aboutsummaryrefslogtreecommitdiff
path: root/gdb/mi/mi-main.c
blob: 536e8a5b0540c8f43bdbd393b559803d3d71e8fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
/* MI Command Set.
   Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
   Contributed by Cygnus Solutions (a Red Hat company).

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

/* Work in progress */

#include "defs.h"
#include "target.h"
#include "inferior.h"
#include "gdb_string.h"
#include "top.h"
#include "gdbthread.h"
#include "mi-cmds.h"
#include "mi-parse.h"
#include "mi-getopt.h"
#include "mi-console.h"
#include "ui-out.h"
#include "mi-out.h"
#include "event-loop.h"
#include "event-top.h"
#include "gdbcore.h"		/* for write_memory() */
#include "value.h"		/* for deprecated_write_register_bytes() */
#include "regcache.h"
#include "gdb.h"
#include "frame.h"

#include <ctype.h>
#include <sys/time.h>

enum
  {
    FROM_TTY = 0
  };

/* Enumerations of the actions that may result from calling
   captured_mi_execute_command */

enum captured_mi_execute_command_actions
  {
    EXECUTE_COMMAND_DISPLAY_PROMPT,
    EXECUTE_COMMAND_SUPRESS_PROMPT,
    EXECUTE_COMMAND_DISPLAY_ERROR
  };

/* This structure is used to pass information from captured_mi_execute_command
   to mi_execute_command. */
struct captured_mi_execute_command_args
{
  /* This return result of the MI command (output) */
  enum mi_cmd_result rc;

  /* What action to perform when the call is finished (output) */
  enum captured_mi_execute_command_actions action;

  /* The command context to be executed (input) */
  struct mi_parse *command;
};

int mi_debug_p;
struct ui_file *raw_stdout;

/* The token of the last asynchronous command */
static char *last_async_command;
static char *previous_async_command;
static char *mi_error_message;
static char *old_regs;

extern void _initialize_mi_main (void);
static char *mi_input (char *);
static void mi_execute_command (char *cmd, int from_tty);
static enum mi_cmd_result mi_cmd_execute (struct mi_parse *parse);

static void mi_execute_cli_command (const char *cli, char *args);
static enum mi_cmd_result mi_execute_async_cli_command (char *mi, char *args, int from_tty);
static void mi_execute_command_wrapper (char *cmd);

void mi_exec_async_cli_cmd_continuation (struct continuation_arg *arg);

static int register_changed_p (int regnum);
static int get_register (int regnum, int format);
static void mi_load_progress (const char *section_name,
			      unsigned long sent_so_far,
			      unsigned long total_section,
			      unsigned long total_sent,
			      unsigned long grand_total);

/* Command implementations. FIXME: Is this libgdb? No.  This is the MI
   layer that calls libgdb.  Any operation used in the below should be
   formalized. */

enum mi_cmd_result
mi_cmd_gdb_exit (char *command, char **argv, int argc)
{
  /* We have to print everything right here because we never return */
  if (last_async_command)
    fputs_unfiltered (last_async_command, raw_stdout);
  fputs_unfiltered ("^exit\n", raw_stdout);
  mi_out_put (uiout, raw_stdout);
  /* FIXME: The function called is not yet a formal libgdb function */
  quit_force (NULL, FROM_TTY);
  return MI_CMD_DONE;
}

enum mi_cmd_result
mi_cmd_exec_run (char *args, int from_tty)
{
  /* FIXME: Should call a libgdb function, not a cli wrapper */
  return mi_execute_async_cli_command ("run", args, from_tty);
}

enum mi_cmd_result
mi_cmd_exec_next (char *args, int from_tty)
{
  /* FIXME: Should call a libgdb function, not a cli wrapper */
  return mi_execute_async_cli_command ("next", args, from_tty);
}

enum mi_cmd_result
mi_cmd_exec_next_instruction (char *args, int from_tty)
{
  /* FIXME: Should call a libgdb function, not a cli wrapper */
  return mi_execute_async_cli_command ("nexti", args, from_tty);
}

enum mi_cmd_result
mi_cmd_exec_step (char *args, int from_tty)
{
  /* FIXME: Should call a libgdb function, not a cli wrapper */
  return mi_execute_async_cli_command ("step", args, from_tty);
}

enum mi_cmd_result
mi_cmd_exec_step_instruction (char *args, int from_tty)
{
  /* FIXME: Should call a libgdb function, not a cli wrapper */
  return mi_execute_async_cli_command ("stepi", args, from_tty);
}

enum mi_cmd_result
mi_cmd_exec_finish (char *args, int from_tty)
{
  /* FIXME: Should call a libgdb function, not a cli wrapper */
  return mi_execute_async_cli_command ("finish", args, from_tty);
}

enum mi_cmd_result
mi_cmd_exec_until (char *args, int from_tty)
{
  /* FIXME: Should call a libgdb function, not a cli wrapper */
  return mi_execute_async_cli_command ("until", args, from_tty);
}

enum mi_cmd_result
mi_cmd_exec_return (char *args, int from_tty)
{
  /* This command doesn't really execute the target, it just pops the
     specified number of frames. */
  if (*args)
    /* Call return_command with from_tty argument equal to 0 so as to
       avoid being queried. */
    return_command (args, 0);
  else
    /* Call return_command with from_tty argument equal to 0 so as to
       avoid being queried. */
    return_command (NULL, 0);

  /* Because we have called return_command with from_tty = 0, we need
     to print the frame here. */
  show_and_print_stack_frame (deprecated_selected_frame,
			      frame_relative_level (deprecated_selected_frame),
			      LOC_AND_ADDRESS);

  return MI_CMD_DONE;
}

enum mi_cmd_result
mi_cmd_exec_continue (char *args, int from_tty)
{
  /* FIXME: Should call a libgdb function, not a cli wrapper */
  return mi_execute_async_cli_command ("continue", args, from_tty);
}

/* Interrupt the execution of the target. Note how we must play around
   with the token varialbes, in order to display the current token in
   the result of the interrupt command, and the previous execution
   token when the target finally stops. See comments in
   mi_cmd_execute. */
enum mi_cmd_result
mi_cmd_exec_interrupt (char *args, int from_tty)
{
  if (!target_executing)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_exec_interrupt: Inferior not executing.");
      return MI_CMD_ERROR;
    }
  interrupt_target_command (args, from_tty);
  if (last_async_command)
    fputs_unfiltered (last_async_command, raw_stdout);
  fputs_unfiltered ("^done", raw_stdout);
  xfree (last_async_command);
  if (previous_async_command)
    last_async_command = xstrdup (previous_async_command);
  xfree (previous_async_command);
  previous_async_command = NULL;
  mi_out_put (uiout, raw_stdout);
  mi_out_rewind (uiout);
  fputs_unfiltered ("\n", raw_stdout);
  return MI_CMD_QUIET;
}

enum mi_cmd_result
mi_cmd_thread_select (char *command, char **argv, int argc)
{
  enum gdb_rc rc;

  if (argc != 1)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_thread_select: USAGE: threadnum.");
      return MI_CMD_ERROR;
    }
  else
    rc = gdb_thread_select (uiout, argv[0]);

  /* RC is enum gdb_rc if it is successful (>=0)
     enum return_reason if not (<0). */
  if ((int) rc < 0 && (enum return_reason) rc == RETURN_ERROR)
    return MI_CMD_CAUGHT_ERROR;
  else if ((int) rc >= 0 && rc == GDB_RC_FAIL)
    return MI_CMD_ERROR;
  else
    return MI_CMD_DONE;
}

enum mi_cmd_result
mi_cmd_thread_list_ids (char *command, char **argv, int argc)
{
  enum gdb_rc rc = MI_CMD_DONE;

  if (argc != 0)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_thread_list_ids: No arguments required.");
      return MI_CMD_ERROR;
    }
  else
    rc = gdb_list_thread_ids (uiout);

  if (rc == GDB_RC_FAIL)
    return MI_CMD_CAUGHT_ERROR;
  else
    return MI_CMD_DONE;
}

enum mi_cmd_result
mi_cmd_data_list_register_names (char *command, char **argv, int argc)
{
  int regnum, numregs;
  int i;
  struct cleanup *cleanup;

  /* Note that the test for a valid register must include checking the
     REGISTER_NAME because NUM_REGS may be allocated for the union of
     the register sets within a family of related processors.  In this
     case, some entries of REGISTER_NAME will change depending upon
     the particular processor being debugged.  */

  numregs = NUM_REGS + NUM_PSEUDO_REGS;

  cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");

  if (argc == 0)		/* No args, just do all the regs */
    {
      for (regnum = 0;
	   regnum < numregs;
	   regnum++)
	{
	  if (REGISTER_NAME (regnum) == NULL
	      || *(REGISTER_NAME (regnum)) == '\0')
	    ui_out_field_string (uiout, NULL, "");
	  else
	    ui_out_field_string (uiout, NULL, REGISTER_NAME (regnum));
	}
    }

  /* Else, list of register #s, just do listed regs */
  for (i = 0; i < argc; i++)
    {
      regnum = atoi (argv[i]);
      if (regnum < 0 || regnum >= numregs)
	{
	  do_cleanups (cleanup);
	  xasprintf (&mi_error_message, "bad register number");
	  return MI_CMD_ERROR;
	}
      if (REGISTER_NAME (regnum) == NULL
	  || *(REGISTER_NAME (regnum)) == '\0')
	ui_out_field_string (uiout, NULL, "");
      else
	ui_out_field_string (uiout, NULL, REGISTER_NAME (regnum));
    }
  do_cleanups (cleanup);
  return MI_CMD_DONE;
}

enum mi_cmd_result
mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
{
  int regnum, numregs, changed;
  int i;
  struct cleanup *cleanup;

  /* Note that the test for a valid register must include checking the
     REGISTER_NAME because NUM_REGS may be allocated for the union of
     the register sets within a family of related processors.  In this
     case, some entries of REGISTER_NAME will change depending upon
     the particular processor being debugged.  */

  numregs = NUM_REGS;

  cleanup = make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");

  if (argc == 0)		/* No args, just do all the regs */
    {
      for (regnum = 0;
	   regnum < numregs;
	   regnum++)
	{
	  if (REGISTER_NAME (regnum) == NULL
	      || *(REGISTER_NAME (regnum)) == '\0')
	    continue;
	  changed = register_changed_p (regnum);
	  if (changed < 0)
	    {
	      do_cleanups (cleanup);
	      xasprintf (&mi_error_message,
			 "mi_cmd_data_list_changed_registers: Unable to read register contents.");
	      return MI_CMD_ERROR;
	    }
	  else if (changed)
	    ui_out_field_int (uiout, NULL, regnum);
	}
    }

  /* Else, list of register #s, just do listed regs */
  for (i = 0; i < argc; i++)
    {
      regnum = atoi (argv[i]);

      if (regnum >= 0
	  && regnum < numregs
	  && REGISTER_NAME (regnum) != NULL
	  && *REGISTER_NAME (regnum) != '\000')
	{
	  changed = register_changed_p (regnum);
	  if (changed < 0)
	    {
	      do_cleanups (cleanup);
	      xasprintf (&mi_error_message,
			 "mi_cmd_data_list_register_change: Unable to read register contents.");
	      return MI_CMD_ERROR;
	    }
	  else if (changed)
	    ui_out_field_int (uiout, NULL, regnum);
	}
      else
	{
	  do_cleanups (cleanup);
	  xasprintf (&mi_error_message, "bad register number");
	  return MI_CMD_ERROR;
	}
    }
  do_cleanups (cleanup);
  return MI_CMD_DONE;
}

static int
register_changed_p (int regnum)
{
  char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);

  if (! frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
    return -1;

  if (memcmp (&old_regs[REGISTER_BYTE (regnum)], raw_buffer,
	      REGISTER_RAW_SIZE (regnum)) == 0)
    return 0;

  /* Found a changed register. Return 1. */

  memcpy (&old_regs[REGISTER_BYTE (regnum)], raw_buffer,
	  REGISTER_RAW_SIZE (regnum));

  return 1;
}

/* Return a list of register number and value pairs. The valid
   arguments expected are: a letter indicating the format in which to
   display the registers contents. This can be one of: x (hexadecimal), d
   (decimal), N (natural), t (binary), o (octal), r (raw).  After the
   format argumetn there can be a sequence of numbers, indicating which
   registers to fetch the content of. If the format is the only argument,
   a list of all the registers with their values is returned. */
enum mi_cmd_result
mi_cmd_data_list_register_values (char *command, char **argv, int argc)
{
  int regnum, numregs, format, result;
  int i;
  struct cleanup *list_cleanup, *tuple_cleanup;

  /* Note that the test for a valid register must include checking the
     REGISTER_NAME because NUM_REGS may be allocated for the union of
     the register sets within a family of related processors.  In this
     case, some entries of REGISTER_NAME will change depending upon
     the particular processor being debugged.  */

  numregs = NUM_REGS;

  if (argc == 0)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_list_register_values: Usage: -data-list-register-values <format> [<regnum1>...<regnumN>]");
      return MI_CMD_ERROR;
    }

  format = (int) argv[0][0];

  if (!target_has_registers)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_list_register_values: No registers.");
      return MI_CMD_ERROR;
    }

  list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");

  if (argc == 1)		/* No args, beside the format: do all the regs */
    {
      for (regnum = 0;
	   regnum < numregs;
	   regnum++)
	{
	  if (REGISTER_NAME (regnum) == NULL
	      || *(REGISTER_NAME (regnum)) == '\0')
	    continue;
	  tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
	  ui_out_field_int (uiout, "number", regnum);
	  result = get_register (regnum, format);
	  if (result == -1)
	    {
	      do_cleanups (list_cleanup);
	      return MI_CMD_ERROR;
	    }
	  do_cleanups (tuple_cleanup);
	}
    }

  /* Else, list of register #s, just do listed regs */
  for (i = 1; i < argc; i++)
    {
      regnum = atoi (argv[i]);

      if (regnum >= 0
	  && regnum < numregs
	  && REGISTER_NAME (regnum) != NULL
	  && *REGISTER_NAME (regnum) != '\000')
	{
	  tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
	  ui_out_field_int (uiout, "number", regnum);
	  result = get_register (regnum, format);
	  if (result == -1)
	    {
	      do_cleanups (list_cleanup);
	      return MI_CMD_ERROR;
	    }
	  do_cleanups (tuple_cleanup);
	}
      else
	{
	  do_cleanups (list_cleanup);
	  xasprintf (&mi_error_message, "bad register number");
	  return MI_CMD_ERROR;
	}
    }
  do_cleanups (list_cleanup);
  return MI_CMD_DONE;
}

/* Output one register's contents in the desired format. */
static int
get_register (int regnum, int format)
{
  char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
  char *virtual_buffer = alloca (MAX_REGISTER_VIRTUAL_SIZE);
  int optim;
  static struct ui_stream *stb = NULL;

  stb = ui_out_stream_new (uiout);

  if (format == 'N')
    format = 0;

  get_saved_register (raw_buffer, &optim, (CORE_ADDR *) NULL,
		      deprecated_selected_frame,
		      regnum, (enum lval_type *) NULL);
  if (optim)
    {
      xasprintf (&mi_error_message, "Optimized out");
      return -1;
    }

  /* Convert raw data to virtual format if necessary.  */

  if (REGISTER_CONVERTIBLE (regnum))
    {
      REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
				   raw_buffer, virtual_buffer);
    }
  else
    memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));

  if (format == 'r')
    {
      int j;
      char *ptr, buf[1024];

      strcpy (buf, "0x");
      ptr = buf + 2;
      for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
	{
	  register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
	  : REGISTER_RAW_SIZE (regnum) - 1 - j;
	  sprintf (ptr, "%02x", (unsigned char) raw_buffer[idx]);
	  ptr += 2;
	}
      ui_out_field_string (uiout, "value", buf);
      /*fputs_filtered (buf, gdb_stdout); */
    }
  else
    {
      val_print (REGISTER_VIRTUAL_TYPE (regnum), virtual_buffer, 0, 0,
		 stb->stream, format, 1, 0, Val_pretty_default);
      ui_out_field_stream (uiout, "value", stb);
      ui_out_stream_delete (stb);
    }
  return 1;
}

/* Write given values into registers. The registers and values are
   given as pairs. The corresponding MI command is 
   -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]*/
enum mi_cmd_result
mi_cmd_data_write_register_values (char *command, char **argv, int argc)
{
  int regnum;
  int i;
  int numregs;
  LONGEST value;
  char format;

  /* Note that the test for a valid register must include checking the
     REGISTER_NAME because NUM_REGS may be allocated for the union of
     the register sets within a family of related processors.  In this
     case, some entries of REGISTER_NAME will change depending upon
     the particular processor being debugged.  */

  numregs = NUM_REGS;

  if (argc == 0)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_write_register_values: Usage: -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]");
      return MI_CMD_ERROR;
    }

  format = (int) argv[0][0];

  if (!target_has_registers)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_write_register_values: No registers.");
      return MI_CMD_ERROR;
    }

  if (!(argc - 1))
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_write_register_values: No regs and values specified.");
      return MI_CMD_ERROR;
    }

  if ((argc - 1) % 2)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_write_register_values: Regs and vals are not in pairs.");
      return MI_CMD_ERROR;
    }

  for (i = 1; i < argc; i = i + 2)
    {
      regnum = atoi (argv[i]);

      if (regnum >= 0
	  && regnum < numregs
	  && REGISTER_NAME (regnum) != NULL
	  && *REGISTER_NAME (regnum) != '\000')
	{
	  void *buffer;
	  struct cleanup *old_chain;

	  /* Get the value as a number */
	  value = parse_and_eval_address (argv[i + 1]);
	  /* Get the value into an array */
	  buffer = xmalloc (REGISTER_SIZE);
	  old_chain = make_cleanup (xfree, buffer);
	  store_signed_integer (buffer, REGISTER_SIZE, value);
	  /* Write it down */
	  deprecated_write_register_bytes (REGISTER_BYTE (regnum), buffer, REGISTER_RAW_SIZE (regnum));
	  /* Free the buffer.  */
	  do_cleanups (old_chain);
	}
      else
	{
	  xasprintf (&mi_error_message, "bad register number");
	  return MI_CMD_ERROR;
	}
    }
  return MI_CMD_DONE;
}

#if 0
/*This is commented out because we decided it was not useful. I leave
   it, just in case. ezannoni:1999-12-08 */

/* Assign a value to a variable. The expression argument must be in
   the form A=2 or "A = 2" (I.e. if there are spaces it needs to be
   quoted. */
enum mi_cmd_result
mi_cmd_data_assign (char *command, char **argv, int argc)
{
  struct expression *expr;
  struct cleanup *old_chain;

  if (argc != 1)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_assign: Usage: -data-assign expression");
      return MI_CMD_ERROR;
    }

  /* NOTE what follows is a clone of set_command(). FIXME: ezannoni
     01-12-1999: Need to decide what to do with this for libgdb purposes. */

  expr = parse_expression (argv[0]);
  old_chain = make_cleanup (free_current_contents, &expr);
  evaluate_expression (expr);
  do_cleanups (old_chain);
  return MI_CMD_DONE;
}
#endif

/* Evaluate the value of the argument. The argument is an
   expression. If the expression contains spaces it needs to be
   included in double quotes. */
enum mi_cmd_result
mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
{
  struct expression *expr;
  struct cleanup *old_chain = NULL;
  struct value *val;
  struct ui_stream *stb = NULL;

  stb = ui_out_stream_new (uiout);

  if (argc != 1)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_evaluate_expression: Usage: -data-evaluate-expression expression");
      return MI_CMD_ERROR;
    }

  expr = parse_expression (argv[0]);

  old_chain = make_cleanup (free_current_contents, &expr);

  val = evaluate_expression (expr);

  /* Print the result of the expression evaluation. */
  val_print (VALUE_TYPE (val), VALUE_CONTENTS (val),
	     VALUE_EMBEDDED_OFFSET (val), VALUE_ADDRESS (val),
	     stb->stream, 0, 0, 0, 0);

  ui_out_field_stream (uiout, "value", stb);
  ui_out_stream_delete (stb);

  do_cleanups (old_chain);

  return MI_CMD_DONE;
}

enum mi_cmd_result
mi_cmd_target_download (char *args, int from_tty)
{
  char *run;
  struct cleanup *old_cleanups = NULL;

  xasprintf (&run, "load %s", args);
  old_cleanups = make_cleanup (xfree, run);
  execute_command (run, from_tty);

  do_cleanups (old_cleanups);
  return MI_CMD_DONE;
}

/* Connect to the remote target. */
enum mi_cmd_result
mi_cmd_target_select (char *args, int from_tty)
{
  char *run;
  struct cleanup *old_cleanups = NULL;

  xasprintf (&run, "target %s", args);
  old_cleanups = make_cleanup (xfree, run);

  /* target-select is always synchronous.  once the call has returned
     we know that we are connected. */
  /* NOTE: At present all targets that are connected are also
     (implicitly) talking to a halted target.  In the future this may
     change. */
  execute_command (run, from_tty);

  do_cleanups (old_cleanups);

  /* Issue the completion message here. */
  if (last_async_command)
    fputs_unfiltered (last_async_command, raw_stdout);
  fputs_unfiltered ("^connected", raw_stdout);
  mi_out_put (uiout, raw_stdout);
  mi_out_rewind (uiout);
  fputs_unfiltered ("\n", raw_stdout);
  do_exec_cleanups (ALL_CLEANUPS);
  return MI_CMD_QUIET;
}

/* DATA-MEMORY-READ:

   ADDR: start address of data to be dumped.
   WORD-FORMAT: a char indicating format for the ``word''. See 
   the ``x'' command.
   WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes
   NR_ROW: Number of rows.
   NR_COL: The number of colums (words per row).
   ASCHAR: (OPTIONAL) Append an ascii character dump to each row.  Use
   ASCHAR for unprintable characters.

   Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
   displayes them.  Returns:

   {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}

   Returns: 
   The number of bytes read is SIZE*ROW*COL. */

enum mi_cmd_result
mi_cmd_data_read_memory (char *command, char **argv, int argc)
{
  struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
  CORE_ADDR addr;
  long total_bytes;
  long nr_cols;
  long nr_rows;
  char word_format;
  struct type *word_type;
  long word_size;
  char word_asize;
  char aschar;
  char *mbuf;
  int nr_bytes;
  long offset = 0;
  int optind = 0;
  char *optarg;
  enum opt
    {
      OFFSET_OPT
    };
  static struct mi_opt opts[] =
  {
    {"o", OFFSET_OPT, 1},
    0
  };

  while (1)
    {
      int opt = mi_getopt ("mi_cmd_data_read_memory", argc, argv, opts,
			   &optind, &optarg);
      if (opt < 0)
	break;
      switch ((enum opt) opt)
	{
	case OFFSET_OPT:
	  offset = atol (optarg);
	  break;
	}
    }
  argv += optind;
  argc -= optind;

  if (argc < 5 || argc > 6)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_read_memory: Usage: ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR].");
      return MI_CMD_ERROR;
    }

  /* Extract all the arguments. */

  /* Start address of the memory dump. */
  addr = parse_and_eval_address (argv[0]) + offset;
  /* The format character to use when displaying a memory word. See
     the ``x'' command. */
  word_format = argv[1][0];
  /* The size of the memory word. */
  word_size = atol (argv[2]);
  switch (word_size)
    {
    case 1:
      word_type = builtin_type_int8;
      word_asize = 'b';
      break;
    case 2:
      word_type = builtin_type_int16;
      word_asize = 'h';
      break;
    case 4:
      word_type = builtin_type_int32;
      word_asize = 'w';
      break;
    case 8:
      word_type = builtin_type_int64;
      word_asize = 'g';
      break;
    default:
      word_type = builtin_type_int8;
      word_asize = 'b';
    }
  /* The number of rows */
  nr_rows = atol (argv[3]);
  if (nr_rows <= 0)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_read_memory: invalid number of rows.");
      return MI_CMD_ERROR;
    }
  /* number of bytes per row. */
  nr_cols = atol (argv[4]);
  if (nr_cols <= 0)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_read_memory: invalid number of columns.");
    }
  /* The un-printable character when printing ascii. */
  if (argc == 6)
    aschar = *argv[5];
  else
    aschar = 0;

  /* create a buffer and read it in. */
  total_bytes = word_size * nr_rows * nr_cols;
  mbuf = xcalloc (total_bytes, 1);
  make_cleanup (xfree, mbuf);
  if (mbuf == NULL)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_read_memory: out of memory.");
      return MI_CMD_ERROR;
    }
  nr_bytes = 0;
  while (nr_bytes < total_bytes)
    {
      int error;
      long num = target_read_memory_partial (addr + nr_bytes, mbuf + nr_bytes,
					     total_bytes - nr_bytes,
					     &error);
      if (num <= 0)
	break;
      nr_bytes += num;
    }

  /* output the header information. */
  ui_out_field_core_addr (uiout, "addr", addr);
  ui_out_field_int (uiout, "nr-bytes", nr_bytes);
  ui_out_field_int (uiout, "total-bytes", total_bytes);
  ui_out_field_core_addr (uiout, "next-row", addr + word_size * nr_cols);
  ui_out_field_core_addr (uiout, "prev-row", addr - word_size * nr_cols);
  ui_out_field_core_addr (uiout, "next-page", addr + total_bytes);
  ui_out_field_core_addr (uiout, "prev-page", addr - total_bytes);

  /* Build the result as a two dimentional table. */
  {
    struct ui_stream *stream = ui_out_stream_new (uiout);
    struct cleanup *cleanup_list_memory;
    int row;
    int row_byte;
    cleanup_list_memory = make_cleanup_ui_out_list_begin_end (uiout, "memory");
    for (row = 0, row_byte = 0;
	 row < nr_rows;
	 row++, row_byte += nr_cols * word_size)
      {
	int col;
	int col_byte;
	struct cleanup *cleanup_tuple;
	struct cleanup *cleanup_list_data;
	cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
	ui_out_field_core_addr (uiout, "addr", addr + row_byte);
	/* ui_out_field_core_addr_symbolic (uiout, "saddr", addr + row_byte); */
	cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
	for (col = 0, col_byte = row_byte;
	     col < nr_cols;
	     col++, col_byte += word_size)
	  {
	    if (col_byte + word_size > nr_bytes)
	      {
		ui_out_field_string (uiout, NULL, "N/A");
	      }
	    else
	      {
		ui_file_rewind (stream->stream);
		print_scalar_formatted (mbuf + col_byte, word_type, word_format,
					word_asize, stream->stream);
		ui_out_field_stream (uiout, NULL, stream);
	      }
	  }
	do_cleanups (cleanup_list_data);
	if (aschar)
	  {
	    int byte;
	    ui_file_rewind (stream->stream);
	    for (byte = row_byte; byte < row_byte + word_size * nr_cols; byte++)
	      {
		if (byte >= nr_bytes)
		  {
		    fputc_unfiltered ('X', stream->stream);
		  }
		else if (mbuf[byte] < 32 || mbuf[byte] > 126)
		  {
		    fputc_unfiltered (aschar, stream->stream);
		  }
		else
		  fputc_unfiltered (mbuf[byte], stream->stream);
	      }
	    ui_out_field_stream (uiout, "ascii", stream);
	  }
	do_cleanups (cleanup_tuple);
      }
    ui_out_stream_delete (stream);
    do_cleanups (cleanup_list_memory);
  }
  do_cleanups (cleanups);
  return MI_CMD_DONE;
}

/* DATA-MEMORY-WRITE:

   COLUMN_OFFSET: optional argument. Must be preceeded by '-o'. The
   offset from the beginning of the memory grid row where the cell to
   be written is.
   ADDR: start address of the row in the memory grid where the memory
   cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
   the location to write to.
   FORMAT: a char indicating format for the ``word''. See 
   the ``x'' command.
   WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
   VALUE: value to be written into the memory address.

   Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).

   Prints nothing. */
enum mi_cmd_result
mi_cmd_data_write_memory (char *command, char **argv, int argc)
{
  CORE_ADDR addr;
  char word_format;
  long word_size;
  /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
     enough when using a compiler other than GCC. */
  LONGEST value;
  void *buffer;
  struct cleanup *old_chain;
  long offset = 0;
  int optind = 0;
  char *optarg;
  enum opt
    {
      OFFSET_OPT
    };
  static struct mi_opt opts[] =
  {
    {"o", OFFSET_OPT, 1},
    0
  };

  while (1)
    {
      int opt = mi_getopt ("mi_cmd_data_write_memory", argc, argv, opts,
			   &optind, &optarg);
      if (opt < 0)
	break;
      switch ((enum opt) opt)
	{
	case OFFSET_OPT:
	  offset = atol (optarg);
	  break;
	}
    }
  argv += optind;
  argc -= optind;

  if (argc != 4)
    {
      xasprintf (&mi_error_message,
		 "mi_cmd_data_write_memory: Usage: [-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE.");
      return MI_CMD_ERROR;
    }

  /* Extract all the arguments. */
  /* Start address of the memory dump. */
  addr = parse_and_eval_address (argv[0]);
  /* The format character to use when displaying a memory word. See
     the ``x'' command. */
  word_format = argv[1][0];
  /* The size of the memory word. */
  word_size = atol (argv[2]);

  /* Calculate the real address of the write destination. */
  addr += (offset * word_size);

  /* Get the value as a number */
  value = parse_and_eval_address (argv[3]);
  /* Get the value into an array */
  buffer = xmalloc (word_size);
  old_chain = make_cleanup (xfree, buffer);
  store_signed_integer (buffer, word_size, value);
  /* Write it down to memory */
  write_memory (addr, buffer, word_size);
  /* Free the buffer.  */
  do_cleanups (old_chain);

  return MI_CMD_DONE;
}

/* Execute a command within a safe environment.
   Return <0 for error; >=0 for ok.

   args->action will tell mi_execute_command what action
   to perfrom after the given command has executed (display/supress
   prompt, display error). */

static int
captured_mi_execute_command (struct ui_out *uiout, void *data)
{
  struct captured_mi_execute_command_args *args =
    (struct captured_mi_execute_command_args *) data;
  struct mi_parse *context = args->command;

  switch (context->op)
    {

    case MI_COMMAND:
      /* A MI command was read from the input stream */
      if (mi_debug_p)
	/* FIXME: gdb_???? */
	fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
			    context->token, context->command, context->args);
      /* FIXME: cagney/1999-09-25: Rather than this convoluted
         condition expression, each function should return an
         indication of what action is required and then switch on
         that. */
      args->action = EXECUTE_COMMAND_DISPLAY_PROMPT;
      args->rc = mi_cmd_execute (context);

      if (!target_can_async_p () || !target_executing)
	{
	  /* print the result if there were no errors */
	  if (args->rc == MI_CMD_DONE)
	    {
	      fputs_unfiltered (context->token, raw_stdout);
	      fputs_unfiltered ("^done", raw_stdout);
	      mi_out_put (uiout, raw_stdout);
	      mi_out_rewind (uiout);
	      fputs_unfiltered ("\n", raw_stdout);
	    }
	  else if (args->rc == MI_CMD_ERROR)
	    {
	      if (mi_error_message)
		{
		  fputs_unfiltered (context->token, raw_stdout);
		  fputs_unfiltered ("^error,msg=\"", raw_stdout);
		  fputstr_unfiltered (mi_error_message, '"', raw_stdout);
		  xfree (mi_error_message);
		  fputs_unfiltered ("\"\n", raw_stdout);
		}
	      mi_out_rewind (uiout);
	    }
	  else if (args->rc == MI_CMD_CAUGHT_ERROR)
	    {
	      mi_out_rewind (uiout);
	      args->action = EXECUTE_COMMAND_DISPLAY_ERROR;
	      return 1;
	    }
	  else
	    mi_out_rewind (uiout);
	}
      else if (sync_execution)
	{
	  /* Don't print the prompt. We are executing the target in
	     synchronous mode. */
	  args->action = EXECUTE_COMMAND_SUPRESS_PROMPT;
	  return 1;
	}
      break;

    case CLI_COMMAND:
      /* A CLI command was read from the input stream */
      /* This will be removed as soon as we have a complete set of
         mi commands */
      /* echo the command on the console. */
      fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
      /* FIXME: If the command string has something that looks like 
         a format spec (e.g. %s) we will get a core dump */
      mi_execute_cli_command ("%s", context->command);
      /* print the result */
      /* FIXME: Check for errors here. */
      fputs_unfiltered (context->token, raw_stdout);
      fputs_unfiltered ("^done", raw_stdout);
      mi_out_put (uiout, raw_stdout);
      mi_out_rewind (uiout);
      fputs_unfiltered ("\n", raw_stdout);
      args->action = EXECUTE_COMMAND_DISPLAY_PROMPT;
      args->rc = MI_CMD_DONE;
      break;

    }

  return 1;
}


void
mi_execute_command (char *cmd, int from_tty)
{
  struct mi_parse *command;
  struct captured_mi_execute_command_args args;
  struct ui_out *saved_uiout = uiout;
  int result, rc;

  /* This is to handle EOF (^D). We just quit gdb. */
  /* FIXME: we should call some API function here. */
  if (cmd == 0)
    quit_force (NULL, from_tty);

  command = mi_parse (cmd);

  if (command != NULL)
    {
      /* FIXME: cagney/1999-11-04: Can this use of catch_exceptions either
         be pushed even further down or even eliminated? */
      args.command = command;
      result = catch_exceptions (uiout, captured_mi_execute_command, &args, "",
				 RETURN_MASK_ALL);

      if (args.action == EXECUTE_COMMAND_SUPRESS_PROMPT)
	{
	  /* The command is executing synchronously.  Bail out early
	     suppressing the finished prompt. */
	  mi_parse_free (command);
	  return;
	}
      if (args.action == EXECUTE_COMMAND_DISPLAY_ERROR || result < 0)
	{
	  char *msg = error_last_message ();
	  struct cleanup *cleanup = make_cleanup (xfree, msg);
	  /* The command execution failed and error() was called
	     somewhere */
	  fputs_unfiltered (command->token, raw_stdout);
	  fputs_unfiltered ("^error,msg=\"", raw_stdout);
	  fputstr_unfiltered (msg, '"', raw_stdout);
	  fputs_unfiltered ("\"\n", raw_stdout);
	}
      mi_parse_free (command);
    }

  fputs_unfiltered ("(gdb) \n", raw_stdout);
  gdb_flush (raw_stdout);
  /* print any buffered hook code */
  /* ..... */
}

static enum mi_cmd_result
mi_cmd_execute (struct mi_parse *parse)
{
  if (parse->cmd->argv_func != NULL
      || parse->cmd->args_func != NULL)
    {
      /* FIXME: We need to save the token because the command executed
         may be asynchronous and need to print the token again.
         In the future we can pass the token down to the func
         and get rid of the last_async_command */
      /* The problem here is to keep the token around when we launch
         the target, and we want to interrupt it later on.  The
         interrupt command will have its own token, but when the
         target stops, we must display the token corresponding to the
         last execution command given. So we have another string where
         we copy the token (previous_async_command), if this was
         indeed the token of an execution command, and when we stop we
         print that one. This is possible because the interrupt
         command, when over, will copy that token back into the
         default token string (last_async_command). */

      if (target_executing)
	{
	  if (!previous_async_command)
	    previous_async_command = xstrdup (last_async_command);
	  if (strcmp (parse->command, "exec-interrupt"))
	    {
	      fputs_unfiltered (parse->token, raw_stdout);
	      fputs_unfiltered ("^error,msg=\"", raw_stdout);
	      fputs_unfiltered ("Cannot execute command ", raw_stdout);
	      fputstr_unfiltered (parse->command, '"', raw_stdout);
	      fputs_unfiltered (" while target running", raw_stdout);
	      fputs_unfiltered ("\"\n", raw_stdout);
	      return MI_CMD_ERROR;
	    }
	}
      last_async_command = xstrdup (parse->token);
      make_exec_cleanup (free_current_contents, &last_async_command);
      /* FIXME: DELETE THIS! */
      if (parse->cmd->args_func != NULL)
	return parse->cmd->args_func (parse->args, 0 /*from_tty */ );
      return parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
    }
  else if (parse->cmd->cli != 0)
    {
      /* FIXME: DELETE THIS. */
      /* The operation is still implemented by a cli command */
      /* Must be a synchronous one */
      mi_execute_cli_command (parse->cmd->cli, parse->args);
      return MI_CMD_DONE;
    }
  else
    {
      /* FIXME: DELETE THIS. */
      fputs_unfiltered (parse->token, raw_stdout);
      fputs_unfiltered ("^error,msg=\"", raw_stdout);
      fputs_unfiltered ("Undefined mi command: ", raw_stdout);
      fputstr_unfiltered (parse->command, '"', raw_stdout);
      fputs_unfiltered (" (missing implementation)", raw_stdout);
      fputs_unfiltered ("\"\n", raw_stdout);
      return MI_CMD_ERROR;
    }
}

static void
mi_execute_command_wrapper (char *cmd)
{
  mi_execute_command (cmd, stdin == instream);
}

/* FIXME: This is just a hack so we can get some extra commands going.
   We don't want to channel things through the CLI, but call libgdb directly */
/* Use only for synchronous commands */

void
mi_execute_cli_command (const char *cli, char *args)
{
  if (cli != 0)
    {
      struct cleanup *old_cleanups;
      char *run;
      xasprintf (&run, cli, args);
      if (mi_debug_p)
	/* FIXME: gdb_???? */
	fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
			    cli, run);
      old_cleanups = make_cleanup (xfree, run);
      execute_command ( /*ui */ run, 0 /*from_tty */ );
      do_cleanups (old_cleanups);
      return;
    }
}

enum mi_cmd_result
mi_execute_async_cli_command (char *mi, char *args, int from_tty)
{
  struct cleanup *old_cleanups;
  char *run;
  char *async_args;

  if (target_can_async_p ())
    {
      async_args = (char *) xmalloc (strlen (args) + 2);
      make_exec_cleanup (free, async_args);
      strcpy (async_args, args);
      strcat (async_args, "&");
      xasprintf (&run, "%s %s", mi, async_args);
      make_exec_cleanup (free, run);
      add_continuation (mi_exec_async_cli_cmd_continuation, NULL);
      old_cleanups = NULL;
    }
  else
    {
      xasprintf (&run, "%s %s", mi, args);
      old_cleanups = make_cleanup (xfree, run);
    }

  if (!target_can_async_p ())
    {
      /* NOTE: For synchronous targets asynchronous behavour is faked by
         printing out the GDB prompt before we even try to execute the
         command. */
      if (last_async_command)
	fputs_unfiltered (last_async_command, raw_stdout);
      fputs_unfiltered ("^running\n", raw_stdout);
      fputs_unfiltered ("(gdb) \n", raw_stdout);
      gdb_flush (raw_stdout);
    }
  else
    {
      /* FIXME: cagney/1999-11-29: Printing this message before
         calling execute_command is wrong.  It should only be printed
         once gdb has confirmed that it really has managed to send a
         run command to the target. */
      if (last_async_command)
	fputs_unfiltered (last_async_command, raw_stdout);
      fputs_unfiltered ("^running\n", raw_stdout);
    }

  execute_command ( /*ui */ run, 0 /*from_tty */ );

  if (!target_can_async_p ())
    {
      /* Do this before doing any printing.  It would appear that some
         print code leaves garbage around in the buffer. */
      do_cleanups (old_cleanups);
      /* If the target was doing the operation synchronously we fake
         the stopped message. */
      if (last_async_command)
	fputs_unfiltered (last_async_command, raw_stdout);
      fputs_unfiltered ("*stopped", raw_stdout);
      mi_out_put (uiout, raw_stdout);
      mi_out_rewind (uiout);
      fputs_unfiltered ("\n", raw_stdout);
      return MI_CMD_QUIET;
    }
  return MI_CMD_DONE;
}

void
mi_exec_async_cli_cmd_continuation (struct continuation_arg *arg)
{
  if (last_async_command)
    fputs_unfiltered (last_async_command, raw_stdout);
  fputs_unfiltered ("*stopped", raw_stdout);
  mi_out_put (uiout, raw_stdout);
  fputs_unfiltered ("\n", raw_stdout);
  fputs_unfiltered ("(gdb) \n", raw_stdout);
  gdb_flush (raw_stdout);
  do_exec_cleanups (ALL_CLEANUPS);
}

static char *
mi_input (char *buf)
{
  return gdb_readline (NULL);
}

static void
mi_load_progress (const char *section_name,
		  unsigned long sent_so_far,
		  unsigned long total_section,
		  unsigned long total_sent,
		  unsigned long grand_total)
{
  struct timeval time_now, delta, update_threshold;
  static struct timeval last_update;
  static char *previous_sect_name = NULL;
  int new_section;

  if (!interpreter_p || strncmp (interpreter_p, "mi", 2) != 0)
    return;

  update_threshold.tv_sec = 0;
  update_threshold.tv_usec = 500000;
  gettimeofday (&time_now, NULL);

  delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
  delta.tv_sec = time_now.tv_sec - last_update.tv_sec;

  if (delta.tv_usec < 0)
    {
      delta.tv_sec -= 1;
      delta.tv_usec += 1000000;
    }

  new_section = (previous_sect_name ?
		 strcmp (previous_sect_name, section_name) : 1);
  if (new_section)
    {
      struct cleanup *cleanup_tuple;
      xfree (previous_sect_name);
      previous_sect_name = xstrdup (section_name);

      if (last_async_command)
	fputs_unfiltered (last_async_command, raw_stdout);
      fputs_unfiltered ("+download", raw_stdout);
      cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
      ui_out_field_string (uiout, "section", section_name);
      ui_out_field_int (uiout, "section-size", total_section);
      ui_out_field_int (uiout, "total-size", grand_total);
      do_cleanups (cleanup_tuple);
      mi_out_put (uiout, raw_stdout);
      fputs_unfiltered ("\n", raw_stdout);
      gdb_flush (raw_stdout);
    }

  if (delta.tv_sec >= update_threshold.tv_sec &&
      delta.tv_usec >= update_threshold.tv_usec)
    {
      struct cleanup *cleanup_tuple;
      last_update.tv_sec = time_now.tv_sec;
      last_update.tv_usec = time_now.tv_usec;
      if (last_async_command)
	fputs_unfiltered (last_async_command, raw_stdout);
      fputs_unfiltered ("+download", raw_stdout);
      cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
      ui_out_field_string (uiout, "section", section_name);
      ui_out_field_int (uiout, "section-sent", sent_so_far);
      ui_out_field_int (uiout, "section-size", total_section);
      ui_out_field_int (uiout, "total-sent", total_sent);
      ui_out_field_int (uiout, "total-size", grand_total);
      do_cleanups (cleanup_tuple);
      mi_out_put (uiout, raw_stdout);
      fputs_unfiltered ("\n", raw_stdout);
      gdb_flush (raw_stdout);
    }
}

static void
mi_command_loop (int mi_version)
{
  if (mi_version <= 1)
    {
      /* HACK: Force stdout/stderr to point at the console.  This avoids
         any potential side effects caused by legacy code that is still
         using the TUI / fputs_unfiltered_hook */
      raw_stdout = stdio_fileopen (stdout);
      /* Route normal output through the MIx */
      gdb_stdout = mi_console_file_new (raw_stdout, "~");
    }

  /* Route error and log output through the MI */
  gdb_stderr = mi_console_file_new (raw_stdout, "&");
  gdb_stdlog = gdb_stderr;
  /* Route target output through the MI. */
  gdb_stdtarg = mi_console_file_new (raw_stdout, "@");

  /* HACK: Poke the ui_out table directly.  Should we be creating a
     mi_out object wired up to the above gdb_stdout / gdb_stderr? */
  uiout = mi_out_new (mi_version);

  /* HACK: Override any other interpreter hooks.  We need to create a
     real event table and pass in that. */
  init_ui_hook = 0;
  /* command_loop_hook = 0; */
  print_frame_info_listing_hook = 0;
  query_hook = 0;
  warning_hook = 0;
  create_breakpoint_hook = 0;
  delete_breakpoint_hook = 0;
  modify_breakpoint_hook = 0;
  interactive_hook = 0;
  registers_changed_hook = 0;
  readline_begin_hook = 0;
  readline_hook = 0;
  readline_end_hook = 0;
  register_changed_hook = 0;
  memory_changed_hook = 0;
  context_hook = 0;
  target_wait_hook = 0;
  call_command_hook = 0;
  error_hook = 0;
  error_begin_hook = 0;
  show_load_progress = mi_load_progress;

  /* Turn off 8 bit strings in quoted output.  Any character with the
     high bit set is printed using C's octal format. */
  sevenbit_strings = 1;

  /* Tell the world that we're alive */
  fputs_unfiltered ("(gdb) \n", raw_stdout);
  gdb_flush (raw_stdout);

  if (!event_loop_p)
    simplified_command_loop (mi_input, mi_execute_command);
  else
    start_event_loop ();
}

static void
mi1_command_loop (void)
{
  mi_command_loop (1);
}

static void
mi2_command_loop (void)
{
  mi_command_loop (2);
}

static void
setup_architecture_data (void)
{
  /* don't trust REGISTER_BYTES to be zero. */
  old_regs = xmalloc (REGISTER_BYTES + 1);
  memset (old_regs, 0, REGISTER_BYTES + 1);
}

static void
mi_init_ui (char *arg0)
{
  if (strlen (interpreter_p) <= 2 ||
      interpreter_p[2] > '1')
    {
      /* HACK: Force stdout/stderr to point at the console.  This avoids
         any potential side effects caused by legacy code that is still
         using the TUI / fputs_unfiltered_hook */
      raw_stdout = stdio_fileopen (stdout);
      /* Route normal output through the MIx */
      gdb_stdout = mi_console_file_new (raw_stdout, "~");
    }
}

void
_initialize_mi_main (void)
{
  if (interpreter_p == NULL)
    return;

  /* If we're _the_ interpreter, take control. */
  if (strcmp (interpreter_p, "mi") == 0)
    command_loop_hook = mi2_command_loop;
  else if (strcmp (interpreter_p, "mi1") == 0)
    command_loop_hook = mi1_command_loop;
  else if (strcmp (interpreter_p, "mi2") == 0)
    command_loop_hook = mi2_command_loop;
  else
    return;

  init_ui_hook = mi_init_ui;
  setup_architecture_data ();
  register_gdbarch_swap (&old_regs, sizeof (old_regs), NULL);
  register_gdbarch_swap (NULL, 0, setup_architecture_data);
  if (event_loop_p)
    {
      /* These overwrite some of the initialization done in
	 _intialize_event_loop. */
      call_readline = gdb_readline2;
      input_handler = mi_execute_command_wrapper;
      add_file_handler (input_fd, stdin_event_handler, 0);
      async_command_editing_p = 0;
    }
  /* FIXME: Should we notify main that we are here as a possible
     interpreter? */
}