1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
|
/* Target-dependent code for Motorola 68HC11 & 68HC12
Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software
Foundation, Inc.
Contributed by Stephane Carrez, stcarrez@nerim.fr
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "dwarf2-frame.h"
#include "trad-frame.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "value.h"
#include "inferior.h"
#include "dis-asm.h"
#include "symfile.h"
#include "objfiles.h"
#include "arch-utils.h"
#include "regcache.h"
#include "reggroups.h"
#include "target.h"
#include "opcode/m68hc11.h"
#include "elf/m68hc11.h"
#include "elf-bfd.h"
/* Macros for setting and testing a bit in a minimal symbol.
For 68HC11/68HC12 we have two flags that tell which return
type the function is using. This is used for prologue and frame
analysis to compute correct stack frame layout.
The MSB of the minimal symbol's "info" field is used for this purpose.
MSYMBOL_SET_RTC Actually sets the "RTC" bit.
MSYMBOL_SET_RTI Actually sets the "RTI" bit.
MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
#define MSYMBOL_SET_RTC(msym) \
MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
| 0x80000000)
#define MSYMBOL_SET_RTI(msym) \
MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
| 0x40000000)
#define MSYMBOL_IS_RTC(msym) \
(((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
#define MSYMBOL_IS_RTI(msym) \
(((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
enum insn_return_kind {
RETURN_RTS,
RETURN_RTC,
RETURN_RTI
};
/* Register numbers of various important registers.
Note that some of these values are "real" register numbers,
and correspond to the general registers of the machine,
and some are "phony" register numbers which are too large
to be actual register numbers as far as the user is concerned
but do serve to get the desired values when passed to read_register. */
#define HARD_X_REGNUM 0
#define HARD_D_REGNUM 1
#define HARD_Y_REGNUM 2
#define HARD_SP_REGNUM 3
#define HARD_PC_REGNUM 4
#define HARD_A_REGNUM 5
#define HARD_B_REGNUM 6
#define HARD_CCR_REGNUM 7
/* 68HC12 page number register.
Note: to keep a compatibility with gcc register naming, we must
not have to rename FP and other soft registers. The page register
is a real hard register and must therefore be counted by NUM_REGS.
For this it has the same number as Z register (which is not used). */
#define HARD_PAGE_REGNUM 8
#define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
/* Z is replaced by X or Y by gcc during machine reorg.
??? There is no way to get it and even know whether
it's in X or Y or in ZS. */
#define SOFT_Z_REGNUM 8
/* Soft registers. These registers are special. There are treated
like normal hard registers by gcc and gdb (ie, within dwarf2 info).
They are physically located in memory. */
#define SOFT_FP_REGNUM 9
#define SOFT_TMP_REGNUM 10
#define SOFT_ZS_REGNUM 11
#define SOFT_XY_REGNUM 12
#define SOFT_UNUSED_REGNUM 13
#define SOFT_D1_REGNUM 14
#define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
#define M68HC11_MAX_SOFT_REGS 32
#define M68HC11_NUM_REGS (8)
#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
#define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
#define M68HC11_REG_SIZE (2)
#define M68HC12_NUM_REGS (9)
#define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
#define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
struct insn_sequence;
struct gdbarch_tdep
{
/* Stack pointer correction value. For 68hc11, the stack pointer points
to the next push location. An offset of 1 must be applied to obtain
the address where the last value is saved. For 68hc12, the stack
pointer points to the last value pushed. No offset is necessary. */
int stack_correction;
/* Description of instructions in the prologue. */
struct insn_sequence *prologue;
/* True if the page memory bank register is available
and must be used. */
int use_page_register;
/* ELF flags for ABI. */
int elf_flags;
};
#define M6811_TDEP gdbarch_tdep (current_gdbarch)
#define STACK_CORRECTION (M6811_TDEP->stack_correction)
#define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
struct m68hc11_unwind_cache
{
/* The previous frame's inner most stack address. Used as this
frame ID's stack_addr. */
CORE_ADDR prev_sp;
/* The frame's base, optionally used by the high-level debug info. */
CORE_ADDR base;
CORE_ADDR pc;
int size;
int prologue_type;
CORE_ADDR return_pc;
CORE_ADDR sp_offset;
int frameless;
enum insn_return_kind return_kind;
/* Table indicating the location of each and every register. */
struct trad_frame_saved_reg *saved_regs;
};
/* Table of registers for 68HC11. This includes the hard registers
and the soft registers used by GCC. */
static char *
m68hc11_register_names[] =
{
"x", "d", "y", "sp", "pc", "a", "b",
"ccr", "page", "frame","tmp", "zs", "xy", 0,
"d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14",
"d15", "d16", "d17", "d18", "d19", "d20", "d21",
"d22", "d23", "d24", "d25", "d26", "d27", "d28",
"d29", "d30", "d31", "d32"
};
struct m68hc11_soft_reg
{
const char *name;
CORE_ADDR addr;
};
static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
static int soft_min_addr;
static int soft_max_addr;
static int soft_reg_initialized = 0;
/* Look in the symbol table for the address of a pseudo register
in memory. If we don't find it, pretend the register is not used
and not available. */
static void
m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
{
struct minimal_symbol *msymbol;
msymbol = lookup_minimal_symbol (name, NULL, NULL);
if (msymbol)
{
reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
reg->name = xstrdup (name);
/* Keep track of the address range for soft registers. */
if (reg->addr < (CORE_ADDR) soft_min_addr)
soft_min_addr = reg->addr;
if (reg->addr > (CORE_ADDR) soft_max_addr)
soft_max_addr = reg->addr;
}
else
{
reg->name = 0;
reg->addr = 0;
}
}
/* Initialize the table of soft register addresses according
to the symbol table. */
static void
m68hc11_initialize_register_info (void)
{
int i;
if (soft_reg_initialized)
return;
soft_min_addr = INT_MAX;
soft_max_addr = 0;
for (i = 0; i < M68HC11_ALL_REGS; i++)
{
soft_regs[i].name = 0;
}
m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
{
char buf[10];
sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
m68hc11_get_register_info (&soft_regs[i], buf);
}
if (soft_regs[SOFT_FP_REGNUM].name == 0)
{
warning ("No frame soft register found in the symbol table.\n");
warning ("Stack backtrace will not work.\n");
}
soft_reg_initialized = 1;
}
/* Given an address in memory, return the soft register number if
that address corresponds to a soft register. Returns -1 if not. */
static int
m68hc11_which_soft_register (CORE_ADDR addr)
{
int i;
if (addr < soft_min_addr || addr > soft_max_addr)
return -1;
for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
{
if (soft_regs[i].name && soft_regs[i].addr == addr)
return i;
}
return -1;
}
/* Fetch a pseudo register. The 68hc11 soft registers are treated like
pseudo registers. They are located in memory. Translate the register
fetch into a memory read. */
static void
m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
struct regcache *regcache,
int regno, void *buf)
{
/* The PC is a pseudo reg only for 68HC12 with the memory bank
addressing mode. */
if (regno == M68HC12_HARD_PC_REGNUM)
{
ULONGEST pc;
const int regsize = TYPE_LENGTH (builtin_type_uint32);
regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
if (pc >= 0x8000 && pc < 0xc000)
{
ULONGEST page;
regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
pc -= 0x8000;
pc += (page << 14);
pc += 0x1000000;
}
store_unsigned_integer (buf, regsize, pc);
return;
}
m68hc11_initialize_register_info ();
/* Fetch a soft register: translate into a memory read. */
if (soft_regs[regno].name)
{
target_read_memory (soft_regs[regno].addr, buf, 2);
}
else
{
memset (buf, 0, 2);
}
}
/* Store a pseudo register. Translate the register store
into a memory write. */
static void
m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
struct regcache *regcache,
int regno, const void *buf)
{
/* The PC is a pseudo reg only for 68HC12 with the memory bank
addressing mode. */
if (regno == M68HC12_HARD_PC_REGNUM)
{
const int regsize = TYPE_LENGTH (builtin_type_uint32);
char *tmp = alloca (regsize);
CORE_ADDR pc;
memcpy (tmp, buf, regsize);
pc = extract_unsigned_integer (tmp, regsize);
if (pc >= 0x1000000)
{
pc -= 0x1000000;
regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
(pc >> 14) & 0x0ff);
pc &= 0x03fff;
regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
pc + 0x8000);
}
else
regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
return;
}
m68hc11_initialize_register_info ();
/* Store a soft register: translate into a memory write. */
if (soft_regs[regno].name)
{
const int regsize = 2;
char *tmp = alloca (regsize);
memcpy (tmp, buf, regsize);
target_write_memory (soft_regs[regno].addr, tmp, regsize);
}
}
static const char *
m68hc11_register_name (int reg_nr)
{
if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
return "pc";
if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
return "ppc";
if (reg_nr < 0)
return NULL;
if (reg_nr >= M68HC11_ALL_REGS)
return NULL;
m68hc11_initialize_register_info ();
/* If we don't know the address of a soft register, pretend it
does not exist. */
if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
return NULL;
return m68hc11_register_names[reg_nr];
}
static const unsigned char *
m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
static unsigned char breakpoint[] = {0x0};
*lenptr = sizeof (breakpoint);
return breakpoint;
}
/* 68HC11 & 68HC12 prologue analysis.
*/
#define MAX_CODES 12
/* 68HC11 opcodes. */
#undef M6811_OP_PAGE2
#define M6811_OP_PAGE2 (0x18)
#define M6811_OP_LDX (0xde)
#define M6811_OP_LDX_EXT (0xfe)
#define M6811_OP_PSHX (0x3c)
#define M6811_OP_STS (0x9f)
#define M6811_OP_STS_EXT (0xbf)
#define M6811_OP_TSX (0x30)
#define M6811_OP_XGDX (0x8f)
#define M6811_OP_ADDD (0xc3)
#define M6811_OP_TXS (0x35)
#define M6811_OP_DES (0x34)
/* 68HC12 opcodes. */
#define M6812_OP_PAGE2 (0x18)
#define M6812_OP_MOVW (0x01)
#define M6812_PB_PSHW (0xae)
#define M6812_OP_STS (0x5f)
#define M6812_OP_STS_EXT (0x7f)
#define M6812_OP_LEAS (0x1b)
#define M6812_OP_PSHX (0x34)
#define M6812_OP_PSHY (0x35)
/* Operand extraction. */
#define OP_DIRECT (0x100) /* 8-byte direct addressing. */
#define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
#define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
#define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
/* Identification of the sequence. */
enum m6811_seq_type
{
P_LAST = 0,
P_SAVE_REG, /* Save a register on the stack. */
P_SET_FRAME, /* Setup the frame pointer. */
P_LOCAL_1, /* Allocate 1 byte for locals. */
P_LOCAL_2, /* Allocate 2 bytes for locals. */
P_LOCAL_N /* Allocate N bytes for locals. */
};
struct insn_sequence {
enum m6811_seq_type type;
unsigned length;
unsigned short code[MAX_CODES];
};
/* Sequence of instructions in the 68HC11 function prologue. */
static struct insn_sequence m6811_prologue[] = {
/* Sequences to save a soft-register. */
{ P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
M6811_OP_PSHX } },
{ P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
M6811_OP_PAGE2, M6811_OP_PSHX } },
{ P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
M6811_OP_PSHX } },
{ P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
M6811_OP_PAGE2, M6811_OP_PSHX } },
/* Sequences to allocate local variables. */
{ P_LOCAL_N, 7, { M6811_OP_TSX,
M6811_OP_XGDX,
M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
M6811_OP_XGDX,
M6811_OP_TXS } },
{ P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
M6811_OP_PAGE2, M6811_OP_XGDX,
M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
M6811_OP_PAGE2, M6811_OP_XGDX,
M6811_OP_PAGE2, M6811_OP_TXS } },
{ P_LOCAL_1, 1, { M6811_OP_DES } },
{ P_LOCAL_2, 1, { M6811_OP_PSHX } },
{ P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
/* Initialize the frame pointer. */
{ P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
{ P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
{ P_LAST, 0, { 0 } }
};
/* Sequence of instructions in the 68HC12 function prologue. */
static struct insn_sequence m6812_prologue[] = {
{ P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
OP_IMM_HIGH, OP_IMM_LOW } },
{ P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
{ P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
{ P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
{ P_LOCAL_2, 1, { M6812_OP_PSHX } },
{ P_LOCAL_2, 1, { M6812_OP_PSHY } },
{ P_LAST, 0 }
};
/* Analyze the sequence of instructions starting at the given address.
Returns a pointer to the sequence when it is recognized and
the optional value (constant/address) associated with it. */
static struct insn_sequence *
m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
CORE_ADDR *val)
{
unsigned char buffer[MAX_CODES];
unsigned bufsize;
unsigned j;
CORE_ADDR cur_val;
short v = 0;
bufsize = 0;
for (; seq->type != P_LAST; seq++)
{
cur_val = 0;
for (j = 0; j < seq->length; j++)
{
if (bufsize < j + 1)
{
buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
1);
bufsize++;
}
/* Continue while we match the opcode. */
if (seq->code[j] == buffer[j])
continue;
if ((seq->code[j] & 0xf00) == 0)
break;
/* Extract a sequence parameter (address or constant). */
switch (seq->code[j])
{
case OP_DIRECT:
cur_val = (CORE_ADDR) buffer[j];
break;
case OP_IMM_HIGH:
cur_val = cur_val & 0x0ff;
cur_val |= (buffer[j] << 8);
break;
case OP_IMM_LOW:
cur_val &= 0x0ff00;
cur_val |= buffer[j];
break;
case OP_PBYTE:
if ((buffer[j] & 0xE0) == 0x80)
{
v = buffer[j] & 0x1f;
if (v & 0x10)
v |= 0xfff0;
}
else if ((buffer[j] & 0xfe) == 0xf0)
{
v = read_memory_unsigned_integer (pc + j + 1, 1);
if (buffer[j] & 1)
v |= 0xff00;
}
else if (buffer[j] == 0xf2)
{
v = read_memory_unsigned_integer (pc + j + 1, 2);
}
cur_val = v;
break;
}
}
/* We have a full match. */
if (j == seq->length)
{
*val = cur_val;
return seq;
}
}
return 0;
}
/* Return the instruction that the function at the PC is using. */
static enum insn_return_kind
m68hc11_get_return_insn (CORE_ADDR pc)
{
struct minimal_symbol *sym;
/* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
function is stored by elfread.c in the high bit of the info field.
Use this to decide which instruction the function uses to return. */
sym = lookup_minimal_symbol_by_pc (pc);
if (sym == 0)
return RETURN_RTS;
if (MSYMBOL_IS_RTC (sym))
return RETURN_RTC;
else if (MSYMBOL_IS_RTI (sym))
return RETURN_RTI;
else
return RETURN_RTS;
}
/* Analyze the function prologue to find some information
about the function:
- the PC of the first line (for m68hc11_skip_prologue)
- the offset of the previous frame saved address (from current frame)
- the soft registers which are pushed. */
static CORE_ADDR
m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
struct m68hc11_unwind_cache *info)
{
LONGEST save_addr;
CORE_ADDR func_end;
int size;
int found_frame_point;
int saved_reg;
int done = 0;
struct insn_sequence *seq_table;
info->size = 0;
info->sp_offset = 0;
if (pc >= current_pc)
return current_pc;
size = 0;
m68hc11_initialize_register_info ();
if (pc == 0)
{
info->size = 0;
return pc;
}
seq_table = gdbarch_tdep (current_gdbarch)->prologue;
/* The 68hc11 stack is as follows:
| |
+-----------+
| |
| args |
| |
+-----------+
| PC-return |
+-----------+
| Old frame |
+-----------+
| |
| Locals |
| |
+-----------+ <--- current frame
| |
With most processors (like 68K) the previous frame can be computed
easily because it is always at a fixed offset (see link/unlink).
That is, locals are accessed with negative offsets, arguments are
accessed with positive ones. Since 68hc11 only supports offsets
in the range [0..255], the frame is defined at the bottom of
locals (see picture).
The purpose of the analysis made here is to find out the size
of locals in this function. An alternative to this is to use
DWARF2 info. This would be better but I don't know how to
access dwarf2 debug from this function.
Walk from the function entry point to the point where we save
the frame. While walking instructions, compute the size of bytes
which are pushed. This gives us the index to access the previous
frame.
We limit the search to 128 bytes so that the algorithm is bounded
in case of random and wrong code. We also stop and abort if
we find an instruction which is not supposed to appear in the
prologue (as generated by gcc 2.95, 2.96).
*/
func_end = pc + 128;
found_frame_point = 0;
info->size = 0;
save_addr = 0;
while (!done && pc + 2 < func_end)
{
struct insn_sequence *seq;
CORE_ADDR val;
seq = m68hc11_analyze_instruction (seq_table, pc, &val);
if (seq == 0)
break;
/* If we are within the instruction group, we can't advance the
pc nor the stack offset. Otherwise the caller's stack computed
from the current stack can be wrong. */
if (pc + seq->length > current_pc)
break;
pc = pc + seq->length;
if (seq->type == P_SAVE_REG)
{
if (found_frame_point)
{
saved_reg = m68hc11_which_soft_register (val);
if (saved_reg < 0)
break;
save_addr -= 2;
info->saved_regs[saved_reg].addr = save_addr;
}
else
{
size += 2;
}
}
else if (seq->type == P_SET_FRAME)
{
found_frame_point = 1;
info->size = size;
}
else if (seq->type == P_LOCAL_1)
{
size += 1;
}
else if (seq->type == P_LOCAL_2)
{
size += 2;
}
else if (seq->type == P_LOCAL_N)
{
/* Stack pointer is decremented for the allocation. */
if (val & 0x8000)
size -= (int) (val) | 0xffff0000;
else
size -= val;
}
}
if (found_frame_point == 0)
info->sp_offset = size;
else
info->sp_offset = -1;
return pc;
}
static CORE_ADDR
m68hc11_skip_prologue (CORE_ADDR pc)
{
CORE_ADDR func_addr, func_end;
struct symtab_and_line sal;
struct m68hc11_unwind_cache tmp_cache = { 0 };
/* If we have line debugging information, then the end of the
prologue should be the first assembly instruction of the
first source line. */
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
{
sal = find_pc_line (func_addr, 0);
if (sal.end && sal.end < func_end)
return sal.end;
}
pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
return pc;
}
static CORE_ADDR
m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
ULONGEST pc;
frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
&pc);
return pc;
}
/* Put here the code to store, into fi->saved_regs, the addresses of
the saved registers of frame described by FRAME_INFO. This
includes special registers such as pc and fp saved in special ways
in the stack frame. sp is even more special: the address we return
for it IS the sp for the next frame. */
struct m68hc11_unwind_cache *
m68hc11_frame_unwind_cache (struct frame_info *next_frame,
void **this_prologue_cache)
{
ULONGEST prev_sp;
ULONGEST this_base;
struct m68hc11_unwind_cache *info;
CORE_ADDR current_pc;
int i;
if ((*this_prologue_cache))
return (*this_prologue_cache);
info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
(*this_prologue_cache) = info;
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
info->pc = frame_func_unwind (next_frame);
info->size = 0;
info->return_kind = m68hc11_get_return_insn (info->pc);
/* The SP was moved to the FP. This indicates that a new frame
was created. Get THIS frame's FP value by unwinding it from
the next frame. */
frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
if (this_base == 0)
{
info->base = 0;
return info;
}
current_pc = frame_pc_unwind (next_frame);
if (info->pc != 0)
m68hc11_scan_prologue (info->pc, current_pc, info);
info->saved_regs[HARD_PC_REGNUM].addr = info->size;
if (info->sp_offset != (CORE_ADDR) -1)
{
info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
prev_sp = this_base + info->sp_offset + 2;
this_base += STACK_CORRECTION;
}
else
{
/* The FP points at the last saved register. Adjust the FP back
to before the first saved register giving the SP. */
prev_sp = this_base + info->size + 2;
this_base += STACK_CORRECTION;
if (soft_regs[SOFT_FP_REGNUM].name)
info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
}
if (info->return_kind == RETURN_RTC)
{
prev_sp += 1;
info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
}
else if (info->return_kind == RETURN_RTI)
{
prev_sp += 7;
info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
}
/* Add 1 here to adjust for the post-decrement nature of the push
instruction.*/
info->prev_sp = prev_sp;
info->base = this_base;
/* Adjust all the saved registers so that they contain addresses and not
offsets. */
for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS - 1; i++)
if (trad_frame_addr_p (info->saved_regs, i))
{
info->saved_regs[i].addr += this_base;
}
/* The previous frame's SP needed to be computed. Save the computed
value. */
trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
return info;
}
/* Given a GDB frame, determine the address of the calling function's
frame. This will be used to create a new GDB frame struct. */
static void
m68hc11_frame_this_id (struct frame_info *next_frame,
void **this_prologue_cache,
struct frame_id *this_id)
{
struct m68hc11_unwind_cache *info
= m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
CORE_ADDR base;
CORE_ADDR func;
struct frame_id id;
/* The FUNC is easy. */
func = frame_func_unwind (next_frame);
/* Hopefully the prologue analysis either correctly determined the
frame's base (which is the SP from the previous frame), or set
that base to "NULL". */
base = info->prev_sp;
if (base == 0)
return;
id = frame_id_build (base, func);
(*this_id) = id;
}
static void
m68hc11_frame_prev_register (struct frame_info *next_frame,
void **this_prologue_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, void *bufferp)
{
struct m68hc11_unwind_cache *info
= m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
trad_frame_prev_register (next_frame, info->saved_regs, regnum,
optimizedp, lvalp, addrp, realnump, bufferp);
if (regnum == HARD_PC_REGNUM)
{
/* Take into account the 68HC12 specific call (PC + page). */
if (info->return_kind == RETURN_RTC
&& *addrp >= 0x08000 && *addrp < 0x0c000
&& USE_PAGE_REGISTER)
{
int page_optimized;
CORE_ADDR page;
trad_frame_prev_register (next_frame, info->saved_regs,
HARD_PAGE_REGNUM, &page_optimized,
0, &page, 0, 0);
*addrp -= 0x08000;
*addrp += ((page & 0x0ff) << 14);
*addrp += 0x1000000;
}
}
}
static const struct frame_unwind m68hc11_frame_unwind = {
NORMAL_FRAME,
m68hc11_frame_this_id,
m68hc11_frame_prev_register
};
const struct frame_unwind *
m68hc11_frame_sniffer (struct frame_info *next_frame)
{
return &m68hc11_frame_unwind;
}
static CORE_ADDR
m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
struct m68hc11_unwind_cache *info
= m68hc11_frame_unwind_cache (next_frame, this_cache);
return info->base;
}
static CORE_ADDR
m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
{
CORE_ADDR addr;
struct m68hc11_unwind_cache *info
= m68hc11_frame_unwind_cache (next_frame, this_cache);
addr = info->base + info->size;
if (info->return_kind == RETURN_RTC)
addr += 1;
else if (info->return_kind == RETURN_RTI)
addr += 7;
return addr;
}
static const struct frame_base m68hc11_frame_base = {
&m68hc11_frame_unwind,
m68hc11_frame_base_address,
m68hc11_frame_base_address,
m68hc11_frame_args_address
};
static CORE_ADDR
m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
ULONGEST sp;
frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
return sp;
}
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
dummy frame. The frame ID's base needs to match the TOS value
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
breakpoint. */
static struct frame_id
m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
ULONGEST tos;
CORE_ADDR pc = frame_pc_unwind (next_frame);
frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
tos += 2;
return frame_id_build (tos, pc);
}
/* Get and print the register from the given frame. */
static void
m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
struct frame_info *frame, int regno)
{
LONGEST rval;
if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
|| regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
rval = get_frame_register_unsigned (frame, regno);
else
rval = get_frame_register_signed (frame, regno);
if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
|| regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
{
fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
if (regno != HARD_CCR_REGNUM)
print_longest (file, 'd', 1, rval);
}
else
{
if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
{
ULONGEST page;
page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
(unsigned) rval);
}
else
{
fprintf_filtered (file, "0x%04x ", (unsigned) rval);
if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
&& regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
print_longest (file, 'd', 1, rval);
}
}
if (regno == HARD_CCR_REGNUM)
{
/* CCR register */
int C, Z, N, V;
unsigned char l = rval & 0xff;
fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
l & M6811_S_BIT ? 'S' : '-',
l & M6811_X_BIT ? 'X' : '-',
l & M6811_H_BIT ? 'H' : '-',
l & M6811_I_BIT ? 'I' : '-',
l & M6811_N_BIT ? 'N' : '-',
l & M6811_Z_BIT ? 'Z' : '-',
l & M6811_V_BIT ? 'V' : '-',
l & M6811_C_BIT ? 'C' : '-');
N = (l & M6811_N_BIT) != 0;
Z = (l & M6811_Z_BIT) != 0;
V = (l & M6811_V_BIT) != 0;
C = (l & M6811_C_BIT) != 0;
/* Print flags following the h8300 */
if ((C | Z) == 0)
fprintf_filtered (file, "u> ");
else if ((C | Z) == 1)
fprintf_filtered (file, "u<= ");
else if (C == 0)
fprintf_filtered (file, "u< ");
if (Z == 0)
fprintf_filtered (file, "!= ");
else
fprintf_filtered (file, "== ");
if ((N ^ V) == 0)
fprintf_filtered (file, ">= ");
else
fprintf_filtered (file, "< ");
if ((Z | (N ^ V)) == 0)
fprintf_filtered (file, "> ");
else
fprintf_filtered (file, "<= ");
}
}
/* Same as 'info reg' but prints the registers in a different way. */
static void
m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
struct frame_info *frame, int regno, int cpregs)
{
if (regno >= 0)
{
const char *name = gdbarch_register_name (gdbarch, regno);
if (!name || !*name)
return;
fprintf_filtered (file, "%-10s ", name);
m68hc11_print_register (gdbarch, file, frame, regno);
fprintf_filtered (file, "\n");
}
else
{
int i, nr;
fprintf_filtered (file, "PC=");
m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
fprintf_filtered (file, " SP=");
m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
fprintf_filtered (file, " FP=");
m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
fprintf_filtered (file, "\nCCR=");
m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
fprintf_filtered (file, "\nD=");
m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
fprintf_filtered (file, " X=");
m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
fprintf_filtered (file, " Y=");
m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
if (gdbarch_tdep (gdbarch)->use_page_register)
{
fprintf_filtered (file, "\nPage=");
m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
}
fprintf_filtered (file, "\n");
nr = 0;
for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
{
/* Skip registers which are not defined in the symbol table. */
if (soft_regs[i].name == 0)
continue;
fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
m68hc11_print_register (gdbarch, file, frame, i);
nr++;
if ((nr % 8) == 7)
fprintf_filtered (file, "\n");
else
fprintf_filtered (file, " ");
}
if (nr && (nr % 8) != 7)
fprintf_filtered (file, "\n");
}
}
/* Same as 'info reg' but prints the registers in a different way. */
static void
show_regs (char *args, int from_tty)
{
m68hc11_print_registers_info (current_gdbarch, gdb_stdout,
get_current_frame (), -1, 1);
}
static CORE_ADDR
m68hc11_stack_align (CORE_ADDR addr)
{
return ((addr + 1) & -2);
}
static CORE_ADDR
m68hc11_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int argnum;
int first_stack_argnum;
struct type *type;
char *val;
int len;
char buf[2];
first_stack_argnum = 0;
if (struct_return)
{
/* The struct is allocated on the stack and gdb used the stack
pointer for the address of that struct. We must apply the
stack offset on the address. */
regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM,
struct_addr + STACK_CORRECTION);
}
else if (nargs > 0)
{
type = VALUE_TYPE (args[0]);
len = TYPE_LENGTH (type);
/* First argument is passed in D and X registers. */
if (len <= 4)
{
ULONGEST v;
v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
first_stack_argnum = 1;
regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
if (len > 2)
{
v >>= 16;
regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
}
}
}
for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
{
type = VALUE_TYPE (args[argnum]);
len = TYPE_LENGTH (type);
if (len & 1)
{
static char zero = 0;
sp--;
write_memory (sp, &zero, 1);
}
val = (char*) VALUE_CONTENTS (args[argnum]);
sp -= len;
write_memory (sp, val, len);
}
/* Store return address. */
sp -= 2;
store_unsigned_integer (buf, 2, bp_addr);
write_memory (sp, buf, 2);
/* Finally, update the stack pointer... */
sp -= STACK_CORRECTION;
regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
/* ...and fake a frame pointer. */
regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
/* DWARF2/GCC uses the stack address *before* the function call as a
frame's CFA. */
return sp + 2;
}
/* Return the GDB type object for the "standard" data type
of data in register N. */
static struct type *
m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
{
switch (reg_nr)
{
case HARD_PAGE_REGNUM:
case HARD_A_REGNUM:
case HARD_B_REGNUM:
case HARD_CCR_REGNUM:
return builtin_type_uint8;
case M68HC12_HARD_PC_REGNUM:
return builtin_type_uint32;
default:
return builtin_type_uint16;
}
}
static void
m68hc11_store_return_value (struct type *type, struct regcache *regcache,
const void *valbuf)
{
int len;
len = TYPE_LENGTH (type);
/* First argument is passed in D and X registers. */
if (len <= 2)
regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
else if (len <= 4)
{
regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
len - 2, valbuf);
regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
}
else
error ("return of value > 4 is not supported.");
}
/* Given a return value in `regcache' with a type `type',
extract and copy its value into `valbuf'. */
static void
m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
void *valbuf)
{
int len = TYPE_LENGTH (type);
char buf[M68HC11_REG_SIZE];
regcache_raw_read (regcache, HARD_D_REGNUM, buf);
switch (len)
{
case 1:
memcpy (valbuf, buf + 1, 1);
break;
case 2:
memcpy (valbuf, buf, 2);
break;
case 3:
memcpy ((char*) valbuf + 1, buf, 2);
regcache_raw_read (regcache, HARD_X_REGNUM, buf);
memcpy (valbuf, buf + 1, 1);
break;
case 4:
memcpy ((char*) valbuf + 2, buf, 2);
regcache_raw_read (regcache, HARD_X_REGNUM, buf);
memcpy (valbuf, buf, 2);
break;
default:
error ("bad size for return value");
}
}
/* Should call_function allocate stack space for a struct return? */
static int
m68hc11_use_struct_convention (int gcc_p, struct type *type)
{
return (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION
|| TYPE_LENGTH (type) > 4);
}
static int
m68hc11_return_value_on_stack (struct type *type)
{
return TYPE_LENGTH (type) > 4;
}
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
static CORE_ADDR
m68hc11_extract_struct_value_address (struct regcache *regcache)
{
char buf[M68HC11_REG_SIZE];
regcache_cooked_read (regcache, HARD_D_REGNUM, buf);
return extract_unsigned_integer (buf, M68HC11_REG_SIZE);
}
/* Test whether the ELF symbol corresponds to a function using rtc or
rti to return. */
static void
m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
{
unsigned char flags;
flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
if (flags & STO_M68HC12_FAR)
MSYMBOL_SET_RTC (msym);
if (flags & STO_M68HC12_INTERRUPT)
MSYMBOL_SET_RTI (msym);
}
static int
gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
{
if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
return print_insn_m68hc11 (memaddr, info);
else
return print_insn_m68hc12 (memaddr, info);
}
/* 68HC11/68HC12 register groups.
Identify real hard registers and soft registers used by gcc. */
static struct reggroup *m68hc11_soft_reggroup;
static struct reggroup *m68hc11_hard_reggroup;
static void
m68hc11_init_reggroups (void)
{
m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
}
static void
m68hc11_add_reggroups (struct gdbarch *gdbarch)
{
reggroup_add (gdbarch, m68hc11_hard_reggroup);
reggroup_add (gdbarch, m68hc11_soft_reggroup);
reggroup_add (gdbarch, general_reggroup);
reggroup_add (gdbarch, float_reggroup);
reggroup_add (gdbarch, all_reggroup);
reggroup_add (gdbarch, save_reggroup);
reggroup_add (gdbarch, restore_reggroup);
reggroup_add (gdbarch, vector_reggroup);
reggroup_add (gdbarch, system_reggroup);
}
static int
m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
struct reggroup *group)
{
/* We must save the real hard register as well as gcc
soft registers including the frame pointer. */
if (group == save_reggroup || group == restore_reggroup)
{
return (regnum <= gdbarch_num_regs (gdbarch)
|| ((regnum == SOFT_FP_REGNUM
|| regnum == SOFT_TMP_REGNUM
|| regnum == SOFT_ZS_REGNUM
|| regnum == SOFT_XY_REGNUM)
&& m68hc11_register_name (regnum)));
}
/* Group to identify gcc soft registers (d1..dN). */
if (group == m68hc11_soft_reggroup)
{
return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
}
if (group == m68hc11_hard_reggroup)
{
return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
|| regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
|| regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
}
return default_register_reggroup_p (gdbarch, regnum, group);
}
static struct gdbarch *
m68hc11_gdbarch_init (struct gdbarch_info info,
struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
int elf_flags;
soft_reg_initialized = 0;
/* Extract the elf_flags if available. */
if (info.abfd != NULL
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
elf_flags = elf_elfheader (info.abfd)->e_flags;
else
elf_flags = 0;
/* try to find a pre-existing architecture */
for (arches = gdbarch_list_lookup_by_info (arches, &info);
arches != NULL;
arches = gdbarch_list_lookup_by_info (arches->next, &info))
{
if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
continue;
return arches->gdbarch;
}
/* Need a new architecture. Fill in a target specific vector. */
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
gdbarch = gdbarch_alloc (&info, tdep);
tdep->elf_flags = elf_flags;
switch (info.bfd_arch_info->arch)
{
case bfd_arch_m68hc11:
tdep->stack_correction = 1;
tdep->use_page_register = 0;
tdep->prologue = m6811_prologue;
set_gdbarch_addr_bit (gdbarch, 16);
set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
break;
case bfd_arch_m68hc12:
tdep->stack_correction = 0;
tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
tdep->prologue = m6812_prologue;
set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
set_gdbarch_num_pseudo_regs (gdbarch,
elf_flags & E_M68HC12_BANKS
? M68HC12_NUM_PSEUDO_REGS
: M68HC11_NUM_PSEUDO_REGS);
set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
break;
default:
break;
}
/* Initially set everything according to the ABI.
Use 16-bit integers since it will be the case for most
programs. The size of these types should normally be set
according to the dwarf2 debug information. */
set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
set_gdbarch_float_bit (gdbarch, 32);
set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
set_gdbarch_long_double_bit (gdbarch, 64);
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_ptr_bit (gdbarch, 16);
set_gdbarch_long_long_bit (gdbarch, 64);
/* Characters are unsigned. */
set_gdbarch_char_signed (gdbarch, 0);
set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
/* Set register info. */
set_gdbarch_fp0_regnum (gdbarch, -1);
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
set_gdbarch_register_name (gdbarch, m68hc11_register_name);
set_gdbarch_register_type (gdbarch, m68hc11_register_type);
set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
set_gdbarch_deprecated_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
set_gdbarch_deprecated_stack_align (gdbarch, m68hc11_stack_align);
set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
m68hc11_add_reggroups (gdbarch);
set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
/* Hook in the DWARF CFI frame unwinder. */
frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
frame_base_set_default (gdbarch, &m68hc11_frame_base);
/* Methods for saving / extracting a dummy frame's ID. The ID's
stack address must match the SP value returned by
PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
/* Return the unwound PC value. */
set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
/* Minsymbol frobbing. */
set_gdbarch_elf_make_msymbol_special (gdbarch,
m68hc11_elf_make_msymbol_special);
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
return gdbarch;
}
extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
void
_initialize_m68hc11_tdep (void)
{
register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
m68hc11_init_reggroups ();
deprecate_cmd (add_com ("regs", class_vars, show_regs,
"Print all registers"),
"info registers");
}
|