aboutsummaryrefslogtreecommitdiff
path: root/gdb/m32r-tdep.c
blob: a449223c4424992789cda9aca01940eeed7bc349 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
   Copyright 1996, Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"

struct dummy_frame
{
  struct dummy_frame *next;

  CORE_ADDR fp;
  CORE_ADDR sp;
  CORE_ADDR rp;
  CORE_ADDR pc;
};

void 
m32r_frame_find_saved_regs PARAMS ((struct frame_info *fi, 
				    struct frame_saved_regs *regaddr))
{
  *regaddr = fi->fsr;
}

static struct dummy_frame *dummy_frame_stack = NULL;

/* Find end of function prologue */

CORE_ADDR
m32r_skip_prologue (pc)
     CORE_ADDR pc;
{
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;

  /* See what the symbol table says */

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      sal = find_pc_line (func_addr, 0);

      if (sal.line != 0 && sal.end < func_end)
	return sal.end;
      else
	/* Either there's no line info, or the line after the prologue is after
	   the end of the function.  In this case, there probably isn't a
	   prologue.  */
	return pc;
    }

  /* We can't find the start of this function, so there's nothing we can do. */
  return pc;
}

/* This function decodes the target function prologue to determine
   1) the size of the stack frame, and 2) which registers are saved on it.
   It saves the offsets of saved regs in the frame_saved_regs argument,
   and returns the frame size.
*/

static unsigned long
m32r_scan_prologue (fi, fsr)
     struct frame_info *fi;
     struct frame_saved_regs *fsr;
{
  struct symtab_and_line sal;
  CORE_ADDR prologue_start, prologue_end, current_pc;
  unsigned long framesize;

  /* this code essentially duplicates skip_prologue, 
     but we need the start address below.  */

  if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
    {
      sal = find_pc_line (prologue_start, 0);

      if (sal.line == 0)		/* no line info, use current PC */
	prologue_end = fi->pc;
      else if (sal.end < prologue_end)	/* next line begins after fn end */
	prologue_end = sal.end;		/* (probably means no prologue)  */
    }
  else
    prologue_end = prologue_start + 100; /* We're in the boondocks */

  prologue_end = min (prologue_end, fi->pc);

  /* Now, search the prologue looking for instructions that setup fp, save
     rp (and other regs), adjust sp and such. */ 

  framesize = 0;
  memset (fsr->regs, '\000', sizeof fsr->regs);

  for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
    {
      int insn;
      int regno;

      insn = read_memory_unsigned_integer (current_pc, 2);
      if (insn & 0x80)				/* Four byte instruction? */
	current_pc += 2;

      if ((insn & 0xf0ff) == 0x207f) {		/* st reg, @-sp */
	framesize += 4;
	regno = ((insn >> 8) & 0xf);
	fsr->regs[regno] = framesize;
      }
      else if ((insn >> 8) == 0x4f)  {		/* addi sp */
	framesize += -((char) (insn & 0xff));	/* offset  */
	break;					/* end of stack adjustments */
      }
    }
  return framesize;
}

/* This function actually figures out the frame address for a given pc and
   sp.  This is tricky on the v850 because we only use an explicit frame
   pointer when using alloca().  The only reliable way to get this info is to
   examine the prologue.
*/

void
m32r_init_extra_frame_info (fi)
     struct frame_info *fi;
{
  int reg;
  int framesize;

  if (fi->next)
    fi->pc = FRAME_SAVED_PC (fi->next);

  framesize = m32r_scan_prologue (fi, &fi->fsr);

  if (PC_IN_CALL_DUMMY (fi->pc, NULL, NULL))
    fi->frame = dummy_frame_stack->sp;
  else if (!fi->next)
    fi->frame = read_register (SP_REGNUM);

  for (reg = 0; reg < NUM_REGS; reg++)
    if (fi->fsr.regs[reg] != 0)
      fi->fsr.regs[reg] = fi->frame + framesize - fi->fsr.regs[reg];
}

/* Find the caller of this frame.  We do this by seeing if RP_REGNUM is saved
   in the stack anywhere, otherwise we get it from the registers. */

CORE_ADDR
m32r_find_callers_reg (fi, regnum)
     struct frame_info *fi;
     int regnum;
{
#if 0
  /* XXX - Won't work if multiple dummy frames are active */
  if (PC_IN_CALL_DUMMY (fi->pc, NULL, NULL))
    switch (regnum)
      {
      case SP_REGNUM:
	return dummy_frame_stack->sp;
	break;
      case FP_REGNUM:
	return dummy_frame_stack->fp;
	break;
      case RP_REGNUM:
	return dummy_frame_stack->pc;
	break;
      case PC_REGNUM:
	return dummy_frame_stack->pc;
	break;
      }

#endif
  for (; fi; fi = fi->next)
    if (fi->fsr.regs[regnum] != 0)
      return read_memory_integer (fi->fsr.regs[regnum], 4);
  return read_register (regnum);
}

/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
   For m32r, simply get the saved FP off the stack.
 */

CORE_ADDR
m32r_frame_chain (fi)
     struct frame_info *fi;
{
  CORE_ADDR saved_fp = fi->fsr.regs[FP_REGNUM];

  if (saved_fp == 0)
    return 0;		/* frameless assembly language fn (such as _start) */

  return read_memory_integer (saved_fp, 4);
}

/* All we do here is record SP and FP on the call dummy stack */

void
m32r_push_dummy_frame ()
{
  struct dummy_frame *dummy_frame;

  dummy_frame = xmalloc (sizeof (struct dummy_frame));

  dummy_frame->fp = read_register (FP_REGNUM);
  dummy_frame->sp = read_register (SP_REGNUM);
  dummy_frame->rp = read_register (RP_REGNUM);
  dummy_frame->pc = read_register (PC_REGNUM);
  dummy_frame->next = dummy_frame_stack;
  dummy_frame_stack = dummy_frame;
}

/*
 * MISSING FUNCTION HEADER COMMENT
 */

int
m32r_pc_in_call_dummy (pc)
     CORE_ADDR pc;
{
  return dummy_frame_stack
	 && pc >= CALL_DUMMY_ADDRESS ()
	 && pc <= CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK;
}

/* Discard from the stack the innermost frame,
   restoring all saved registers.  */

struct frame_info *
m32r_pop_frame (frame)
     struct frame_info *frame;
{
  int regnum;

#if 0
  if (PC_IN_CALL_DUMMY (frame->pc, NULL, NULL))
    {
      struct dummy_frame *dummy_frame;
      
      dummy_frame = dummy_frame_stack;
      if (!dummy_frame)
	error ("Can't pop dummy frame!");

      dummy_frame_stack = dummy_frame->next;

      write_register (FP_REGNUM, dummy_frame->fp);
      write_register (SP_REGNUM, dummy_frame->sp);
      write_register (RP_REGNUM, dummy_frame->rp);
      write_register (PC_REGNUM, dummy_frame->pc);

      free (dummy_frame);

      flush_cached_frames ();

      return NULL;
    }

#endif
  write_register (PC_REGNUM, FRAME_SAVED_PC (frame));

  for (regnum = 0; regnum < NUM_REGS; regnum++)
    if (frame->fsr.regs[regnum] != 0)
      write_register (regnum, 
		      read_memory_integer (frame->fsr.regs[regnum], 4));

  write_register (SP_REGNUM, read_register (FP_REGNUM));
  if (read_register (PSW_REGNUM) & 0x80)
    write_register (SPU_REGNUM, read_register (SP_REGNUM));
  else
    write_register (SPI_REGNUM, read_register (SP_REGNUM));
  /*  registers_changed (); */
  flush_cached_frames ();

  return NULL;
}

/* Put arguments in the right places, and setup return address register (RP) to
   point at a convenient place to put a breakpoint.  First four args go in
   R6->R9, subsequent args go into sp + 16 -> sp + ...  Structs are passed by
   reference.  64 bit quantities (doubles and long longs) may be split between
   the regs and the stack.  When calling a function that returns a struct, a
   pointer to the struct is passed in as a secret first argument (always in R6).

   By the time we get here, stack space has been allocated for the args, but
   not for the struct return pointer.  */

CORE_ADDR
m32r_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     value_ptr *args;
     CORE_ADDR sp;
     unsigned char struct_return;
     CORE_ADDR struct_addr;
{
  int argreg;
  int argnum;

  argreg = ARG0_REGNUM;

#if 0
  if (struct_return)
    {
      write_register (argreg++, struct_addr);
      sp -= 4;
    }

  for (argnum = 0; argnum < nargs; argnum++)
    {
      int len;
      char *val;
      char valbuf[4];

      if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
	  && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
	{
	  store_address (valbuf, 4, VALUE_ADDRESS (*args));
	  len = 4;
	  val = valbuf;
	}
      else
	{
	  len = TYPE_LENGTH (VALUE_TYPE (*args));
	  val = (char *)VALUE_CONTENTS (*args);
	}

      while (len > 0)
	if  (argreg <= ARGLAST_REGNUM)
	  {
	    CORE_ADDR regval;

	    regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
	    write_register (argreg, regval);

	    len -= REGISTER_RAW_SIZE (argreg);
	    val += REGISTER_RAW_SIZE (argreg);
	    argreg++;
	  }
	else
	  {
	    write_memory (sp + argnum * 4, val, 4);

	    len -= 4;
	    val += 4;
	  }
      args++;
    }

  write_register (RP_REGNUM, entry_point_address ());

#endif
  return sp;
}

void
_initialize_m32r_tdep ()
{
  tm_print_insn = print_insn_m32r;
}