aboutsummaryrefslogtreecommitdiff
path: root/gdb/m68k-tdep.c
blob: b00b0ee3c94407523c8ef2246aa165bfc2fa4fd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
/* Target dependent code for the Motorola 68000 series.
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "symtab.h"
#include "gdbcore.h"
#include "value.h"
#include "gdb_string.h"
#include "inferior.h"
#include "regcache.h"
#include "arch-utils.h"


#define P_LINKL_FP	0x480e
#define P_LINKW_FP	0x4e56
#define P_PEA_FP	0x4856
#define P_MOVL_SP_FP	0x2c4f
#define P_MOVL		0x207c
#define P_JSR		0x4eb9
#define P_BSR		0x61ff
#define P_LEAL		0x43fb
#define P_MOVML		0x48ef
#define P_FMOVM		0xf237
#define P_TRAP		0x4e40


/* Register numbers of various important registers.
   Note that some of these values are "real" register numbers,
   and correspond to the general registers of the machine,
   and some are "phony" register numbers which are too large
   to be actual register numbers as far as the user is concerned
   but do serve to get the desired values when passed to read_register.  */

/* Note: Since they are used in files other than this (monitor files), 
   D0_REGNUM and A0_REGNUM are currently defined in tm-m68k.h.  */

enum
{
  E_A1_REGNUM = 9,
  E_FP_REGNUM = 14,		/* Contains address of executing stack frame */
  E_SP_REGNUM = 15,		/* Contains address of top of stack */
  E_PS_REGNUM = 16,		/* Contains processor status */
  E_PC_REGNUM = 17,		/* Contains program counter */
  E_FP0_REGNUM = 18,		/* Floating point register 0 */
  E_FPC_REGNUM = 26,		/* 68881 control register */
  E_FPS_REGNUM = 27,		/* 68881 status register */
  E_FPI_REGNUM = 28
};

#define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
#define REGISTER_BYTES_NOFP (16*4 + 8)

#define NUM_FREGS (NUM_REGS-24)

/* Offset from SP to first arg on stack at first instruction of a function */

#define SP_ARG0 (1 * 4)

/* This was determined by experimentation on hp300 BSD 4.3.  Perhaps
   it corresponds to some offset in /usr/include/sys/user.h or
   something like that.  Using some system include file would
   have the advantage of probably being more robust in the face
   of OS upgrades, but the disadvantage of being wrong for
   cross-debugging.  */

#define SIG_PC_FP_OFFSET 530

#define TARGET_M68K


#if !defined (BPT_VECTOR)
#define BPT_VECTOR 0xf
#endif

#if !defined (REMOTE_BPT_VECTOR)
#define REMOTE_BPT_VECTOR 1
#endif


void m68k_frame_init_saved_regs (struct frame_info *frame_info);


/* gdbarch_breakpoint_from_pc is set to m68k_local_breakpoint_from_pc
   so m68k_remote_breakpoint_from_pc is currently not used.  */

const static unsigned char *
m68k_remote_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  static unsigned char break_insn[] = {0x4e, (0x40 | REMOTE_BPT_VECTOR)};
  *lenptr = sizeof (break_insn);
  return break_insn;
}

const static unsigned char *
m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  static unsigned char break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
  *lenptr = sizeof (break_insn);
  return break_insn;
}


static int
m68k_register_bytes_ok (long numbytes)
{
  return ((numbytes == REGISTER_BYTES_FP)
	  || (numbytes == REGISTER_BYTES_NOFP));
}

/* Number of bytes of storage in the actual machine representation
   for register regnum.  On the 68000, all regs are 4 bytes
   except the floating point regs which are 12 bytes.  */
/* Note that the unsigned cast here forces the result of the
   subtraction to very high positive values if regnum < FP0_REGNUM */

static int
m68k_register_raw_size (int regnum)
{
  return (((unsigned) (regnum) - FP0_REGNUM) < 8 ? 12 : 4);
}

/* Number of bytes of storage in the program's representation
   for register regnum.  On the 68000, all regs are 4 bytes
   except the floating point regs which are 12-byte long doubles.  */

static int
m68k_register_virtual_size (int regnum)
{
  return (((unsigned) (regnum) - FP0_REGNUM) < 8 ? 12 : 4);
}

/* Return the GDB type object for the "standard" data type of data 
   in register N.  This should be int for D0-D7, long double for FP0-FP7,
   and void pointer for all others (A0-A7, PC, SR, FPCONTROL etc).
   Note, for registers which contain addresses return pointer to void, 
   not pointer to char, because we don't want to attempt to print 
   the string after printing the address.  */

static struct type *
m68k_register_virtual_type (int regnum)
{
  if ((unsigned) regnum >= E_FPC_REGNUM)
    return lookup_pointer_type (builtin_type_void);
  else if ((unsigned) regnum >= FP0_REGNUM)
    return builtin_type_long_double;
  else if ((unsigned) regnum >= A0_REGNUM)
    return lookup_pointer_type (builtin_type_void);
  else
    return builtin_type_int;
}

/* Function: m68k_register_name
   Returns the name of the standard m68k register regnum. */

static const char *
m68k_register_name (int regnum)
{
  static char *register_names[] = {
    "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
    "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
    "ps", "pc",
    "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
    "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
  };

  if (regnum < 0 ||
      regnum >= sizeof (register_names) / sizeof (register_names[0]))
    internal_error (__FILE__, __LINE__,
		    "m68k_register_name: illegal register number %d", regnum);
  else
    return register_names[regnum];
}

/* Stack must be kept short aligned when doing function calls.  */

static CORE_ADDR
m68k_stack_align (CORE_ADDR addr)
{
  return ((addr + 1) & ~1);
}

/* Index within `registers' of the first byte of the space for
   register regnum.  */

static int
m68k_register_byte (int regnum)
{
  if (regnum >= E_FPC_REGNUM)
    return (((regnum - E_FPC_REGNUM) * 4) + 168);
  else if (regnum >= FP0_REGNUM)
    return (((regnum - FP0_REGNUM) * 12) + 72);
  else
    return (regnum * 4);
}

/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function. */

static void
m68k_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  write_register (E_A1_REGNUM, addr);
}

/* Extract from an array regbuf containing the (raw) register state
   a function return value of type type, and copy that, in virtual format,
   into valbuf.  This is assuming that floating point values are returned
   as doubles in d0/d1.  */

static void
m68k_deprecated_extract_return_value (struct type *type, char *regbuf,
				      char *valbuf)
{
  int offset = 0;
  int typeLength = TYPE_LENGTH (type);

  if (typeLength < 4)
    offset = 4 - typeLength;

  memcpy (valbuf, regbuf + offset, typeLength);
}

static CORE_ADDR
m68k_deprecated_extract_struct_value_address (char *regbuf)
{
  return (*(CORE_ADDR *) (regbuf));
}

/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  Assumes floats are passed
   in d0/d1.  */

static void
m68k_store_return_value (struct type *type, char *valbuf)
{
  write_register_bytes (0, valbuf, TYPE_LENGTH (type));
}

/* Describe the pointer in each stack frame to the previous stack frame
   (its caller).  */

/* FRAME_CHAIN takes a frame's nominal address and produces the frame's
   chain-pointer.
   In the case of the 68000, the frame's nominal address
   is the address of a 4-byte word containing the calling frame's address.  */

/* If we are chaining from sigtramp, then manufacture a sigtramp frame
   (which isn't really on the stack.  I'm not sure this is right for anything
   but BSD4.3 on an hp300.  */

static CORE_ADDR
m68k_frame_chain (struct frame_info *thisframe)
{
  if (thisframe->signal_handler_caller)
    return thisframe->frame;
  else if (!inside_entry_file ((thisframe)->pc))
    return read_memory_integer ((thisframe)->frame, 4);
  else
    return 0;
}

/* A function that tells us whether the function invocation represented
   by fi does not have a frame on the stack associated with it.  If it
   does not, FRAMELESS is set to 1, else 0.  */

static int
m68k_frameless_function_invocation (struct frame_info *fi)
{
  if (fi->signal_handler_caller)
    return 0;
  else
    return frameless_look_for_prologue (fi);
}

static CORE_ADDR
m68k_frame_saved_pc (struct frame_info *frame)
{
  if (frame->signal_handler_caller)
    {
      if (frame->next)
	return read_memory_integer (frame->next->frame + SIG_PC_FP_OFFSET, 4);
      else
	return read_memory_integer (read_register (SP_REGNUM)
				    + SIG_PC_FP_OFFSET - 8, 4);
    }
  else
    return read_memory_integer (frame->frame + 4, 4);
}


/* The only reason this is here is the tm-altos.h reference below.  It
   was moved back here from tm-m68k.h.  FIXME? */

extern CORE_ADDR
altos_skip_prologue (CORE_ADDR pc)
{
  register int op = read_memory_integer (pc, 2);
  if (op == P_LINKW_FP)
    pc += 4;			/* Skip link #word */
  else if (op == P_LINKL_FP)
    pc += 6;			/* Skip link #long */
  /* Not sure why branches are here.  */
  /* From tm-altos.h */
  else if (op == 0060000)
    pc += 4;			/* Skip bra #word */
  else if (op == 00600377)
    pc += 6;			/* skip bra #long */
  else if ((op & 0177400) == 0060000)
    pc += 2;			/* skip bra #char */
  return pc;
}

int
delta68_in_sigtramp (CORE_ADDR pc, char *name)
{
  if (name != NULL)
    return strcmp (name, "_sigcode") == 0;
  else
    return 0;
}

CORE_ADDR
delta68_frame_args_address (struct frame_info *frame_info)
{
  /* we assume here that the only frameless functions are the system calls
     or other functions who do not put anything on the stack. */
  if (frame_info->signal_handler_caller)
    return frame_info->frame + 12;
  else if (frameless_look_for_prologue (frame_info))
    {
      /* Check for an interrupted system call */
      if (frame_info->next && frame_info->next->signal_handler_caller)
	return frame_info->next->frame + 16;
      else
	return frame_info->frame + 4;
    }
  else
    return frame_info->frame;
}

CORE_ADDR
delta68_frame_saved_pc (struct frame_info *frame_info)
{
  return read_memory_integer (delta68_frame_args_address (frame_info) + 4, 4);
}

/* Return number of args passed to a frame.
   Can return -1, meaning no way to tell.  */

int
isi_frame_num_args (struct frame_info *fi)
{
  int val;
  CORE_ADDR pc = FRAME_SAVED_PC (fi);
  int insn = 0177777 & read_memory_integer (pc, 2);
  val = 0;
  if (insn == 0047757 || insn == 0157374)	/* lea W(sp),sp or addaw #W,sp */
    val = read_memory_integer (pc + 2, 2);
  else if ((insn & 0170777) == 0050217	/* addql #N, sp */
	   || (insn & 0170777) == 0050117)	/* addqw */
    {
      val = (insn >> 9) & 7;
      if (val == 0)
	val = 8;
    }
  else if (insn == 0157774)	/* addal #WW, sp */
    val = read_memory_integer (pc + 2, 4);
  val >>= 2;
  return val;
}

int
delta68_frame_num_args (struct frame_info *fi)
{
  int val;
  CORE_ADDR pc = FRAME_SAVED_PC (fi);
  int insn = 0177777 & read_memory_integer (pc, 2);
  val = 0;
  if (insn == 0047757 || insn == 0157374)	/* lea W(sp),sp or addaw #W,sp */
    val = read_memory_integer (pc + 2, 2);
  else if ((insn & 0170777) == 0050217	/* addql #N, sp */
	   || (insn & 0170777) == 0050117)	/* addqw */
    {
      val = (insn >> 9) & 7;
      if (val == 0)
	val = 8;
    }
  else if (insn == 0157774)	/* addal #WW, sp */
    val = read_memory_integer (pc + 2, 4);
  val >>= 2;
  return val;
}

int
news_frame_num_args (struct frame_info *fi)
{
  int val;
  CORE_ADDR pc = FRAME_SAVED_PC (fi);
  int insn = 0177777 & read_memory_integer (pc, 2);
  val = 0;
  if (insn == 0047757 || insn == 0157374)	/* lea W(sp),sp or addaw #W,sp */
    val = read_memory_integer (pc + 2, 2);
  else if ((insn & 0170777) == 0050217	/* addql #N, sp */
	   || (insn & 0170777) == 0050117)	/* addqw */
    {
      val = (insn >> 9) & 7;
      if (val == 0)
	val = 8;
    }
  else if (insn == 0157774)	/* addal #WW, sp */
    val = read_memory_integer (pc + 2, 4);
  val >>= 2;
  return val;
}

/* Insert the specified number of args and function address
   into a call sequence of the above form stored at DUMMYNAME.
   We use the BFD routines to store a big-endian value of known size.  */

void
m68k_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
		     struct value **args, struct type *type, int gcc_p)
{
  bfd_putb32 (fun, (unsigned char *) dummy + CALL_DUMMY_START_OFFSET + 2);
  bfd_putb32 (nargs * 4,
	      (unsigned char *) dummy + CALL_DUMMY_START_OFFSET + 8);
}


/* Push an empty stack frame, to record the current PC, etc.  */

void
m68k_push_dummy_frame (void)
{
  register CORE_ADDR sp = read_register (SP_REGNUM);
  register int regnum;
  char raw_buffer[12];

  sp = push_word (sp, read_register (PC_REGNUM));
  sp = push_word (sp, read_register (FP_REGNUM));
  write_register (FP_REGNUM, sp);

  /* Always save the floating-point registers, whether they exist on
     this target or not.  */
  for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
    {
      read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
      sp = push_bytes (sp, raw_buffer, 12);
    }

  for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
    {
      sp = push_word (sp, read_register (regnum));
    }
  sp = push_word (sp, read_register (PS_REGNUM));
  write_register (SP_REGNUM, sp);
}

/* Discard from the stack the innermost frame,
   restoring all saved registers.  */

void
m68k_pop_frame (void)
{
  register struct frame_info *frame = get_current_frame ();
  register CORE_ADDR fp;
  register int regnum;
  char raw_buffer[12];

  fp = FRAME_FP (frame);
  m68k_frame_init_saved_regs (frame);
  for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
    {
      if (frame->saved_regs[regnum])
	{
	  read_memory (frame->saved_regs[regnum], raw_buffer, 12);
	  write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
	}
    }
  for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
    {
      if (frame->saved_regs[regnum])
	{
	  write_register (regnum,
			  read_memory_integer (frame->saved_regs[regnum], 4));
	}
    }
  if (frame->saved_regs[PS_REGNUM])
    {
      write_register (PS_REGNUM,
		      read_memory_integer (frame->saved_regs[PS_REGNUM], 4));
    }
  write_register (FP_REGNUM, read_memory_integer (fp, 4));
  write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
  write_register (SP_REGNUM, fp + 8);
  flush_cached_frames ();
}


/* Given an ip value corresponding to the start of a function,
   return the ip of the first instruction after the function 
   prologue.  This is the generic m68k support.  Machines which
   require something different can override the SKIP_PROLOGUE
   macro to point elsewhere.

   Some instructions which typically may appear in a function
   prologue include:

   A link instruction, word form:

   link.w       %a6,&0                  4e56  XXXX

   A link instruction, long form:

   link.l  %fp,&F%1             480e  XXXX  XXXX

   A movm instruction to preserve integer regs:

   movm.l  &M%1,(4,%sp)         48ef  XXXX  XXXX

   A fmovm instruction to preserve float regs:

   fmovm   &FPM%1,(FPO%1,%sp)   f237  XXXX  XXXX  XXXX  XXXX

   Some profiling setup code (FIXME, not recognized yet):

   lea.l   (.L3,%pc),%a1                43fb  XXXX  XXXX  XXXX
   bsr     _mcount                      61ff  XXXX  XXXX

 */

CORE_ADDR
m68k_skip_prologue (CORE_ADDR ip)
{
  register CORE_ADDR limit;
  struct symtab_and_line sal;
  register int op;

  /* Find out if there is a known limit for the extent of the prologue.
     If so, ensure we don't go past it.  If not, assume "infinity". */

  sal = find_pc_line (ip, 0);
  limit = (sal.end) ? sal.end : (CORE_ADDR) ~0;

  while (ip < limit)
    {
      op = read_memory_integer (ip, 2);
      op &= 0xFFFF;

      if (op == P_LINKW_FP)
	ip += 4;		/* Skip link.w */
      else if (op == P_PEA_FP)
	ip += 2;		/* Skip pea %fp */
      else if (op == P_MOVL_SP_FP)
	ip += 2;		/* Skip move.l %sp, %fp */
      else if (op == P_LINKL_FP)
	ip += 6;		/* Skip link.l */
      else if (op == P_MOVML)
	ip += 6;		/* Skip movm.l */
      else if (op == P_FMOVM)
	ip += 10;		/* Skip fmovm */
      else
	break;			/* Found unknown code, bail out. */
    }
  return (ip);
}

/* Store the addresses of the saved registers of the frame described by 
   FRAME_INFO in its saved_regs field.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.  */

void
m68k_frame_init_saved_regs (struct frame_info *frame_info)
{
  register int regnum;
  register int regmask;
  register CORE_ADDR next_addr;
  register CORE_ADDR pc;

  /* First possible address for a pc in a call dummy for this frame.  */
  CORE_ADDR possible_call_dummy_start =
    (frame_info)->frame - 28 - FP_REGNUM * 4 - 4 - 8 * 12;

  int nextinsn;

  if (frame_info->saved_regs)
    return;

  frame_saved_regs_zalloc (frame_info);

  memset (frame_info->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);

  if ((frame_info)->pc >= possible_call_dummy_start
      && (frame_info)->pc <= (frame_info)->frame)
    {

      /* It is a call dummy.  We could just stop now, since we know
         what the call dummy saves and where.  But this code proceeds
         to parse the "prologue" which is part of the call dummy.
         This is needlessly complex and confusing.  FIXME.  */

      next_addr = (frame_info)->frame;
      pc = possible_call_dummy_start;
    }
  else
    {
      pc = get_pc_function_start ((frame_info)->pc);

      nextinsn = read_memory_integer (pc, 2);
      if (P_PEA_FP == nextinsn
	  && P_MOVL_SP_FP == read_memory_integer (pc + 2, 2))
	{
	  /* pea %fp
	     move.l %sp, %fp */
	  next_addr = frame_info->frame;
	  pc += 4;
	}
      else if (P_LINKL_FP == nextinsn)
	/* link.l %fp */
	/* Find the address above the saved   
	   regs using the amount of storage from the link instruction.  */
	{
	  next_addr = (frame_info)->frame + read_memory_integer (pc + 2, 4);
	  pc += 6;
	}
      else if (P_LINKW_FP == nextinsn)
	/* link.w %fp */
	/* Find the address above the saved   
	   regs using the amount of storage from the link instruction.  */
	{
	  next_addr = (frame_info)->frame + read_memory_integer (pc + 2, 2);
	  pc += 4;
	}
      else
	goto lose;

      /* If have an addal #-n, sp next, adjust next_addr.  */
      if ((0177777 & read_memory_integer (pc, 2)) == 0157774)
	next_addr += read_memory_integer (pc += 2, 4), pc += 4;
    }

  for (;;)
    {
      nextinsn = 0xffff & read_memory_integer (pc, 2);
      regmask = read_memory_integer (pc + 2, 2);
      /* fmovemx to -(sp) */
      if (0xf227 == nextinsn && (regmask & 0xff00) == 0xe000)
	{
	  /* Regmask's low bit is for register fp7, the first pushed */
	  for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
	    if (regmask & 1)
	      frame_info->saved_regs[regnum] = (next_addr -= 12);
	  pc += 4;
	}
      /* fmovemx to (fp + displacement) */
      else if (0171056 == nextinsn && (regmask & 0xff00) == 0xf000)
	{
	  register CORE_ADDR addr;

	  addr = (frame_info)->frame + read_memory_integer (pc + 4, 2);
	  /* Regmask's low bit is for register fp7, the first pushed */
	  for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
	    if (regmask & 1)
	      {
		frame_info->saved_regs[regnum] = addr;
		addr += 12;
	      }
	  pc += 6;
	}
      /* moveml to (sp) */
      else if (0044327 == nextinsn)
	{
	  /* Regmask's low bit is for register 0, the first written */
	  for (regnum = 0; regnum < 16; regnum++, regmask >>= 1)
	    if (regmask & 1)
	      {
		frame_info->saved_regs[regnum] = next_addr;
		next_addr += 4;
	      }
	  pc += 4;
	}
      /* moveml to (fp + displacement) */
      else if (0044356 == nextinsn)
	{
	  register CORE_ADDR addr;

	  addr = (frame_info)->frame + read_memory_integer (pc + 4, 2);
	  /* Regmask's low bit is for register 0, the first written */
	  for (regnum = 0; regnum < 16; regnum++, regmask >>= 1)
	    if (regmask & 1)
	      {
		frame_info->saved_regs[regnum] = addr;
		addr += 4;
	      }
	  pc += 6;
	}
      /* moveml to -(sp) */
      else if (0044347 == nextinsn)
	{
	  /* Regmask's low bit is for register 15, the first pushed */
	  for (regnum = 16; --regnum >= 0; regmask >>= 1)
	    if (regmask & 1)
	      frame_info->saved_regs[regnum] = (next_addr -= 4);
	  pc += 4;
	}
      /* movl r,-(sp) */
      else if (0x2f00 == (0xfff0 & nextinsn))
	{
	  regnum = 0xf & nextinsn;
	  frame_info->saved_regs[regnum] = (next_addr -= 4);
	  pc += 2;
	}
      /* fmovemx to index of sp */
      else if (0xf236 == nextinsn && (regmask & 0xff00) == 0xf000)
	{
	  /* Regmask's low bit is for register fp0, the first written */
	  for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
	    if (regmask & 1)
	      {
		frame_info->saved_regs[regnum] = next_addr;
		next_addr += 12;
	      }
	  pc += 10;
	}
      /* clrw -(sp); movw ccr,-(sp) */
      else if (0x4267 == nextinsn && 0x42e7 == regmask)
	{
	  frame_info->saved_regs[PS_REGNUM] = (next_addr -= 4);
	  pc += 4;
	}
      else
	break;
    }
lose:;
  frame_info->saved_regs[SP_REGNUM] = (frame_info)->frame + 8;
  frame_info->saved_regs[FP_REGNUM] = (frame_info)->frame;
  frame_info->saved_regs[PC_REGNUM] = (frame_info)->frame + 4;
#ifdef SIG_SP_FP_OFFSET
  /* Adjust saved SP_REGNUM for fake _sigtramp frames.  */
  if (frame_info->signal_handler_caller && frame_info->next)
    frame_info->saved_regs[SP_REGNUM] =
      frame_info->next->frame + SIG_SP_FP_OFFSET;
#endif
}


#ifdef USE_PROC_FS		/* Target dependent support for /proc */

#include <sys/procfs.h>

/* Prototypes for supply_gregset etc. */
#include "gregset.h"

/*  The /proc interface divides the target machine's register set up into
   two different sets, the general register set (gregset) and the floating
   point register set (fpregset).  For each set, there is an ioctl to get
   the current register set and another ioctl to set the current values.

   The actual structure passed through the ioctl interface is, of course,
   naturally machine dependent, and is different for each set of registers.
   For the m68k for example, the general register set is typically defined
   by:

   typedef int gregset_t[18];

   #define      R_D0    0
   ...
   #define      R_PS    17

   and the floating point set by:

   typedef      struct fpregset {
   int  f_pcr;
   int  f_psr;
   int  f_fpiaddr;
   int  f_fpregs[8][3];         (8 regs, 96 bits each)
   } fpregset_t;

   These routines provide the packing and unpacking of gregset_t and
   fpregset_t formatted data.

 */

/* Atari SVR4 has R_SR but not R_PS */

#if !defined (R_PS) && defined (R_SR)
#define R_PS R_SR
#endif

/*  Given a pointer to a general register set in /proc format (gregset_t *),
   unpack the register contents and supply them as gdb's idea of the current
   register values. */

void
supply_gregset (gregset_t *gregsetp)
{
  register int regi;
  register greg_t *regp = (greg_t *) gregsetp;

  for (regi = 0; regi < R_PC; regi++)
    {
      supply_register (regi, (char *) (regp + regi));
    }
  supply_register (PS_REGNUM, (char *) (regp + R_PS));
  supply_register (PC_REGNUM, (char *) (regp + R_PC));
}

void
fill_gregset (gregset_t *gregsetp, int regno)
{
  register int regi;
  register greg_t *regp = (greg_t *) gregsetp;

  for (regi = 0; regi < R_PC; regi++)
    {
      if ((regno == -1) || (regno == regi))
	{
	  *(regp + regi) = *(int *) &registers[REGISTER_BYTE (regi)];
	}
    }
  if ((regno == -1) || (regno == PS_REGNUM))
    {
      *(regp + R_PS) = *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
    }
  if ((regno == -1) || (regno == PC_REGNUM))
    {
      *(regp + R_PC) = *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
    }
}

#if defined (FP0_REGNUM)

/*  Given a pointer to a floating point register set in /proc format
   (fpregset_t *), unpack the register contents and supply them as gdb's
   idea of the current floating point register values. */

void
supply_fpregset (fpregset_t *fpregsetp)
{
  register int regi;
  char *from;

  for (regi = FP0_REGNUM; regi < E_FPC_REGNUM; regi++)
    {
      from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
      supply_register (regi, from);
    }
  supply_register (E_FPC_REGNUM, (char *) &(fpregsetp->f_pcr));
  supply_register (E_FPS_REGNUM, (char *) &(fpregsetp->f_psr));
  supply_register (E_FPI_REGNUM, (char *) &(fpregsetp->f_fpiaddr));
}

/*  Given a pointer to a floating point register set in /proc format
   (fpregset_t *), update the register specified by REGNO from gdb's idea
   of the current floating point register set.  If REGNO is -1, update
   them all. */

void
fill_fpregset (fpregset_t *fpregsetp, int regno)
{
  int regi;
  char *to;
  char *from;

  for (regi = FP0_REGNUM; regi < E_FPC_REGNUM; regi++)
    {
      if ((regno == -1) || (regno == regi))
	{
	  from = (char *) &registers[REGISTER_BYTE (regi)];
	  to = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
	  memcpy (to, from, REGISTER_RAW_SIZE (regi));
	}
    }
  if ((regno == -1) || (regno == E_FPC_REGNUM))
    {
      fpregsetp->f_pcr = *(int *) &registers[REGISTER_BYTE (E_FPC_REGNUM)];
    }
  if ((regno == -1) || (regno == E_FPS_REGNUM))
    {
      fpregsetp->f_psr = *(int *) &registers[REGISTER_BYTE (E_FPS_REGNUM)];
    }
  if ((regno == -1) || (regno == E_FPI_REGNUM))
    {
      fpregsetp->f_fpiaddr = *(int *) &registers[REGISTER_BYTE (E_FPI_REGNUM)];
    }
}

#endif /* defined (FP0_REGNUM) */

#endif /* USE_PROC_FS */

/* Figure out where the longjmp will land.  Slurp the args out of the stack.
   We expect the first arg to be a pointer to the jmp_buf structure from which
   we extract the pc (JB_PC) that we will land at.  The pc is copied into PC.
   This routine returns true on success. */

/* NOTE: cagney/2000-11-08: For this function to be fully multi-arched
   the macro's JB_PC and JB_ELEMENT_SIZE would need to be moved into
   the ``struct gdbarch_tdep'' object and then set on a target ISA/ABI
   dependant basis. */

int
m68k_get_longjmp_target (CORE_ADDR *pc)
{
#if defined (JB_PC) && defined (JB_ELEMENT_SIZE)
  char *buf;
  CORE_ADDR sp, jb_addr;

  buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
  sp = read_register (SP_REGNUM);

  if (target_read_memory (sp + SP_ARG0,	/* Offset of first arg on stack */
			  buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
    return 0;

  jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);

  if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
			  TARGET_PTR_BIT / TARGET_CHAR_BIT))
    return 0;

  *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);

  return 1;
#else
  internal_error (__FILE__, __LINE__,
		  "m68k_get_longjmp_target: not implemented");
  return 0;
#endif
}

/* Immediately after a function call, return the saved pc before the frame
   is setup.  For sun3's, we check for the common case of being inside of a
   system call, and if so, we know that Sun pushes the call # on the stack
   prior to doing the trap. */

CORE_ADDR
m68k_saved_pc_after_call (struct frame_info *frame)
{
#ifdef SYSCALL_TRAP
  int op;

  op = read_memory_integer (frame->pc - SYSCALL_TRAP_OFFSET, 2);

  if (op == SYSCALL_TRAP)
    return read_memory_integer (read_register (SP_REGNUM) + 4, 4);
  else
#endif /* SYSCALL_TRAP */
    return read_memory_integer (read_register (SP_REGNUM), 4);
}

/* Function: m68k_gdbarch_init
   Initializer function for the m68k gdbarch vector.
   Called by gdbarch.  Sets up the gdbarch vector(s) for this target. */

static struct gdbarch *
m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  static LONGEST call_dummy_words[7] = { 0xf227e0ff, 0x48e7fffc, 0x426742e7,
    0x4eb93232, 0x3232dffc, 0x69696969,
    (0x4e404e71 | (BPT_VECTOR << 16))
  };
  struct gdbarch_tdep *tdep = NULL;
  struct gdbarch *gdbarch;

  /* find a candidate among the list of pre-declared architectures. */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return (arches->gdbarch);

#if 0
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
#endif
 
  gdbarch = gdbarch_alloc (&info, 0);

  set_gdbarch_long_double_format (gdbarch, &floatformat_m68881_ext);
  set_gdbarch_long_double_bit (gdbarch, 96);

  set_gdbarch_function_start_offset (gdbarch, 0);

  set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
  set_gdbarch_saved_pc_after_call (gdbarch, m68k_saved_pc_after_call);
  set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);

  /* Stack grows down. */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_stack_align (gdbarch, m68k_stack_align);


  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  set_gdbarch_decr_pc_after_break (gdbarch, 2);

  set_gdbarch_store_struct_return (gdbarch, m68k_store_struct_return);
  set_gdbarch_deprecated_extract_return_value (gdbarch,
					       m68k_deprecated_extract_return_value);
  set_gdbarch_store_return_value (gdbarch, m68k_store_return_value);

  set_gdbarch_frame_chain (gdbarch, m68k_frame_chain);
  set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
  set_gdbarch_frame_saved_pc (gdbarch, m68k_frame_saved_pc);
  set_gdbarch_frame_init_saved_regs (gdbarch, m68k_frame_init_saved_regs);
  set_gdbarch_frameless_function_invocation (gdbarch,
					     m68k_frameless_function_invocation);
  /* OK to default this value to 'unknown'. */
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
  set_gdbarch_frame_args_skip (gdbarch, 8);
  set_gdbarch_frame_args_address (gdbarch, default_frame_address);
  set_gdbarch_frame_locals_address (gdbarch, default_frame_address);

  set_gdbarch_register_raw_size (gdbarch, m68k_register_raw_size);
  set_gdbarch_register_virtual_size (gdbarch, m68k_register_virtual_size);
  set_gdbarch_max_register_raw_size (gdbarch, 12);
  set_gdbarch_max_register_virtual_size (gdbarch, 12);
  set_gdbarch_register_virtual_type (gdbarch, m68k_register_virtual_type);
  set_gdbarch_register_name (gdbarch, m68k_register_name);
  set_gdbarch_register_size (gdbarch, 4);
  set_gdbarch_register_byte (gdbarch, m68k_register_byte);
  set_gdbarch_num_regs (gdbarch, 29);
  set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
  set_gdbarch_register_bytes (gdbarch, (16 * 4 + 8 + 8 * 12 + 3 * 4));
  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_ps_regnum (gdbarch, E_PS_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, E_FP0_REGNUM);

  set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
  set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 24);
  set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_call_dummy_length (gdbarch, 28);
  set_gdbarch_call_dummy_start_offset (gdbarch, 12);

  set_gdbarch_call_dummy_words (gdbarch, call_dummy_words);
  set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_words));
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_fix_call_dummy (gdbarch, m68k_fix_call_dummy);
  set_gdbarch_push_dummy_frame (gdbarch, m68k_push_dummy_frame);
  set_gdbarch_pop_frame (gdbarch, m68k_pop_frame);

  return gdbarch;
}


static void
m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
{

}

void
_initialize_m68k_tdep (void)
{
  gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
  tm_print_insn = print_insn_m68k;
}