aboutsummaryrefslogtreecommitdiff
path: root/gdb/m32r-tdep.c
blob: 93edbf99a2da6dca99db33f77d5e60366473d7aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
// OBSOLETE /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
// OBSOLETE 
// OBSOLETE    Copyright 1996, 1998, 1999, 2000, 2001, 2003 Free Software
// OBSOLETE    Foundation, Inc.
// OBSOLETE 
// OBSOLETE    This file is part of GDB.
// OBSOLETE 
// OBSOLETE    This program is free software; you can redistribute it and/or modify
// OBSOLETE    it under the terms of the GNU General Public License as published by
// OBSOLETE    the Free Software Foundation; either version 2 of the License, or
// OBSOLETE    (at your option) any later version.
// OBSOLETE 
// OBSOLETE    This program is distributed in the hope that it will be useful,
// OBSOLETE    but WITHOUT ANY WARRANTY; without even the implied warranty of
// OBSOLETE    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// OBSOLETE    GNU General Public License for more details.
// OBSOLETE 
// OBSOLETE    You should have received a copy of the GNU General Public License
// OBSOLETE    along with this program; if not, write to the Free Software
// OBSOLETE    Foundation, Inc., 59 Temple Place - Suite 330,
// OBSOLETE    Boston, MA 02111-1307, USA.  */
// OBSOLETE 
// OBSOLETE #include "defs.h"
// OBSOLETE #include "frame.h"
// OBSOLETE #include "inferior.h"
// OBSOLETE #include "target.h"
// OBSOLETE #include "value.h"
// OBSOLETE #include "bfd.h"
// OBSOLETE #include "gdb_string.h"
// OBSOLETE #include "gdbcore.h"
// OBSOLETE #include "symfile.h"
// OBSOLETE #include "regcache.h"
// OBSOLETE 
// OBSOLETE /* Function: m32r_use_struct_convention
// OBSOLETE    Return nonzero if call_function should allocate stack space for a
// OBSOLETE    struct return? */
// OBSOLETE int
// OBSOLETE m32r_use_struct_convention (int gcc_p, struct type *type)
// OBSOLETE {
// OBSOLETE   return (TYPE_LENGTH (type) > 8);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: frame_find_saved_regs
// OBSOLETE    Return the frame_saved_regs structure for the frame.
// OBSOLETE    Doesn't really work for dummy frames, but it does pass back
// OBSOLETE    an empty frame_saved_regs, so I guess that's better than total failure */
// OBSOLETE 
// OBSOLETE void
// OBSOLETE m32r_frame_find_saved_regs (struct frame_info *fi,
// OBSOLETE 			    struct frame_saved_regs *regaddr)
// OBSOLETE {
// OBSOLETE   memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Turn this on if you want to see just how much instruction decoding
// OBSOLETE    if being done, its quite a lot
// OBSOLETE  */
// OBSOLETE #if 0
// OBSOLETE static void
// OBSOLETE dump_insn (char *commnt, CORE_ADDR pc, int insn)
// OBSOLETE {
// OBSOLETE   printf_filtered ("  %s %08x %08x ",
// OBSOLETE 		   commnt, (unsigned int) pc, (unsigned int) insn);
// OBSOLETE   TARGET_PRINT_INSN (pc, &tm_print_insn_info);
// OBSOLETE   printf_filtered ("\n");
// OBSOLETE }
// OBSOLETE #define insn_debug(args) { printf_filtered args; }
// OBSOLETE #else
// OBSOLETE #define dump_insn(a,b,c) {}
// OBSOLETE #define insn_debug(args) {}
// OBSOLETE #endif
// OBSOLETE 
// OBSOLETE #define DEFAULT_SEARCH_LIMIT 44
// OBSOLETE 
// OBSOLETE /* Function: scan_prologue
// OBSOLETE    This function decodes the target function prologue to determine
// OBSOLETE    1) the size of the stack frame, and 2) which registers are saved on it.
// OBSOLETE    It saves the offsets of saved regs in the frame_saved_regs argument,
// OBSOLETE    and returns the frame size.  */
// OBSOLETE 
// OBSOLETE /*
// OBSOLETE    The sequence it currently generates is:
// OBSOLETE 
// OBSOLETE    if (varargs function) { ddi sp,#n }
// OBSOLETE    push registers
// OBSOLETE    if (additional stack <= 256) {       addi sp,#-stack }
// OBSOLETE    else if (additional stack < 65k) { add3 sp,sp,#-stack
// OBSOLETE 
// OBSOLETE    } else if (additional stack) {
// OBSOLETE    seth sp,#(stack & 0xffff0000)
// OBSOLETE    or3 sp,sp,#(stack & 0x0000ffff)
// OBSOLETE    sub sp,r4
// OBSOLETE    }
// OBSOLETE    if (frame pointer) {
// OBSOLETE    mv sp,fp
// OBSOLETE    }
// OBSOLETE 
// OBSOLETE    These instructions are scheduled like everything else, so you should stop at
// OBSOLETE    the first branch instruction.
// OBSOLETE 
// OBSOLETE  */
// OBSOLETE 
// OBSOLETE /* This is required by skip prologue and by m32r_init_extra_frame_info. 
// OBSOLETE    The results of decoding a prologue should be cached because this
// OBSOLETE    thrashing is getting nuts.
// OBSOLETE    I am thinking of making a container class with two indexes, name and
// OBSOLETE    address. It may be better to extend the symbol table.
// OBSOLETE  */
// OBSOLETE 
// OBSOLETE static void
// OBSOLETE decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr,	/* var parameter */
// OBSOLETE 		 unsigned long *framelength, struct frame_info *fi,
// OBSOLETE 		 struct frame_saved_regs *fsr)
// OBSOLETE {
// OBSOLETE   unsigned long framesize;
// OBSOLETE   int insn;
// OBSOLETE   int op1;
// OBSOLETE   int maybe_one_more = 0;
// OBSOLETE   CORE_ADDR after_prologue = 0;
// OBSOLETE   CORE_ADDR after_stack_adjust = 0;
// OBSOLETE   CORE_ADDR current_pc;
// OBSOLETE 
// OBSOLETE 
// OBSOLETE   framesize = 0;
// OBSOLETE   after_prologue = 0;
// OBSOLETE   insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
// OBSOLETE 
// OBSOLETE   for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
// OBSOLETE     {
// OBSOLETE 
// OBSOLETE       insn = read_memory_unsigned_integer (current_pc, 2);
// OBSOLETE       dump_insn ("insn-1", current_pc, insn);	/* MTZ */
// OBSOLETE 
// OBSOLETE       /* If this is a 32 bit instruction, we dont want to examine its
// OBSOLETE          immediate data as though it were an instruction */
// OBSOLETE       if (current_pc & 0x02)
// OBSOLETE 	{			/* Clear the parallel execution bit from 16 bit instruction */
// OBSOLETE 	  if (maybe_one_more)
// OBSOLETE 	    {			/* The last instruction was a branch, usually terminates
// OBSOLETE 				   the series, but if this is a parallel instruction,
// OBSOLETE 				   it may be a stack framing instruction */
// OBSOLETE 	      if (!(insn & 0x8000))
// OBSOLETE 		{
// OBSOLETE 		  insn_debug (("Really done"));
// OBSOLETE 		  break;	/* nope, we are really done */
// OBSOLETE 		}
// OBSOLETE 	    }
// OBSOLETE 	  insn &= 0x7fff;	/* decode this instruction further */
// OBSOLETE 	}
// OBSOLETE       else
// OBSOLETE 	{
// OBSOLETE 	  if (maybe_one_more)
// OBSOLETE 	    break;		/* This isnt the one more */
// OBSOLETE 	  if (insn & 0x8000)
// OBSOLETE 	    {
// OBSOLETE 	      insn_debug (("32 bit insn\n"));
// OBSOLETE 	      if (current_pc == scan_limit)
// OBSOLETE 		scan_limit += 2;	/* extend the search */
// OBSOLETE 	      current_pc += 2;	/* skip the immediate data */
// OBSOLETE 	      if (insn == 0x8faf)	/* add3 sp, sp, xxxx */
// OBSOLETE 		/* add 16 bit sign-extended offset */
// OBSOLETE 		{
// OBSOLETE 		  insn_debug (("stack increment\n"));
// OBSOLETE 		  framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
// OBSOLETE 		}
// OBSOLETE 	      else
// OBSOLETE 		{
// OBSOLETE 		  if (((insn >> 8) == 0xe4) &&	/* ld24 r4, xxxxxx; sub sp, r4 */
// OBSOLETE 		  read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
// OBSOLETE 		    {		/* subtract 24 bit sign-extended negative-offset */
// OBSOLETE 		      dump_insn ("insn-2", current_pc + 2, insn);
// OBSOLETE 		      insn = read_memory_unsigned_integer (current_pc - 2, 4);
// OBSOLETE 		      dump_insn ("insn-3(l4)", current_pc - 2, insn);
// OBSOLETE 		      if (insn & 0x00800000)	/* sign extend */
// OBSOLETE 			insn |= 0xff000000;	/* negative */
// OBSOLETE 		      else
// OBSOLETE 			insn &= 0x00ffffff;	/* positive */
// OBSOLETE 		      framesize += insn;
// OBSOLETE 		    }
// OBSOLETE 		}
// OBSOLETE 	      after_prologue = current_pc;
// OBSOLETE 	      continue;
// OBSOLETE 	    }
// OBSOLETE 	}
// OBSOLETE       op1 = insn & 0xf000;	/* isolate just the first nibble */
// OBSOLETE 
// OBSOLETE       if ((insn & 0xf0ff) == 0x207f)
// OBSOLETE 	{			/* st reg, @-sp */
// OBSOLETE 	  int regno;
// OBSOLETE 	  insn_debug (("push\n"));
// OBSOLETE #if 0				/* No, PUSH FP is not an indication that we will use a frame pointer. */
// OBSOLETE 	  if (((insn & 0xffff) == 0x2d7f) && fi)
// OBSOLETE 	    fi->using_frame_pointer = 1;
// OBSOLETE #endif
// OBSOLETE 	  framesize += 4;
// OBSOLETE #if 0
// OBSOLETE /* Why should we increase the scan limit, just because we did a push? 
// OBSOLETE    And if there is a reason, surely we would only want to do it if we
// OBSOLETE    had already reached the scan limit... */
// OBSOLETE 	  if (current_pc == scan_limit)
// OBSOLETE 	    scan_limit += 2;
// OBSOLETE #endif
// OBSOLETE 	  regno = ((insn >> 8) & 0xf);
// OBSOLETE 	  if (fsr)		/* save_regs offset */
// OBSOLETE 	    fsr->regs[regno] = framesize;
// OBSOLETE 	  after_prologue = 0;
// OBSOLETE 	  continue;
// OBSOLETE 	}
// OBSOLETE       if ((insn >> 8) == 0x4f)	/* addi sp, xx */
// OBSOLETE 	/* add 8 bit sign-extended offset */
// OBSOLETE 	{
// OBSOLETE 	  int stack_adjust = (char) (insn & 0xff);
// OBSOLETE 
// OBSOLETE 	  /* there are probably two of these stack adjustments:
// OBSOLETE 	     1) A negative one in the prologue, and
// OBSOLETE 	     2) A positive one in the epilogue.
// OBSOLETE 	     We are only interested in the first one.  */
// OBSOLETE 
// OBSOLETE 	  if (stack_adjust < 0)
// OBSOLETE 	    {
// OBSOLETE 	      framesize -= stack_adjust;
// OBSOLETE 	      after_prologue = 0;
// OBSOLETE 	      /* A frameless function may have no "mv fp, sp".
// OBSOLETE 	         In that case, this is the end of the prologue.  */
// OBSOLETE 	      after_stack_adjust = current_pc + 2;
// OBSOLETE 	    }
// OBSOLETE 	  continue;
// OBSOLETE 	}
// OBSOLETE       if (insn == 0x1d8f)
// OBSOLETE 	{			/* mv fp, sp */
// OBSOLETE 	  if (fi)
// OBSOLETE 	    fi->using_frame_pointer = 1;	/* fp is now valid */
// OBSOLETE 	  insn_debug (("done fp found\n"));
// OBSOLETE 	  after_prologue = current_pc + 2;
// OBSOLETE 	  break;		/* end of stack adjustments */
// OBSOLETE 	}
// OBSOLETE       if (insn == 0x7000)	/* Nop looks like a branch, continue explicitly */
// OBSOLETE 	{
// OBSOLETE 	  insn_debug (("nop\n"));
// OBSOLETE 	  after_prologue = current_pc + 2;
// OBSOLETE 	  continue;		/* nop occurs between pushes */
// OBSOLETE 	}
// OBSOLETE       /* End of prolog if any of these are branch instructions */
// OBSOLETE       if ((op1 == 0x7000)
// OBSOLETE 	  || (op1 == 0xb000)
// OBSOLETE 	  || (op1 == 0xf000))
// OBSOLETE 	{
// OBSOLETE 	  after_prologue = current_pc;
// OBSOLETE 	  insn_debug (("Done: branch\n"));
// OBSOLETE 	  maybe_one_more = 1;
// OBSOLETE 	  continue;
// OBSOLETE 	}
// OBSOLETE       /* Some of the branch instructions are mixed with other types */
// OBSOLETE       if (op1 == 0x1000)
// OBSOLETE 	{
// OBSOLETE 	  int subop = insn & 0x0ff0;
// OBSOLETE 	  if ((subop == 0x0ec0) || (subop == 0x0fc0))
// OBSOLETE 	    {
// OBSOLETE 	      insn_debug (("done: jmp\n"));
// OBSOLETE 	      after_prologue = current_pc;
// OBSOLETE 	      maybe_one_more = 1;
// OBSOLETE 	      continue;		/* jmp , jl */
// OBSOLETE 	    }
// OBSOLETE 	}
// OBSOLETE     }
// OBSOLETE 
// OBSOLETE   if (current_pc >= scan_limit)
// OBSOLETE     {
// OBSOLETE       if (pl_endptr)
// OBSOLETE 	{
// OBSOLETE #if 1
// OBSOLETE 	  if (after_stack_adjust != 0)
// OBSOLETE 	    /* We did not find a "mv fp,sp", but we DID find
// OBSOLETE 	       a stack_adjust.  Is it safe to use that as the
// OBSOLETE 	       end of the prologue?  I just don't know. */
// OBSOLETE 	    {
// OBSOLETE 	      *pl_endptr = after_stack_adjust;
// OBSOLETE 	      if (framelength)
// OBSOLETE 		*framelength = framesize;
// OBSOLETE 	    }
// OBSOLETE 	  else
// OBSOLETE #endif
// OBSOLETE 	    /* We reached the end of the loop without finding the end
// OBSOLETE 	       of the prologue.  No way to win -- we should report failure.  
// OBSOLETE 	       The way we do that is to return the original start_pc.
// OBSOLETE 	       GDB will set a breakpoint at the start of the function (etc.) */
// OBSOLETE 	    *pl_endptr = start_pc;
// OBSOLETE 	}
// OBSOLETE       return;
// OBSOLETE     }
// OBSOLETE   if (after_prologue == 0)
// OBSOLETE     after_prologue = current_pc;
// OBSOLETE 
// OBSOLETE   insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
// OBSOLETE   if (framelength)
// OBSOLETE     *framelength = framesize;
// OBSOLETE   if (pl_endptr)
// OBSOLETE     *pl_endptr = after_prologue;
// OBSOLETE }				/*  decode_prologue */
// OBSOLETE 
// OBSOLETE /* Function: skip_prologue
// OBSOLETE    Find end of function prologue */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_skip_prologue (CORE_ADDR pc)
// OBSOLETE {
// OBSOLETE   CORE_ADDR func_addr, func_end;
// OBSOLETE   struct symtab_and_line sal;
// OBSOLETE 
// OBSOLETE   /* See what the symbol table says */
// OBSOLETE 
// OBSOLETE   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
// OBSOLETE     {
// OBSOLETE       sal = find_pc_line (func_addr, 0);
// OBSOLETE 
// OBSOLETE       if (sal.line != 0 && sal.end <= func_end)
// OBSOLETE 	{
// OBSOLETE 
// OBSOLETE 	  insn_debug (("BP after prologue %08x\n", sal.end));
// OBSOLETE 	  func_end = sal.end;
// OBSOLETE 	}
// OBSOLETE       else
// OBSOLETE 	/* Either there's no line info, or the line after the prologue is after
// OBSOLETE 	   the end of the function.  In this case, there probably isn't a
// OBSOLETE 	   prologue.  */
// OBSOLETE 	{
// OBSOLETE 	  insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
// OBSOLETE 		       sal.line, sal.end, func_end));
// OBSOLETE 	  func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
// OBSOLETE 	}
// OBSOLETE     }
// OBSOLETE   else
// OBSOLETE     func_end = pc + DEFAULT_SEARCH_LIMIT;
// OBSOLETE   decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
// OBSOLETE   return sal.end;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE static unsigned long
// OBSOLETE m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
// OBSOLETE {
// OBSOLETE   struct symtab_and_line sal;
// OBSOLETE   CORE_ADDR prologue_start, prologue_end, current_pc;
// OBSOLETE   unsigned long framesize = 0;
// OBSOLETE 
// OBSOLETE   /* this code essentially duplicates skip_prologue, 
// OBSOLETE      but we need the start address below.  */
// OBSOLETE 
// OBSOLETE   if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
// OBSOLETE     {
// OBSOLETE       sal = find_pc_line (prologue_start, 0);
// OBSOLETE 
// OBSOLETE       if (sal.line == 0)	/* no line info, use current PC */
// OBSOLETE 	if (prologue_start == entry_point_address ())
// OBSOLETE 	  return 0;
// OBSOLETE     }
// OBSOLETE   else
// OBSOLETE     {
// OBSOLETE       prologue_start = fi->pc;
// OBSOLETE       prologue_end = prologue_start + 48;	/* We're in the boondocks: 
// OBSOLETE 						   allow for 16 pushes, an add, 
// OBSOLETE 						   and "mv fp,sp" */
// OBSOLETE     }
// OBSOLETE #if 0
// OBSOLETE   prologue_end = min (prologue_end, fi->pc);
// OBSOLETE #endif
// OBSOLETE   insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
// OBSOLETE 	       fi->pc, prologue_start, prologue_end));
// OBSOLETE   prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
// OBSOLETE   decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
// OBSOLETE 		   fi, fsr);
// OBSOLETE   return framesize;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: init_extra_frame_info
// OBSOLETE    This function actually figures out the frame address for a given pc and
// OBSOLETE    sp.  This is tricky on the m32r because we sometimes don't use an explicit
// OBSOLETE    frame pointer, and the previous stack pointer isn't necessarily recorded
// OBSOLETE    on the stack.  The only reliable way to get this info is to
// OBSOLETE    examine the prologue.  */
// OBSOLETE 
// OBSOLETE void
// OBSOLETE m32r_init_extra_frame_info (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   int reg;
// OBSOLETE 
// OBSOLETE   if (fi->next)
// OBSOLETE     fi->pc = FRAME_SAVED_PC (fi->next);
// OBSOLETE 
// OBSOLETE   memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
// OBSOLETE 
// OBSOLETE   if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE     {
// OBSOLETE       /* We need to setup fi->frame here because run_stack_dummy gets it wrong
// OBSOLETE          by assuming it's always FP.  */
// OBSOLETE       fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
// OBSOLETE 						  SP_REGNUM);
// OBSOLETE       fi->framesize = 0;
// OBSOLETE       return;
// OBSOLETE     }
// OBSOLETE   else
// OBSOLETE     {
// OBSOLETE       fi->using_frame_pointer = 0;
// OBSOLETE       fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
// OBSOLETE 
// OBSOLETE       if (!fi->next)
// OBSOLETE 	if (fi->using_frame_pointer)
// OBSOLETE 	  {
// OBSOLETE 	    fi->frame = read_register (FP_REGNUM);
// OBSOLETE 	  }
// OBSOLETE 	else
// OBSOLETE 	  fi->frame = read_register (SP_REGNUM);
// OBSOLETE       else
// OBSOLETE 	/* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
// OBSOLETE 	/* we have an FP */
// OBSOLETE 	if (fi->next->fsr.regs[FP_REGNUM] != 0)		/* caller saved our FP */
// OBSOLETE 	  fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
// OBSOLETE       for (reg = 0; reg < NUM_REGS; reg++)
// OBSOLETE 	if (fi->fsr.regs[reg] != 0)
// OBSOLETE 	  fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
// OBSOLETE     }
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: m32r_virtual_frame_pointer
// OBSOLETE    Return the register that the function uses for a frame pointer, 
// OBSOLETE    plus any necessary offset to be applied to the register before
// OBSOLETE    any frame pointer offsets.  */
// OBSOLETE 
// OBSOLETE void
// OBSOLETE m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
// OBSOLETE {
// OBSOLETE   struct frame_info *fi = deprecated_frame_xmalloc ();
// OBSOLETE   struct cleanup *old_chain = make_cleanup (xfree, fi);
// OBSOLETE 
// OBSOLETE   /* Set up a dummy frame_info. */
// OBSOLETE   fi->next = NULL;
// OBSOLETE   fi->prev = NULL;
// OBSOLETE   fi->frame = 0;
// OBSOLETE   fi->pc = pc;
// OBSOLETE 
// OBSOLETE   /* Analyze the prolog and fill in the extra info.  */
// OBSOLETE   m32r_init_extra_frame_info (fi);
// OBSOLETE 
// OBSOLETE   /* Results will tell us which type of frame it uses.  */
// OBSOLETE   if (fi->using_frame_pointer)
// OBSOLETE     {
// OBSOLETE       *reg = FP_REGNUM;
// OBSOLETE       *offset = 0;
// OBSOLETE     }
// OBSOLETE   else
// OBSOLETE     {
// OBSOLETE       *reg = SP_REGNUM;
// OBSOLETE       *offset = 0;
// OBSOLETE     }
// OBSOLETE   do_cleanups (old_chain);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: find_callers_reg
// OBSOLETE    Find REGNUM on the stack.  Otherwise, it's in an active register.  One thing
// OBSOLETE    we might want to do here is to check REGNUM against the clobber mask, and
// OBSOLETE    somehow flag it as invalid if it isn't saved on the stack somewhere.  This
// OBSOLETE    would provide a graceful failure mode when trying to get the value of
// OBSOLETE    caller-saves registers for an inner frame.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_find_callers_reg (struct frame_info *fi, int regnum)
// OBSOLETE {
// OBSOLETE   for (; fi; fi = fi->next)
// OBSOLETE     if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE       return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
// OBSOLETE     else if (fi->fsr.regs[regnum] != 0)
// OBSOLETE       return read_memory_integer (fi->fsr.regs[regnum],
// OBSOLETE 				  REGISTER_RAW_SIZE (regnum));
// OBSOLETE   return read_register (regnum);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: frame_chain Given a GDB frame, determine the address of
// OBSOLETE    the calling function's frame.  This will be used to create a new
// OBSOLETE    GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
// OBSOLETE    DEPRECATED_INIT_FRAME_PC will be called for the new frame.  For
// OBSOLETE    m32r, we save the frame size when we initialize the frame_info.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_frame_chain (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   CORE_ADDR fn_start, callers_pc, fp;
// OBSOLETE 
// OBSOLETE   /* is this a dummy frame? */
// OBSOLETE   if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE     return fi->frame;		/* dummy frame same as caller's frame */
// OBSOLETE 
// OBSOLETE   /* is caller-of-this a dummy frame? */
// OBSOLETE   callers_pc = FRAME_SAVED_PC (fi);	/* find out who called us: */
// OBSOLETE   fp = m32r_find_callers_reg (fi, FP_REGNUM);
// OBSOLETE   if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp))
// OBSOLETE     return fp;			/* dummy frame's frame may bear no relation to ours */
// OBSOLETE 
// OBSOLETE   if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
// OBSOLETE     if (fn_start == entry_point_address ())
// OBSOLETE       return 0;			/* in _start fn, don't chain further */
// OBSOLETE   if (fi->framesize == 0)
// OBSOLETE     {
// OBSOLETE       printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
// OBSOLETE 		       paddr (fi->frame),
// OBSOLETE 		       paddr (fi->pc));
// OBSOLETE       return 0;
// OBSOLETE     }
// OBSOLETE   insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
// OBSOLETE   return fi->frame + fi->framesize;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: push_return_address (pc)
// OBSOLETE    Set up the return address for the inferior function call.
// OBSOLETE    Necessary for targets that don't actually execute a JSR/BSR instruction 
// OBSOLETE    (ie. when using an empty CALL_DUMMY) */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
// OBSOLETE {
// OBSOLETE   write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
// OBSOLETE   return sp;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* Function: pop_frame
// OBSOLETE    Discard from the stack the innermost frame,
// OBSOLETE    restoring all saved registers.  */
// OBSOLETE 
// OBSOLETE struct frame_info *
// OBSOLETE m32r_pop_frame (struct frame_info *frame)
// OBSOLETE {
// OBSOLETE   int regnum;
// OBSOLETE 
// OBSOLETE   if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
// OBSOLETE     generic_pop_dummy_frame ();
// OBSOLETE   else
// OBSOLETE     {
// OBSOLETE       for (regnum = 0; regnum < NUM_REGS; regnum++)
// OBSOLETE 	if (frame->fsr.regs[regnum] != 0)
// OBSOLETE 	  write_register (regnum,
// OBSOLETE 			  read_memory_integer (frame->fsr.regs[regnum], 4));
// OBSOLETE 
// OBSOLETE       write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
// OBSOLETE       write_register (SP_REGNUM, read_register (FP_REGNUM));
// OBSOLETE       if (read_register (PSW_REGNUM) & 0x80)
// OBSOLETE 	write_register (SPU_REGNUM, read_register (SP_REGNUM));
// OBSOLETE       else
// OBSOLETE 	write_register (SPI_REGNUM, read_register (SP_REGNUM));
// OBSOLETE     }
// OBSOLETE   flush_cached_frames ();
// OBSOLETE   return NULL;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: frame_saved_pc
// OBSOLETE    Find the caller of this frame.  We do this by seeing if RP_REGNUM is saved
// OBSOLETE    in the stack anywhere, otherwise we get it from the registers. */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_frame_saved_pc (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
// OBSOLETE     return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
// OBSOLETE   else
// OBSOLETE     return m32r_find_callers_reg (fi, RP_REGNUM);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: push_arguments
// OBSOLETE    Setup the function arguments for calling a function in the inferior.
// OBSOLETE 
// OBSOLETE    On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
// OBSOLETE    which are dedicated for passing function arguments.  Up to the first 
// OBSOLETE    four arguments (depending on size) may go into these registers.
// OBSOLETE    The rest go on the stack.
// OBSOLETE 
// OBSOLETE    Arguments that are smaller than 4 bytes will still take up a whole
// OBSOLETE    register or a whole 32-bit word on the stack, and will be
// OBSOLETE    right-justified in the register or the stack word.  This includes
// OBSOLETE    chars, shorts, and small aggregate types.
// OBSOLETE 
// OBSOLETE    Arguments of 8 bytes size are split between two registers, if 
// OBSOLETE    available.  If only one register is available, the argument will 
// OBSOLETE    be split between the register and the stack.  Otherwise it is
// OBSOLETE    passed entirely on the stack.  Aggregate types with sizes between
// OBSOLETE    4 and 8 bytes are passed entirely on the stack, and are left-justified
// OBSOLETE    within the double-word (as opposed to aggregates smaller than 4 bytes
// OBSOLETE    which are right-justified).
// OBSOLETE 
// OBSOLETE    Aggregates of greater than 8 bytes are first copied onto the stack, 
// OBSOLETE    and then a pointer to the copy is passed in the place of the normal
// OBSOLETE    argument (either in a register if available, or on the stack).
// OBSOLETE 
// OBSOLETE    Functions that must return an aggregate type can return it in the 
// OBSOLETE    normal return value registers (R0 and R1) if its size is 8 bytes or
// OBSOLETE    less.  For larger return values, the caller must allocate space for 
// OBSOLETE    the callee to copy the return value to.  A pointer to this space is
// OBSOLETE    passed as an implicit first argument, always in R0. */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
// OBSOLETE 		     unsigned char struct_return, CORE_ADDR struct_addr)
// OBSOLETE {
// OBSOLETE   int stack_offset, stack_alloc;
// OBSOLETE   int argreg;
// OBSOLETE   int argnum;
// OBSOLETE   struct type *type;
// OBSOLETE   CORE_ADDR regval;
// OBSOLETE   char *val;
// OBSOLETE   char valbuf[4];
// OBSOLETE   int len;
// OBSOLETE   int odd_sized_struct;
// OBSOLETE 
// OBSOLETE   /* first force sp to a 4-byte alignment */
// OBSOLETE   sp = sp & ~3;
// OBSOLETE 
// OBSOLETE   argreg = ARG0_REGNUM;
// OBSOLETE   /* The "struct return pointer" pseudo-argument goes in R0 */
// OBSOLETE   if (struct_return)
// OBSOLETE     write_register (argreg++, struct_addr);
// OBSOLETE 
// OBSOLETE   /* Now make sure there's space on the stack */
// OBSOLETE   for (argnum = 0, stack_alloc = 0;
// OBSOLETE        argnum < nargs; argnum++)
// OBSOLETE     stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
// OBSOLETE   sp -= stack_alloc;		/* make room on stack for args */
// OBSOLETE 
// OBSOLETE 
// OBSOLETE   /* Now load as many as possible of the first arguments into
// OBSOLETE      registers, and push the rest onto the stack.  There are 16 bytes
// OBSOLETE      in four registers available.  Loop thru args from first to last.  */
// OBSOLETE 
// OBSOLETE   argreg = ARG0_REGNUM;
// OBSOLETE   for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
// OBSOLETE     {
// OBSOLETE       type = VALUE_TYPE (args[argnum]);
// OBSOLETE       len = TYPE_LENGTH (type);
// OBSOLETE       memset (valbuf, 0, sizeof (valbuf));
// OBSOLETE       if (len < 4)
// OBSOLETE 	{			/* value gets right-justified in the register or stack word */
// OBSOLETE 	  memcpy (valbuf + (4 - len),
// OBSOLETE 		  (char *) VALUE_CONTENTS (args[argnum]), len);
// OBSOLETE 	  val = valbuf;
// OBSOLETE 	}
// OBSOLETE       else
// OBSOLETE 	val = (char *) VALUE_CONTENTS (args[argnum]);
// OBSOLETE 
// OBSOLETE       if (len > 4 && (len & 3) != 0)
// OBSOLETE 	odd_sized_struct = 1;	/* such structs go entirely on stack */
// OBSOLETE       else
// OBSOLETE 	odd_sized_struct = 0;
// OBSOLETE       while (len > 0)
// OBSOLETE 	{
// OBSOLETE 	  if (argreg > ARGLAST_REGNUM || odd_sized_struct)
// OBSOLETE 	    {			/* must go on the stack */
// OBSOLETE 	      write_memory (sp + stack_offset, val, 4);
// OBSOLETE 	      stack_offset += 4;
// OBSOLETE 	    }
// OBSOLETE 	  /* NOTE WELL!!!!!  This is not an "else if" clause!!!
// OBSOLETE 	     That's because some *&^%$ things get passed on the stack
// OBSOLETE 	     AND in the registers!   */
// OBSOLETE 	  if (argreg <= ARGLAST_REGNUM)
// OBSOLETE 	    {			/* there's room in a register */
// OBSOLETE 	      regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
// OBSOLETE 	      write_register (argreg++, regval);
// OBSOLETE 	    }
// OBSOLETE 	  /* Store the value 4 bytes at a time.  This means that things
// OBSOLETE 	     larger than 4 bytes may go partly in registers and partly
// OBSOLETE 	     on the stack.  */
// OBSOLETE 	  len -= REGISTER_RAW_SIZE (argreg);
// OBSOLETE 	  val += REGISTER_RAW_SIZE (argreg);
// OBSOLETE 	}
// OBSOLETE     }
// OBSOLETE   return sp;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Function: fix_call_dummy 
// OBSOLETE    If there is real CALL_DUMMY code (eg. on the stack), this function
// OBSOLETE    has the responsability to insert the address of the actual code that
// OBSOLETE    is the target of the target function call.  */
// OBSOLETE 
// OBSOLETE void
// OBSOLETE m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
// OBSOLETE 		     struct value **args, struct type *type, int gcc_p)
// OBSOLETE {
// OBSOLETE   /* ld24 r8, <(imm24) fun> */
// OBSOLETE   *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* Function: m32r_write_sp
// OBSOLETE    Because SP is really a read-only register that mirrors either SPU or SPI,
// OBSOLETE    we must actually write one of those two as well, depending on PSW. */
// OBSOLETE 
// OBSOLETE void
// OBSOLETE m32r_write_sp (CORE_ADDR val)
// OBSOLETE {
// OBSOLETE   unsigned long psw = read_register (PSW_REGNUM);
// OBSOLETE 
// OBSOLETE   if (psw & 0x80)		/* stack mode: user or interrupt */
// OBSOLETE     write_register (SPU_REGNUM, val);
// OBSOLETE   else
// OBSOLETE     write_register (SPI_REGNUM, val);
// OBSOLETE   write_register (SP_REGNUM, val);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE void
// OBSOLETE _initialize_m32r_tdep (void)
// OBSOLETE {
// OBSOLETE   tm_print_insn = print_insn_m32r;
// OBSOLETE }