 8 + 4)
#define N32_UCONTEXT_SIGCONTEXT_OFFSET  (2 * 4 + N32_STACK_T_SIZE + 4)
#define N64_UCONTEXT_SIGCONTEXT_OFFSET  (2 * 8 + N64_STACK_T_SIZE + 4)
#define N32_SIGFRAME_SIGCONTEXT_OFFSET	(SIGFRAME_SIGCONTEXT_OFFSET \
					 + RTSIGFRAME_SIGINFO_SIZE \
					 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
#define N64_SIGFRAME_SIGCONTEXT_OFFSET	(SIGFRAME_SIGCONTEXT_OFFSET \
					 + RTSIGFRAME_SIGINFO_SIZE \
					 + N64_UCONTEXT_SIGCONTEXT_OFFSET)

#define N64_SIGCONTEXT_REGS     (0 * 8)
#define N64_SIGCONTEXT_FPREGS   (32 * 8)
#define N64_SIGCONTEXT_HI       (64 * 8)
#define N64_SIGCONTEXT_LO       (65 * 8)
#define N64_SIGCONTEXT_PC       (66 * 8)
#define N64_SIGCONTEXT_FPCSR    (67 * 8 + 1 * 4)
#define N64_SIGCONTEXT_FIR      (67 * 8 + 2 * 4)
#define N64_SIGCONTEXT_CAUSE    (67 * 8 + 4 * 4)
#define N64_SIGCONTEXT_BADVADDR (67 * 8 + 5 * 4)

#define N64_SIGCONTEXT_REG_SIZE 8

static void
mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
				 struct frame_info *next_frame,
				 struct trad_frame_cache *this_cache,
				 CORE_ADDR func)
{
  int ireg, reg_position;
  CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
  const struct mips_regnum *regs = mips_regnum (current_gdbarch);

  if (self == &mips_linux_n32_rt_sigframe)
    sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET;
  else
    sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET;

#if 0
  trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
			   sigcontext_base + N64_SIGCONTEXT_REGS);
#endif

  for (ireg = 1; ireg < 32; ireg++)
    trad_frame_set_reg_addr (this_cache,
			     ireg + MIPS_ZERO_REGNUM + NUM_REGS,
			     sigcontext_base + N64_SIGCONTEXT_REGS
			     + ireg * N64_SIGCONTEXT_REG_SIZE);

  for (ireg = 0; ireg < 32; ireg++)
    trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
			     sigcontext_base + N64_SIGCONTEXT_FPREGS
			     + ireg * N64_SIGCONTEXT_REG_SIZE);

  trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
			   sigcontext_base + N64_SIGCONTEXT_PC);

  trad_frame_set_reg_addr (this_cache,
			   regs->fp_control_status + NUM_REGS,
			   sigcontext_base + N64_SIGCONTEXT_FPCSR);
  trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
			   sigcontext_base + N64_SIGCONTEXT_HI);
  trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
			   sigcontext_base + N64_SIGCONTEXT_LO);
  trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
			   sigcontext_base + N64_SIGCONTEXT_CAUSE);
  trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
			   sigcontext_base + N64_SIGCONTEXT_BADVADDR);

  /* Choice of the bottom of the sigframe is somewhat arbitrary.  */
  trad_frame_set_id (this_cache,
		     frame_id_build (func - SIGFRAME_CODE_OFFSET,
				     func));
}


/* Initialize one of the GNU/Linux OS ABIs.  */

static void
mips_linux_init_abi (struct gdbarch_info info,
		     struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum mips_abi abi = mips_abi (gdbarch);

  switch (abi)
    {
      case MIPS_ABI_O32:
	set_gdbarch_get_longjmp_target (gdbarch,
	                                mips_linux_get_longjmp_target);
	set_solib_svr4_fetch_link_map_offsets
	  (gdbarch, svr4_ilp32_fetch_link_map_offsets);
	tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
	tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
	break;
      case MIPS_ABI_N32:
	set_gdbarch_get_longjmp_target (gdbarch,
	                                mips_linux_get_longjmp_target);
	set_solib_svr4_fetch_link_map_offsets
	  (gdbarch, svr4_ilp32_fetch_link_map_offsets);
	set_gdbarch_long_double_bit (gdbarch, 128);
	/* These floatformats should probably be renamed.  MIPS uses
	   the same 128-bit IEEE floating point format that IA-64 uses,
	   except that the quiet/signalling NaN bit is reversed (GDB
	   does not distinguish between quiet and signalling NaNs).  */
	set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
	tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
	break;
      case MIPS_ABI_N64:
	set_gdbarch_get_longjmp_target (gdbarch,
	                                mips64_linux_get_longjmp_target);
	set_solib_svr4_fetch_link_map_offsets
	  (gdbarch, svr4_lp64_fetch_link_map_offsets);
	set_gdbarch_long_double_bit (gdbarch, 128);
	/* These floatformats should probably be renamed.  MIPS uses
	   the same 128-bit IEEE floating point format that IA-64 uses,
	   except that the quiet/signalling NaN bit is reversed (GDB
	   does not distinguish between quiet and signalling NaNs).  */
	set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
	tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
	break;
      default:
	internal_error (__FILE__, __LINE__, _("can't handle ABI"));
	break;
    }

  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
  set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);

  set_gdbarch_software_single_step (gdbarch, mips_software_single_step);

  /* Enable TLS support.  */
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
                                             svr4_fetch_objfile_link_map);
}

void
_initialize_mips_linux_tdep (void)
{
  const struct bfd_arch_info *arch_info;

  for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
       arch_info != NULL;
       arch_info = arch_info->next)
    {
      gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
			      GDB_OSABI_LINUX,
			      mips_linux_init_abi);
    }

  deprecated_add_core_fns (&regset_core_fns);
}