aboutsummaryrefslogtreecommitdiff
path: root/gdb/m68k-tdep.h
blob: 3c26b5315302bf9fbe2f9195fa496b0a822c1a53 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/* Target-dependent code for the Motorola 68000 series.

   Copyright (C) 1990-1996, 1999-2001, 2003-2004, 2007-2012 Free
   Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#ifndef M68K_TDEP_H
#define M68K_TDEP_H

struct frame_info;

/* Register numbers of various important registers.  */

enum m68k_regnum
{
  M68K_D0_REGNUM = 0,
  M68K_D1_REGNUM = 1,
  M68K_D2_REGNUM = 2,
  M68K_D7_REGNUM = 7,
  M68K_A0_REGNUM = 8,
  M68K_A1_REGNUM = 9,
  M68K_A2_REGNUM = 10,
  M68K_FP_REGNUM = 14,		/* Address of executing stack frame.  */
  M68K_SP_REGNUM = 15,		/* Address of top of stack.  */
  M68K_PS_REGNUM = 16,		/* Processor status.  */
  M68K_PC_REGNUM = 17,		/* Program counter.  */
  M68K_FP0_REGNUM = 18,		/* Floating point register 0.  */
  M68K_FPC_REGNUM = 26,		/* 68881 control register.  */
  M68K_FPS_REGNUM = 27,		/* 68881 status register.  */
  M68K_FPI_REGNUM = 28
};

/* Number of machine registers.  */
#define M68K_NUM_REGS	(M68K_FPI_REGNUM + 1)

/* Size of the largest register.  */
#define M68K_MAX_REGISTER_SIZE	12

/* Convention for returning structures.  */

enum struct_return
{
  pcc_struct_return,		/* Return "short" structures in memory.  */
  reg_struct_return		/* Return "short" structures in registers.  */
};

/* Particular flavour of m68k.  */
enum m68k_flavour
  {
    m68k_no_flavour,
    m68k_coldfire_flavour,
    m68k_fido_flavour
  };

/* Target-dependent structure in gdbarch.  */

struct gdbarch_tdep
{
  /* Offset to PC value in the jump buffer.  If this is negative,
     longjmp support will be disabled.  */
  int jb_pc;
  /* The size of each entry in the jump buffer.  */
  size_t jb_elt_size;

  /* Register in which the address to store a structure value is
     passed to a function.  */
  int struct_value_regnum;

  /* Convention for returning structures.  */
  enum struct_return struct_return;

  /* Convention for returning floats.  zero in int regs, non-zero in float.  */
  int float_return;

  /* The particular flavour of m68k.  */
  enum m68k_flavour flavour;

  /* Flag set if the floating point registers are present, or assumed
     to be present.  */
  int fpregs_present;

   /* ISA-specific data types.  */
  struct type *m68k_ps_type;
  struct type *m68881_ext_type;
};

/* Initialize a SVR4 architecture variant.  */
extern void m68k_svr4_init_abi (struct gdbarch_info, struct gdbarch *);


/* Functions exported from m68kbsd-tdep.c.  */

extern int m68kbsd_fpreg_offset (struct gdbarch *gdbarch, int regnum);

#endif /* m68k-tdep.h */
#n335'>335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/* CGEN generic opcode support.

   Copyright 1996, 1997, 1998, 1999, 2000, 2001
   Free Software Foundation, Inc.

   This file is part of the GNU Binutils and GDB, the GNU debugger.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License along
   with this program; if not, write to the Free Software Foundation, Inc.,
   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "sysdep.h"
#include <stdio.h>
#include "ansidecl.h"
#include "libiberty.h"
#include "safe-ctype.h"
#include "bfd.h"
#include "symcat.h"
#include "opcode/cgen.h"

#ifdef HAVE_ALLOCA_H
#include <alloca.h>
#endif

static unsigned int hash_keyword_name
  PARAMS ((const CGEN_KEYWORD *, const char *, int));
static unsigned int hash_keyword_value
  PARAMS ((const CGEN_KEYWORD *, unsigned int));
static void build_keyword_hash_tables
  PARAMS ((CGEN_KEYWORD *));

/* Return number of hash table entries to use for N elements.  */
#define KEYWORD_HASH_SIZE(n) ((n) <= 31 ? 17 : 31)

/* Look up *NAMEP in the keyword table KT.
   The result is the keyword entry or NULL if not found.  */

const CGEN_KEYWORD_ENTRY *
cgen_keyword_lookup_name (kt, name)
     CGEN_KEYWORD *kt;
     const char *name;
{
  const CGEN_KEYWORD_ENTRY *ke;
  const char *p,*n;

  if (kt->name_hash_table == NULL)
    build_keyword_hash_tables (kt);

  ke = kt->name_hash_table[hash_keyword_name (kt, name, 0)];

  /* We do case insensitive comparisons.
     If that ever becomes a problem, add an attribute that denotes
     "do case sensitive comparisons".  */

  while (ke != NULL)
    {
      n = name;
      p = ke->name;

      while (*p
	     && (*p == *n
		 || (ISALPHA (*p) && (TOLOWER (*p) == TOLOWER (*n)))))
	++n, ++p;

      if (!*p && !*n)
	return ke;

      ke = ke->next_name;
    }

  if (kt->null_entry)
    return kt->null_entry;
  return NULL;
}

/* Look up VALUE in the keyword table KT.
   The result is the keyword entry or NULL if not found.  */

const CGEN_KEYWORD_ENTRY *
cgen_keyword_lookup_value (kt, value)
     CGEN_KEYWORD *kt;
     int value;
{
  const CGEN_KEYWORD_ENTRY *ke;

  if (kt->name_hash_table == NULL)
    build_keyword_hash_tables (kt);

  ke = kt->value_hash_table[hash_keyword_value (kt, value)];

  while (ke != NULL)
    {
      if (value == ke->value)
	return ke;
      ke = ke->next_value;
    }

  return NULL;
}

/* Add an entry to a keyword table.  */

void
cgen_keyword_add (kt, ke)
     CGEN_KEYWORD *kt;
     CGEN_KEYWORD_ENTRY *ke;
{
  unsigned int hash;
  size_t i;

  if (kt->name_hash_table == NULL)
    build_keyword_hash_tables (kt);

  hash = hash_keyword_name (kt, ke->name, 0);
  ke->next_name = kt->name_hash_table[hash];
  kt->name_hash_table[hash] = ke;

  hash = hash_keyword_value (kt, ke->value);
  ke->next_value = kt->value_hash_table[hash];
  kt->value_hash_table[hash] = ke;

  if (ke->name[0] == 0)
    kt->null_entry = ke;

  for (i = 1; i < strlen (ke->name); i++)
    if (! ISALNUM (ke->name[i])
	&& ! strchr (kt->nonalpha_chars, ke->name[i]))
      {
	size_t idx = strlen (kt->nonalpha_chars);
	
	/* If you hit this limit, please don't just
	   increase the size of the field, instead
	   look for a better algorithm.  */
	if (idx >= sizeof (kt->nonalpha_chars) - 1)
	  abort ();
	kt->nonalpha_chars[idx] = ke->name[i];
	kt->nonalpha_chars[idx+1] = 0;
      }
}

/* FIXME: Need function to return count of keywords.  */

/* Initialize a keyword table search.
   SPEC is a specification of what to search for.
   A value of NULL means to find every keyword.
   Currently NULL is the only acceptable value [further specification
   deferred].
   The result is an opaque data item used to record the search status.
   It is passed to each call to cgen_keyword_search_next.  */

CGEN_KEYWORD_SEARCH
cgen_keyword_search_init (kt, spec)
     CGEN_KEYWORD *kt;
     const char *spec;
{
  CGEN_KEYWORD_SEARCH search;

  /* FIXME: Need to specify format of PARAMS.  */
  if (spec != NULL)
    abort ();

  if (kt->name_hash_table == NULL)
    build_keyword_hash_tables (kt);

  search.table = kt;
  search.spec = spec;
  search.current_hash = 0;
  search.current_entry = NULL;
  return search;
}

/* Return the next keyword specified by SEARCH.
   The result is the next entry or NULL if there are no more.  */

const CGEN_KEYWORD_ENTRY *
cgen_keyword_search_next (search)
     CGEN_KEYWORD_SEARCH *search;
{
  /* Has search finished?  */
  if (search->current_hash == search->table->hash_table_size)
    return NULL;

  /* Search in progress?  */
  if (search->current_entry != NULL
      /* Anything left on this hash chain?  */
      && search->current_entry->next_name != NULL)
    {
      search->current_entry = search->current_entry->next_name;
      return search->current_entry;
    }

  /* Move to next hash chain [unless we haven't started yet].  */
  if (search->current_entry != NULL)
    ++search->current_hash;

  while (search->current_hash < search->table->hash_table_size)
    {
      search->current_entry = search->table->name_hash_table[search->current_hash];
      if (search->current_entry != NULL)
	return search->current_entry;
      ++search->current_hash;
    }

  return NULL;
}

/* Return first entry in hash chain for NAME.
   If CASE_SENSITIVE_P is non-zero, return a case sensitive hash.  */

static unsigned int
hash_keyword_name (kt, name, case_sensitive_p)
     const CGEN_KEYWORD *kt;
     const char *name;
     int case_sensitive_p;
{
  unsigned int hash;

  if (case_sensitive_p)
    for (hash = 0; *name; ++name)
      hash = (hash * 97) + (unsigned char) *name;
  else
    for (hash = 0; *name; ++name)
      hash = (hash * 97) + (unsigned char) TOLOWER (*name);
  return hash % kt->hash_table_size;
}

/* Return first entry in hash chain for VALUE.  */

static unsigned int
hash_keyword_value (kt, value)
     const CGEN_KEYWORD *kt;
     unsigned int value;
{
  return value % kt->hash_table_size;
}

/* Build a keyword table's hash tables.
   We probably needn't build the value hash table for the assembler when
   we're using the disassembler, but we keep things simple.  */

static void
build_keyword_hash_tables (kt)
     CGEN_KEYWORD *kt;
{
  int i;
  /* Use the number of compiled in entries as an estimate for the
     typical sized table [not too many added at runtime].  */
  unsigned int size = KEYWORD_HASH_SIZE (kt->num_init_entries);

  kt->hash_table_size = size;
  kt->name_hash_table = (CGEN_KEYWORD_ENTRY **)
    xmalloc (size * sizeof (CGEN_KEYWORD_ENTRY *));
  memset (kt->name_hash_table, 0, size * sizeof (CGEN_KEYWORD_ENTRY *));
  kt->value_hash_table = (CGEN_KEYWORD_ENTRY **)
    xmalloc (size * sizeof (CGEN_KEYWORD_ENTRY *));
  memset (kt->value_hash_table, 0, size * sizeof (CGEN_KEYWORD_ENTRY *));

  /* The table is scanned backwards as we want keywords appearing earlier to
     be prefered over later ones.  */
  for (i = kt->num_init_entries - 1; i >= 0; --i)
    cgen_keyword_add (kt, &kt->init_entries[i]);
}

/* Hardware support.  */

/* Lookup a hardware element by its name.
   Returns NULL if NAME is not supported by the currently selected
   mach/isa.  */

const CGEN_HW_ENTRY *
cgen_hw_lookup_by_name (cd, name)
     CGEN_CPU_DESC cd;
     const char *name;
{
  unsigned int i;
  const CGEN_HW_ENTRY **hw = cd->hw_table.entries;

  for (i = 0; i < cd->hw_table.num_entries; ++i)
    if (hw[i] && strcmp (name, hw[i]->name) == 0)
      return hw[i];

  return NULL;
}

/* Lookup a hardware element by its number.
   Hardware elements are enumerated, however it may be possible to add some
   at runtime, thus HWNUM is not an enum type but rather an int.
   Returns NULL if HWNUM is not supported by the currently selected mach.  */

const CGEN_HW_ENTRY *
cgen_hw_lookup_by_num (cd, hwnum)
     CGEN_CPU_DESC cd;
     unsigned int hwnum;
{
  unsigned int i;
  const CGEN_HW_ENTRY **hw = cd->hw_table.entries;

  /* ??? This can be speeded up.  */
  for (i = 0; i < cd->hw_table.num_entries; ++i)
    if (hw[i] && hwnum == hw[i]->type)
      return hw[i];

  return NULL;
}

/* Operand support.  */

/* Lookup an operand by its name.
   Returns NULL if NAME is not supported by the currently selected
   mach/isa.  */

const CGEN_OPERAND *
cgen_operand_lookup_by_name (cd, name)
     CGEN_CPU_DESC cd;
     const char *name;
{
  unsigned int i;
  const CGEN_OPERAND **op = cd->operand_table.entries;

  for (i = 0; i < cd->operand_table.num_entries; ++i)
    if (op[i] && strcmp (name, op[i]->name) == 0)
      return op[i];

  return NULL;
}

/* Lookup an operand by its number.
   Operands are enumerated, however it may be possible to add some
   at runtime, thus OPNUM is not an enum type but rather an int.
   Returns NULL if OPNUM is not supported by the currently selected
   mach/isa.  */

const CGEN_OPERAND *
cgen_operand_lookup_by_num (cd, opnum)
     CGEN_CPU_DESC cd;
     int opnum;
{
  return cd->operand_table.entries[opnum];
}

/* Instruction support.  */

/* Return number of instructions.  This includes any added at runtime.  */

int
cgen_insn_count (cd)
     CGEN_CPU_DESC cd;
{
  int count = cd->insn_table.num_init_entries;
  CGEN_INSN_LIST *rt_insns = cd->insn_table.new_entries;

  for ( ; rt_insns != NULL; rt_insns = rt_insns->next)
    ++count;

  return count;
}

/* Return number of macro-instructions.
   This includes any added at runtime.  */

int
cgen_macro_insn_count (cd)
     CGEN_CPU_DESC cd;
{
  int count = cd->macro_insn_table.num_init_entries;
  CGEN_INSN_LIST *rt_insns = cd->macro_insn_table.new_entries;

  for ( ; rt_insns != NULL; rt_insns = rt_insns->next)
    ++count;

  return count;
}

/* Cover function to read and properly byteswap an insn value.  */

CGEN_INSN_INT
cgen_get_insn_value (cd, buf, length)
     CGEN_CPU_DESC cd;
     unsigned char *buf;
     int length;
{
  int big_p = (cd->insn_endian == CGEN_ENDIAN_BIG);
  int insn_chunk_bitsize = cd->insn_chunk_bitsize;
  CGEN_INSN_INT value = 0;

  if (insn_chunk_bitsize != 0 && insn_chunk_bitsize < length)
    {
      /* We need to divide up the incoming value into insn_chunk_bitsize-length
	 segments, and endian-convert them, one at a time. */
      int i;

      /* Enforce divisibility. */ 
      if ((length % insn_chunk_bitsize) != 0)
	abort ();

      for (i = 0; i < length; i += insn_chunk_bitsize) /* NB: i == bits */
	{
	  int index;
	  bfd_vma this_value;
	  index = i; /* NB: not dependent on endianness; opposite of cgen_put_insn_value! */
	  this_value = bfd_get_bits (& buf[index / 8], insn_chunk_bitsize, big_p);
	  value = (value << insn_chunk_bitsize) | this_value;
	}
    }
  else
    {
      value = bfd_get_bits (buf, length, cd->insn_endian == CGEN_ENDIAN_BIG);
    }

  return value;
}

/* Cover function to store an insn value properly byteswapped.  */

void
cgen_put_insn_value (cd, buf, length, value)
     CGEN_CPU_DESC cd;
     unsigned char *buf;
     int length;
     CGEN_INSN_INT value;
{
  int big_p = (cd->insn_endian == CGEN_ENDIAN_BIG);
  int insn_chunk_bitsize = cd->insn_chunk_bitsize;

  if (insn_chunk_bitsize != 0 && insn_chunk_bitsize < length)
    {
      /* We need to divide up the incoming value into insn_chunk_bitsize-length
	 segments, and endian-convert them, one at a time. */
      int i;

      /* Enforce divisibility. */ 
      if ((length % insn_chunk_bitsize) != 0)
	abort ();

      for (i = 0; i < length; i += insn_chunk_bitsize) /* NB: i == bits */
	{
	  int index;
	  index = (length - insn_chunk_bitsize - i); /* NB: not dependent on endianness! */
	  bfd_put_bits ((bfd_vma) value, & buf[index / 8], insn_chunk_bitsize, big_p);
	  value >>= insn_chunk_bitsize;
	}
    }
  else
    {
      bfd_put_bits ((bfd_vma) value, buf, length, big_p);
    }
}

/* Look up instruction INSN_*_VALUE and extract its fields.
   INSN_INT_VALUE is used if CGEN_INT_INSN_P.
   Otherwise INSN_BYTES_VALUE is used.
   INSN, if non-null, is the insn table entry.
   Otherwise INSN_*_VALUE is examined to compute it.
   LENGTH is the bit length of INSN_*_VALUE if known, otherwise 0.
   0 is only valid if `insn == NULL && ! CGEN_INT_INSN_P'.
   If INSN != NULL, LENGTH must be valid.
   ALIAS_P is non-zero if alias insns are to be included in the search.

   The result is a pointer to the insn table entry, or NULL if the instruction
   wasn't recognized.  */

/* ??? Will need to be revisited for VLIW architectures.  */

const CGEN_INSN *
cgen_lookup_insn (cd, insn, insn_int_value, insn_bytes_value, length, fields,
		  alias_p)
     CGEN_CPU_DESC cd;
     const CGEN_INSN *insn;
     CGEN_INSN_INT insn_int_value;
     /* ??? CGEN_INSN_BYTES would be a nice type name to use here.  */
     unsigned char *insn_bytes_value;
     int length;
     CGEN_FIELDS *fields;
     int alias_p;
{
  unsigned char *buf;
  CGEN_INSN_INT base_insn;
  CGEN_EXTRACT_INFO ex_info;
  CGEN_EXTRACT_INFO *info;

  if (cd->int_insn_p)
    {
      info = NULL;
      buf = (unsigned char *) alloca (cd->max_insn_bitsize / 8);
      cgen_put_insn_value (cd, buf, length, insn_int_value);
      base_insn = insn_int_value;
    }
  else
    {
      info = &ex_info;
      ex_info.dis_info = NULL;
      ex_info.insn_bytes = insn_bytes_value;
      ex_info.valid = -1;
      buf = insn_bytes_value;
      base_insn = cgen_get_insn_value (cd, buf, length);
    }

  if (!insn)
    {
      const CGEN_INSN_LIST *insn_list;

      /* The instructions are stored in hash lists.
	 Pick the first one and keep trying until we find the right one.  */

      insn_list = cgen_dis_lookup_insn (cd, buf, base_insn);
      while (insn_list != NULL)
	{
	  insn = insn_list->insn;

	  if (alias_p
	      /* FIXME: Ensure ALIAS attribute always has same index.  */
	      || ! CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_ALIAS))
	    {
	      /* Basic bit mask must be correct.  */
	      /* ??? May wish to allow target to defer this check until the
		 extract handler.  */
	      if ((base_insn & CGEN_INSN_BASE_MASK (insn))
		  == CGEN_INSN_BASE_VALUE (insn))
		{
		  /* ??? 0 is passed for `pc' */
		  int elength = CGEN_EXTRACT_FN (cd, insn)
		    (cd, insn, info, base_insn, fields, (bfd_vma) 0);
		  if (elength > 0)
		    {
		      /* sanity check */
		      if (length != 0 && length != elength)
			abort ();
		      return insn;
		    }
		}
	    }

	  insn_list = insn_list->next;
	}
    }
  else
    {
      /* Sanity check: can't pass an alias insn if ! alias_p.  */
      if (! alias_p
	  && CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_ALIAS))
	abort ();
      /* Sanity check: length must be correct.  */
      if (length != CGEN_INSN_BITSIZE (insn))
	abort ();

      /* ??? 0 is passed for `pc' */
      length = CGEN_EXTRACT_FN (cd, insn)
	(cd, insn, info, base_insn, fields, (bfd_vma) 0);
      /* Sanity check: must succeed.
	 Could relax this later if it ever proves useful.  */
      if (length == 0)
	abort ();
      return insn;
    }

  return NULL;
}

/* Fill in the operand instances used by INSN whose operands are FIELDS.
   INDICES is a pointer to a buffer of MAX_OPERAND_INSTANCES ints to be filled
   in.  */

void
cgen_get_insn_operands (cd, insn, fields, indices)
     CGEN_CPU_DESC cd;
     const CGEN_INSN *insn;
     const CGEN_FIELDS *fields;
     int *indices;
{
  const CGEN_OPINST *opinst;
  int i;

  if (insn->opinst == NULL)
    abort ();
  for (i = 0, opinst = insn->opinst; opinst->type != CGEN_OPINST_END; ++i, ++opinst)
    {
      enum cgen_operand_type op_type = opinst->op_type;
      if (op_type == CGEN_OPERAND_NIL)
	indices[i] = opinst->index;
      else
	indices[i] = (*cd->get_int_operand) (cd, op_type, fields);
    }
}

/* Cover function to cgen_get_insn_operands when either INSN or FIELDS
   isn't known.
   The INSN, INSN_*_VALUE, and LENGTH arguments are passed to
   cgen_lookup_insn unchanged.
   INSN_INT_VALUE is used if CGEN_INT_INSN_P.
   Otherwise INSN_BYTES_VALUE is used.

   The result is the insn table entry or NULL if the instruction wasn't
   recognized.  */

const CGEN_INSN *
cgen_lookup_get_insn_operands (cd, insn, insn_int_value, insn_bytes_value,
			       length, indices, fields)
     CGEN_CPU_DESC cd;
     const CGEN_INSN *insn;
     CGEN_INSN_INT insn_int_value;
     /* ??? CGEN_INSN_BYTES would be a nice type name to use here.  */
     unsigned char *insn_bytes_value;
     int length;
     int *indices;
     CGEN_FIELDS *fields;
{
  /* Pass non-zero for ALIAS_P only if INSN != NULL.
     If INSN == NULL, we want a real insn.  */
  insn = cgen_lookup_insn (cd, insn, insn_int_value, insn_bytes_value,
			   length, fields, insn != NULL);
  if (! insn)
    return NULL;

  cgen_get_insn_operands (cd, insn, fields, indices);
  return insn;
}

/* Allow signed overflow of instruction fields.  */
void
cgen_set_signed_overflow_ok (cd)
     CGEN_CPU_DESC cd;
{
  cd->signed_overflow_ok_p = 1;
}

/* Generate an error message if a signed field in an instruction overflows.  */
void
cgen_clear_signed_overflow_ok (cd)
     CGEN_CPU_DESC cd;
{
  cd->signed_overflow_ok_p = 0;
}

/* Will an error message be generated if a signed field in an instruction overflows ? */
unsigned int
cgen_signed_overflow_ok_p (cd)
     CGEN_CPU_DESC cd;
{
  return cd->signed_overflow_ok_p;
}