aboutsummaryrefslogtreecommitdiff
path: root/gdb/m88k-tdep.c
blob: 6a50126548dcfddd90e83ade7b4f910b828d3900 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
/* Target-dependent code for the Motorola 88000 series.

   Copyright (C) 2004-2018 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "dis-asm.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "gdbtypes.h"
#include "regcache.h"
#include "regset.h"
#include "symtab.h"
#include "trad-frame.h"
#include "value.h"
#include <algorithm>

#include "m88k-tdep.h"

/* Fetch the instruction at PC.  */

static unsigned long
m88k_fetch_instruction (CORE_ADDR pc, enum bfd_endian byte_order)
{
  return read_memory_unsigned_integer (pc, 4, byte_order);
}

/* Register information.  */

/* Return the name of register REGNUM.  */

static const char *
m88k_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *register_names[] =
  {
    "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
    "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
    "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
  };

  if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
    return register_names[regnum];

  return NULL;
}

/* Return the GDB type object for the "standard" data type of data in
   register REGNUM.  */

static struct type *
m88k_register_type (struct gdbarch *gdbarch, int regnum)
{
  /* SXIP, SNIP, SFIP and R1 contain code addresses.  */
  if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
      || regnum == M88K_R1_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;

  /* R30 and R31 typically contains data addresses.  */
  if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
    return builtin_type (gdbarch)->builtin_data_ptr;

  return builtin_type (gdbarch)->builtin_int32;
}


static CORE_ADDR
m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  /* All instructures are 4-byte aligned.  The lower 2 bits of SXIP,
     SNIP and SFIP are used for special purposes: bit 0 is the
     exception bit and bit 1 is the valid bit.  */
  return addr & ~0x3;
}

/* Use the program counter to determine the contents and size of a
   breakpoint instruction.  Return a pointer to a string of bytes that
   encode a breakpoint instruction, store the length of the string in
   *LEN and optionally adjust *PC to point to the correct memory
   location for inserting the breakpoint.  */

/* tb 0,r0,511 */
constexpr gdb_byte m88k_break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };

typedef BP_MANIPULATION (m88k_break_insn) m88k_breakpoint;

static CORE_ADDR
m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  CORE_ADDR pc;

  pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
  return m88k_addr_bits_remove (gdbarch, pc);
}

static void
m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  /* According to the MC88100 RISC Microprocessor User's Manual,
     section 6.4.3.1.2:

     "... can be made to return to a particular instruction by placing
     a valid instruction address in the SNIP and the next sequential
     instruction address in the SFIP (with V bits set and E bits
     clear).  The rte resumes execution at the instruction pointed to
     by the SNIP, then the SFIP."

     The E bit is the least significant bit (bit 0).  The V (valid)
     bit is bit 1.  This is why we logical or 2 into the values we are
     writing below.  It turns out that SXIP plays no role when
     returning from an exception so nothing special has to be done
     with it.  We could even (presumably) give it a totally bogus
     value.  */

  regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
  regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
  regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
}


/* The functions on this page are intended to be used to classify
   function arguments.  */

/* Check whether TYPE is "Integral or Pointer".  */

static int
m88k_integral_or_pointer_p (const struct type *type)
{
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
      {
	/* We have byte, half-word, word and extended-word/doubleword
           integral types.  */
	int len = TYPE_LENGTH (type);
	return (len == 1 || len == 2 || len == 4 || len == 8);
      }
      return 1;
    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
    case TYPE_CODE_RVALUE_REF:
      {
	/* Allow only 32-bit pointers.  */
	return (TYPE_LENGTH (type) == 4);
      }
      return 1;
    default:
      break;
    }

  return 0;
}

/* Check whether TYPE is "Floating".  */

static int
m88k_floating_p (const struct type *type)
{
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_FLT:
      {
	int len = TYPE_LENGTH (type);
	return (len == 4 || len == 8);
      }
    default:
      break;
    }

  return 0;
}

/* Check whether TYPE is "Structure or Union".  */

static int
m88k_structure_or_union_p (const struct type *type)
{
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      return 1;
    default:
      break;
    }

  return 0;
}

/* Check whether TYPE has 8-byte alignment.  */

static int
m88k_8_byte_align_p (struct type *type)
{
  if (m88k_structure_or_union_p (type))
    {
      int i;

      for (i = 0; i < TYPE_NFIELDS (type); i++)
	{
	  struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));

	  if (m88k_8_byte_align_p (subtype))
	    return 1;
	}
    }

  if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
    return (TYPE_LENGTH (type) == 8);

  return 0;
}

/* Check whether TYPE can be passed in a register.  */

static int
m88k_in_register_p (struct type *type)
{
  if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
    return 1;

  if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
    return 1;

  return 0;
}

static CORE_ADDR
m88k_store_arguments (struct regcache *regcache, int nargs,
		      struct value **args, CORE_ADDR sp)
{
  struct gdbarch *gdbarch = regcache->arch ();
  int num_register_words = 0;
  int num_stack_words = 0;
  int i;

  for (i = 0; i < nargs; i++)
    {
      struct type *type = value_type (args[i]);
      int len = TYPE_LENGTH (type);

      if (m88k_integral_or_pointer_p (type) && len < 4)
	{
	  args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
				args[i]);
	  type = value_type (args[i]);
	  len = TYPE_LENGTH (type);
	}

      if (m88k_in_register_p (type))
	{
	  int num_words = 0;

	  if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
	    num_words++;

	  num_words += ((len + 3) / 4);
	  if (num_register_words + num_words <= 8)
	    {
	      num_register_words += num_words;
	      continue;
	    }

	  /* We've run out of available registers.  Pass the argument
             on the stack.  */
	}

      if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
	num_stack_words++;

      num_stack_words += ((len + 3) / 4);
    }

  /* Allocate stack space.  */
  sp = align_down (sp - 32 - num_stack_words * 4, 16);
  num_stack_words = num_register_words = 0;

  for (i = 0; i < nargs; i++)
    {
      const bfd_byte *valbuf = value_contents (args[i]);
      struct type *type = value_type (args[i]);
      int len = TYPE_LENGTH (type);
      int stack_word = num_stack_words;

      if (m88k_in_register_p (type))
	{
	  int register_word = num_register_words;

	  if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
	    register_word++;

	  gdb_assert (len == 4 || len == 8);

	  if (register_word + len / 8 < 8)
	    {
	      int regnum = M88K_R2_REGNUM + register_word;

	      regcache_raw_write (regcache, regnum, valbuf);
	      if (len > 4)
		regcache_raw_write (regcache, regnum + 1, valbuf + 4);

	      num_register_words = (register_word + len / 4);
	      continue;
	    }
	}

      if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
	stack_word++;

      write_memory (sp + stack_word * 4, valbuf, len);
      num_stack_words = (stack_word + (len + 3) / 4);
    }

  return sp;
}

static CORE_ADDR
m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		      struct value **args, CORE_ADDR sp, int struct_return,
		      CORE_ADDR struct_addr)
{
  /* Set up the function arguments.  */
  sp = m88k_store_arguments (regcache, nargs, args, sp);
  gdb_assert (sp % 16 == 0);

  /* Store return value address.  */
  if (struct_return)
    regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);

  /* Store the stack pointer and return address in the appropriate
     registers.  */
  regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
  regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);

  /* Return the stack pointer.  */
  return sp;
}

static struct frame_id
m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame)
{
  CORE_ADDR sp;

  sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
  return frame_id_build (sp, get_frame_pc (this_frame));
}


/* Determine, for architecture GDBARCH, how a return value of TYPE
   should be returned.  If it is supposed to be returned in registers,
   and READBUF is non-zero, read the appropriate value from REGCACHE,
   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
   from WRITEBUF into REGCACHE.  */

static enum return_value_convention
m88k_return_value (struct gdbarch *gdbarch, struct value *function,
		   struct type *type, struct regcache *regcache,
		   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  int len = TYPE_LENGTH (type);
  gdb_byte buf[8];

  if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
    return RETURN_VALUE_STRUCT_CONVENTION;

  if (readbuf)
    {
      /* Read the contents of R2 and (if necessary) R3.  */
      regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
      if (len > 4)
	{
	  regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
	  gdb_assert (len == 8);
	  memcpy (readbuf, buf, len);
	}
      else
	{
	  /* Just stripping off any unused bytes should preserve the
             signed-ness just fine.  */
	  memcpy (readbuf, buf + 4 - len, len);
	}
    }

  if (writebuf)
    {
      /* Read the contents to R2 and (if necessary) R3.  */
      if (len > 4)
	{
	  gdb_assert (len == 8);
	  memcpy (buf, writebuf, 8);
	  regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
	}
      else
	{
	  /* ??? Do we need to do any sign-extension here?  */
	  memcpy (buf + 4 - len, writebuf, len);
	}
      regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* Default frame unwinder.  */

struct m88k_frame_cache
{
  /* Base address.  */
  CORE_ADDR base;
  CORE_ADDR pc;

  int sp_offset;
  int fp_offset;

  /* Table of saved registers.  */
  struct trad_frame_saved_reg *saved_regs;
};

/* Prologue analysis.  */

/* Macros for extracting fields from instructions.  */

#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
#define	SUBU_OFFSET(x)	((unsigned)(x & 0xFFFF))
#define	ST_OFFSET(x)	((unsigned)((x) & 0xFFFF))
#define	ST_SRC(x)	EXTRACT_FIELD ((x), 21, 5)
#define	ADDU_OFFSET(x)	((unsigned)(x & 0xFFFF))

/* Possible actions to be taken by the prologue analyzer for the
   instructions it encounters.  */

enum m88k_prologue_insn_action
{
  M88K_PIA_SKIP,		/* Ignore.  */
  M88K_PIA_NOTE_ST,		/* Note register store.  */
  M88K_PIA_NOTE_STD,		/* Note register pair store.  */
  M88K_PIA_NOTE_SP_ADJUSTMENT,	/* Note stack pointer adjustment.  */
  M88K_PIA_NOTE_FP_ASSIGNMENT,	/* Note frame pointer assignment.  */
  M88K_PIA_NOTE_BRANCH,		/* Note branch.  */
  M88K_PIA_NOTE_PROLOGUE_END	/* Note end of prologue.  */
};

/* Table of instructions that may comprise a function prologue.  */

struct m88k_prologue_insn
{
  unsigned long insn;
  unsigned long mask;
  enum m88k_prologue_insn_action action;
};

struct m88k_prologue_insn m88k_prologue_insn_table[] =
{
  /* Various register move instructions.  */
  { 0x58000000, 0xf800ffff, M88K_PIA_SKIP },     /* or/or.u with immed of 0 */
  { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP },     /* or rd,r0,rs */
  { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP },     /* or rd,rs,r0 */

  /* Various other instructions.  */
  { 0x58000000, 0xf8000000, M88K_PIA_SKIP },     /* or/or.u */

  /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8.  */
  { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },

  /* Frame pointer assignment: "addu r30,r31,n".  */
  { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },

  /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n".  */
  { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST },  /* st rx,sp,n */
  { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */

  /* Instructions needed for setting up r25 for pic code.  */
  { 0x5f200000, 0xffff0000, M88K_PIA_SKIP },     /* or.u r25,r0,offset_high */
  { 0xcc000002, 0xffffffff, M88K_PIA_SKIP },     /* bsr.n Lab */
  { 0x5b390000, 0xffff0000, M88K_PIA_SKIP },     /* or r25,r25,offset_low */
  { 0xf7396001, 0xffffffff, M88K_PIA_SKIP },     /* Lab: addu r25,r25,r1 */

  /* Various branch or jump instructions which have a delay slot --
     these do not form part of the prologue, but the instruction in
     the delay slot might be a store instruction which should be
     noted.  */
  { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
                                      /* br.n, bsr.n, bb0.n, or bb1.n */
  { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
  { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */

  /* Catch all.  Ends prologue analysis.  */
  { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
};

/* Do a full analysis of the function prologue at PC and update CACHE
   accordingly.  Bail out early if LIMIT is reached.  Return the
   address where the analysis stopped.  If LIMIT points beyond the
   function prologue, the return address should be the end of the
   prologue.  */

static CORE_ADDR
m88k_analyze_prologue (struct gdbarch *gdbarch,
		       CORE_ADDR pc, CORE_ADDR limit,
		       struct m88k_frame_cache *cache)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR end = limit;

  /* Provide a dummy cache if necessary.  */
  if (cache == NULL)
    {
      cache = XALLOCA (struct m88k_frame_cache);
      cache->saved_regs =
        XALLOCAVEC (struct trad_frame_saved_reg, M88K_R31_REGNUM + 1);

      /* We only initialize the members we care about.  */
      cache->saved_regs[M88K_R1_REGNUM].addr = -1;
      cache->fp_offset = -1;
    }

  while (pc < limit)
    {
      struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
      unsigned long insn = m88k_fetch_instruction (pc, byte_order);

      while ((insn & pi->mask) != pi->insn)
	pi++;

      switch (pi->action)
	{
	case M88K_PIA_SKIP:
	  /* If we have a frame pointer, and R1 has been saved,
             consider this instruction as not being part of the
             prologue.  */
	  if (cache->fp_offset != -1
	      && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
	    return std::min (pc, end);
	  break;

	case M88K_PIA_NOTE_ST:
	case M88K_PIA_NOTE_STD:
	  /* If no frame has been allocated, the stores aren't part of
             the prologue.  */
	  if (cache->sp_offset == 0)
	    return std::min (pc, end);

	  /* Record location of saved registers.  */
	  {
	    int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
	    ULONGEST offset = ST_OFFSET (insn);

	    cache->saved_regs[regnum].addr = offset;
	    if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
	      cache->saved_regs[regnum + 1].addr = offset + 4;
	  }
	  break;

	case M88K_PIA_NOTE_SP_ADJUSTMENT:
	  /* A second stack pointer adjustment isn't part of the
             prologue.  */
	  if (cache->sp_offset != 0)
	    return std::min (pc, end);

	  /* Store stack pointer adjustment.  */
	  cache->sp_offset = -SUBU_OFFSET (insn);
	  break;

	case M88K_PIA_NOTE_FP_ASSIGNMENT:
	  /* A second frame pointer assignment isn't part of the
             prologue.  */
	  if (cache->fp_offset != -1)
	    return std::min (pc, end);

	  /* Record frame pointer assignment.  */
	  cache->fp_offset = ADDU_OFFSET (insn);
	  break;

	case M88K_PIA_NOTE_BRANCH:
	  /* The branch instruction isn't part of the prologue, but
             the instruction in the delay slot might be.  Limit the
             prologue analysis to the delay slot and record the branch
             instruction as the end of the prologue.  */
	  limit = std::min (limit, pc + 2 * M88K_INSN_SIZE);
	  end = pc;
	  break;

	case M88K_PIA_NOTE_PROLOGUE_END:
	  return std::min (pc, end);
	}

      pc += M88K_INSN_SIZE;
    }

  return end;
}

/* An upper limit to the size of the prologue.  */
const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;

/* Return the address of first real instruction of the function
   starting at PC.  */

static CORE_ADDR
m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct symtab_and_line sal;
  CORE_ADDR func_start, func_end;

  /* This is the preferred method, find the end of the prologue by
     using the debugging information.  */
  if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
    {
      sal = find_pc_line (func_start, 0);

      if (sal.end < func_end && pc <= sal.end)
	return sal.end;
    }

  return m88k_analyze_prologue (gdbarch, pc, pc + m88k_max_prologue_size,
				NULL);
}

static struct m88k_frame_cache *
m88k_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct m88k_frame_cache *cache;
  CORE_ADDR frame_sp;

  if (*this_cache)
    return (struct m88k_frame_cache *) *this_cache;

  cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
  cache->fp_offset = -1;

  cache->pc = get_frame_func (this_frame);
  if (cache->pc != 0)
    m88k_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
			   cache);

  /* Calculate the stack pointer used in the prologue.  */
  if (cache->fp_offset != -1)
    {
      CORE_ADDR fp;

      fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM);
      frame_sp = fp - cache->fp_offset;
    }
  else
    {
      /* If we know where the return address is saved, we can take a
         solid guess at what the frame pointer should be.  */
      if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
	cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
      frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
    }

  /* Now that we know the stack pointer, adjust the location of the
     saved registers.  */
  {
    int regnum;

    for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
      if (cache->saved_regs[regnum].addr != -1)
	cache->saved_regs[regnum].addr += frame_sp;
  }

  /* Calculate the frame's base.  */
  cache->base = frame_sp - cache->sp_offset;
  trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);

  /* Identify SXIP with the return address in R1.  */
  cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];

  *this_cache = cache;
  return cache;
}

static void
m88k_frame_this_id (struct frame_info *this_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  (*this_id) = frame_id_build (cache->base, cache->pc);
}

static struct value *
m88k_frame_prev_register (struct frame_info *this_frame,
			  void **this_cache, int regnum)
{
  struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);

  if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
    {
      struct value *value;
      CORE_ADDR pc;

      value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
					    M88K_SXIP_REGNUM);
      pc = value_as_long (value);
      release_value (value);
      value_free (value);

      if (regnum == M88K_SFIP_REGNUM)
	pc += 4;

      return frame_unwind_got_constant (this_frame, regnum, pc + 4);
    }

  return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}

static const struct frame_unwind m88k_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  m88k_frame_this_id,
  m88k_frame_prev_register,
  NULL,
  default_frame_sniffer
};


static CORE_ADDR
m88k_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);

  if (cache->fp_offset != -1)
    return cache->base + cache->sp_offset + cache->fp_offset;

  return 0;
}

static const struct frame_base m88k_frame_base =
{
  &m88k_frame_unwind,
  m88k_frame_base_address,
  m88k_frame_base_address,
  m88k_frame_base_address
};


/* Core file support.  */

/* Supply register REGNUM from the buffer specified by GREGS and LEN
   in the general-purpose register set REGSET to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

static void
m88k_supply_gregset (const struct regset *regset,
		     struct regcache *regcache,
		     int regnum, const void *gregs, size_t len)
{
  const gdb_byte *regs = (const gdb_byte *) gregs;
  int i;

  for (i = 0; i < M88K_NUM_REGS; i++)
    {
      if (regnum == i || regnum == -1)
	regcache_raw_supply (regcache, i, regs + i * 4);
    }
}

/* Motorola 88000 register set.  */

static const struct regset m88k_gregset =
{
  NULL,
  m88k_supply_gregset
};

/* Iterate over supported core file register note sections. */

static void
m88k_iterate_over_regset_sections (struct gdbarch *gdbarch,
				   iterate_over_regset_sections_cb *cb,
				   void *cb_data,
				   const struct regcache *regcache)
{
  cb (".reg", M88K_NUM_REGS * 4, &m88k_gregset, NULL, cb_data);
}


static struct gdbarch *
m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;

  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* Allocate space for the new architecture.  */
  gdbarch = gdbarch_alloc (&info, NULL);

  /* There is no real `long double'.  */
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);

  set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
  set_gdbarch_register_name (gdbarch, m88k_register_name);
  set_gdbarch_register_type (gdbarch, m88k_register_type);

  /* Register numbers of various important registers.  */
  set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);

  /* Core file support.  */
  set_gdbarch_iterate_over_regset_sections
    (gdbarch, m88k_iterate_over_regset_sections);

  set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);

  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  /* Call dummy code.  */
  set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
  set_gdbarch_dummy_id (gdbarch, m88k_dummy_id);

  /* Return value info.  */
  set_gdbarch_return_value (gdbarch, m88k_return_value);

  set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
  set_gdbarch_breakpoint_kind_from_pc (gdbarch, m88k_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, m88k_breakpoint::bp_from_kind);
  set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
  set_gdbarch_write_pc (gdbarch, m88k_write_pc);

  frame_base_set_default (gdbarch, &m88k_frame_base);
  frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind);

  return gdbarch;
}

void
_initialize_m88k_tdep (void)
{
  gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
}