aboutsummaryrefslogtreecommitdiff
path: root/gdb/linux-nat.c
blob: 07ded105618f410fcaa5bc017fd999226f41c725 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
/* GNU/Linux native-dependent code common to multiple platforms.

   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "inferior.h"
#include "target.h"
#include "gdb_string.h"
#include "gdb_wait.h"
#include "gdb_assert.h"
#ifdef HAVE_TKILL_SYSCALL
#include <unistd.h>
#include <sys/syscall.h>
#endif
#include <sys/ptrace.h>
#include "linux-nat.h"
#include "linux-fork.h"
#include "gdbthread.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "regset.h"
#include "inf-ptrace.h"
#include "auxv.h"
#include <sys/param.h>		/* for MAXPATHLEN */
#include <sys/procfs.h>		/* for elf_gregset etc. */
#include "elf-bfd.h"		/* for elfcore_write_* */
#include "gregset.h"		/* for gregset */
#include "gdbcore.h"		/* for get_exec_file */
#include <ctype.h>		/* for isdigit */
#include "gdbthread.h"		/* for struct thread_info etc. */
#include "gdb_stat.h"		/* for struct stat */
#include <fcntl.h>		/* for O_RDONLY */
#include "inf-loop.h"
#include "event-loop.h"
#include "event-top.h"

#ifdef HAVE_PERSONALITY
# include <sys/personality.h>
# if !HAVE_DECL_ADDR_NO_RANDOMIZE
#  define ADDR_NO_RANDOMIZE 0x0040000
# endif
#endif /* HAVE_PERSONALITY */

/* This comment documents high-level logic of this file. 

Waiting for events in sync mode
===============================

When waiting for an event in a specific thread, we just use waitpid, passing
the specific pid, and not passing WNOHANG.

When waiting for an event in all threads, waitpid is not quite good. Prior to
version 2.4, Linux can either wait for event in main thread, or in secondary
threads. (2.4 has the __WALL flag).  So, if we use blocking waitpid, we might
miss an event.  The solution is to use non-blocking waitpid, together with
sigsuspend.  First, we use non-blocking waitpid to get an event in the main 
process, if any. Second, we use non-blocking waitpid with the __WCLONED
flag to check for events in cloned processes.  If nothing is found, we use
sigsuspend to wait for SIGCHLD.  When SIGCHLD arrives, it means something
happened to a child process -- and SIGCHLD will be delivered both for events
in main debugged process and in cloned processes.  As soon as we know there's
an event, we get back to calling nonblocking waitpid with and without __WCLONED.

Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
so that we don't miss a signal. If SIGCHLD arrives in between, when it's
blocked, the signal becomes pending and sigsuspend immediately
notices it and returns.

Waiting for events in async mode
================================

In async mode, GDB should always be ready to handle both user input and target
events, so neither blocking waitpid nor sigsuspend are viable
options. Instead, we should notify the GDB main event loop whenever there's
unprocessed event from the target.  The only way to notify this event loop is
to make it wait on input from a pipe, and write something to the pipe whenever
there's event. Obviously, if we fail to notify the event loop if there's
target event, it's bad.  If we notify the event loop when there's no event
from target, linux-nat.c will detect that there's no event, actually, and
report event of type TARGET_WAITKIND_IGNORE, but it will waste time and
better avoided.

The main design point is that every time GDB is outside linux-nat.c, we have a
SIGCHLD handler installed that is called when something happens to the target
and notifies the GDB event loop. Also, the event is extracted from the target
using waitpid and stored for future use.  Whenever GDB core decides to handle
the event, and calls into linux-nat.c, we disable SIGCHLD and process things
as in sync mode, except that before waitpid call we check if there are any
previously read events.

It could happen that during event processing, we'll try to get more events
than there are events in the local queue, which will result to waitpid call.
Those waitpid calls, while blocking, are guarantied to always have
something for waitpid to return.  E.g., stopping a thread with SIGSTOP, and
waiting for the lwp to stop.

The event loop is notified about new events using a pipe. SIGCHLD handler does
waitpid and writes the results in to a pipe. GDB event loop has the other end
of the pipe among the sources. When event loop starts to process the event
and calls a function in linux-nat.c, all events from the pipe are transferred
into a local queue and SIGCHLD is blocked. Further processing goes as in sync
mode. Before we return from linux_nat_wait, we transfer all unprocessed events
from local queue back to the pipe, so that when we get back to event loop,
event loop will notice there's something more to do.

SIGCHLD is blocked when we're inside target_wait, so that should we actually
want to wait for some more events, SIGCHLD handler does not steal them from
us. Technically, it would be possible to add new events to the local queue but
it's about the same amount of work as blocking SIGCHLD.

This moving of events from pipe into local queue and back into pipe when we
enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is
home-grown and incapable to wait on any queue.

Use of signals
==============

We stop threads by sending a SIGSTOP.  The use of SIGSTOP instead of another
signal is not entirely significant; we just need for a signal to be delivered,
so that we can intercept it.  SIGSTOP's advantage is that it can not be
blocked.  A disadvantage is that it is not a real-time signal, so it can only
be queued once; we do not keep track of other sources of SIGSTOP.

Two other signals that can't be blocked are SIGCONT and SIGKILL.  But we can't
use them, because they have special behavior when the signal is generated -
not when it is delivered.  SIGCONT resumes the entire thread group and SIGKILL
kills the entire thread group.

A delivered SIGSTOP would stop the entire thread group, not just the thread we
tkill'd.  But we never let the SIGSTOP be delivered; we always intercept and 
cancel it (by PTRACE_CONT without passing SIGSTOP).

We could use a real-time signal instead.  This would solve those problems; we
could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
generates it, and there are races with trying to find a signal that is not
blocked.  */

#ifndef O_LARGEFILE
#define O_LARGEFILE 0
#endif

/* If the system headers did not provide the constants, hard-code the normal
   values.  */
#ifndef PTRACE_EVENT_FORK

#define PTRACE_SETOPTIONS	0x4200
#define PTRACE_GETEVENTMSG	0x4201

/* options set using PTRACE_SETOPTIONS */
#define PTRACE_O_TRACESYSGOOD	0x00000001
#define PTRACE_O_TRACEFORK	0x00000002
#define PTRACE_O_TRACEVFORK	0x00000004
#define PTRACE_O_TRACECLONE	0x00000008
#define PTRACE_O_TRACEEXEC	0x00000010
#define PTRACE_O_TRACEVFORKDONE	0x00000020
#define PTRACE_O_TRACEEXIT	0x00000040

/* Wait extended result codes for the above trace options.  */
#define PTRACE_EVENT_FORK	1
#define PTRACE_EVENT_VFORK	2
#define PTRACE_EVENT_CLONE	3
#define PTRACE_EVENT_EXEC	4
#define PTRACE_EVENT_VFORK_DONE	5
#define PTRACE_EVENT_EXIT	6

#endif /* PTRACE_EVENT_FORK */

/* We can't always assume that this flag is available, but all systems
   with the ptrace event handlers also have __WALL, so it's safe to use
   here.  */
#ifndef __WALL
#define __WALL          0x40000000 /* Wait for any child.  */
#endif

#ifndef PTRACE_GETSIGINFO
#define PTRACE_GETSIGINFO    0x4202
#endif

/* The single-threaded native GNU/Linux target_ops.  We save a pointer for
   the use of the multi-threaded target.  */
static struct target_ops *linux_ops;
static struct target_ops linux_ops_saved;

/* The method to call, if any, when a new thread is attached.  */
static void (*linux_nat_new_thread) (ptid_t);

/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
   Called by our to_xfer_partial.  */
static LONGEST (*super_xfer_partial) (struct target_ops *, 
				      enum target_object,
				      const char *, gdb_byte *, 
				      const gdb_byte *,
				      ULONGEST, LONGEST);

static int debug_linux_nat;
static void
show_debug_linux_nat (struct ui_file *file, int from_tty,
		      struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
		    value);
}

static int debug_linux_nat_async = 0;
static void
show_debug_linux_nat_async (struct ui_file *file, int from_tty,
			    struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
		    value);
}

static int disable_randomization = 1;

static void
show_disable_randomization (struct ui_file *file, int from_tty,
			    struct cmd_list_element *c, const char *value)
{
#ifdef HAVE_PERSONALITY
  fprintf_filtered (file, _("\
Disabling randomization of debuggee's virtual address space is %s.\n"),
		    value);
#else /* !HAVE_PERSONALITY */
  fputs_filtered (_("\
Disabling randomization of debuggee's virtual address space is unsupported on\n\
this platform.\n"), file);
#endif /* !HAVE_PERSONALITY */
}

static void
set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
{
#ifndef HAVE_PERSONALITY
  error (_("\
Disabling randomization of debuggee's virtual address space is unsupported on\n\
this platform."));
#endif /* !HAVE_PERSONALITY */
}

static int linux_parent_pid;

struct simple_pid_list
{
  int pid;
  int status;
  struct simple_pid_list *next;
};
struct simple_pid_list *stopped_pids;

/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
   can not be used, 1 if it can.  */

static int linux_supports_tracefork_flag = -1;

/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
   PTRACE_O_TRACEVFORKDONE.  */

static int linux_supports_tracevforkdone_flag = -1;

/* Async mode support */

/* Zero if the async mode, although enabled, is masked, which means
   linux_nat_wait should behave as if async mode was off.  */
static int linux_nat_async_mask_value = 1;

/* The read/write ends of the pipe registered as waitable file in the
   event loop.  */
static int linux_nat_event_pipe[2] = { -1, -1 };

/* Number of queued events in the pipe.  */
static volatile int linux_nat_num_queued_events;

/* The possible SIGCHLD handling states.  */

enum sigchld_state
{
  /* SIGCHLD disabled, with action set to sigchld_handler, for the
     sigsuspend in linux_nat_wait.  */
  sigchld_sync,
  /* SIGCHLD enabled, with action set to async_sigchld_handler.  */
  sigchld_async,
  /* Set SIGCHLD to default action.  Used while creating an
     inferior.  */
  sigchld_default
};

/* The current SIGCHLD handling state.  */
static enum sigchld_state linux_nat_async_events_state;

static enum sigchld_state linux_nat_async_events (enum sigchld_state enable);
static void pipe_to_local_event_queue (void);
static void local_event_queue_to_pipe (void);
static void linux_nat_event_pipe_push (int pid, int status, int options);
static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
static void linux_nat_set_async_mode (int on);
static void linux_nat_async (void (*callback)
			     (enum inferior_event_type event_type, void *context),
			     void *context);
static int linux_nat_async_mask (int mask);
static int kill_lwp (int lwpid, int signo);

static int send_sigint_callback (struct lwp_info *lp, void *data);
static int stop_callback (struct lwp_info *lp, void *data);

/* Captures the result of a successful waitpid call, along with the
   options used in that call.  */
struct waitpid_result
{
  int pid;
  int status;
  int options;
  struct waitpid_result *next;
};

/* A singly-linked list of the results of the waitpid calls performed
   in the async SIGCHLD handler.  */
static struct waitpid_result *waitpid_queue = NULL;

static int
queued_waitpid (int pid, int *status, int flags)
{
  struct waitpid_result *msg = waitpid_queue, *prev = NULL;

  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog,
			"\
QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n",
			linux_nat_async_events_state,
			linux_nat_num_queued_events);

  if (flags & __WALL)
    {
      for (; msg; prev = msg, msg = msg->next)
	if (pid == -1 || pid == msg->pid)
	  break;
    }
  else if (flags & __WCLONE)
    {
      for (; msg; prev = msg, msg = msg->next)
	if (msg->options & __WCLONE
	    && (pid == -1 || pid == msg->pid))
	  break;
    }
  else
    {
      for (; msg; prev = msg, msg = msg->next)
	if ((msg->options & __WCLONE) == 0
	    && (pid == -1 || pid == msg->pid))
	  break;
    }

  if (msg)
    {
      int pid;

      if (prev)
	prev->next = msg->next;
      else
	waitpid_queue = msg->next;

      msg->next = NULL;
      if (status)
	*status = msg->status;
      pid = msg->pid;

      if (debug_linux_nat_async)
	fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
			    pid, msg->status);
      xfree (msg);

      return pid;
    }

  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");

  if (status)
    *status = 0;
  return -1;
}

static void
push_waitpid (int pid, int status, int options)
{
  struct waitpid_result *event, *new_event;

  new_event = xmalloc (sizeof (*new_event));
  new_event->pid = pid;
  new_event->status = status;
  new_event->options = options;
  new_event->next = NULL;

  if (waitpid_queue)
    {
      for (event = waitpid_queue;
	   event && event->next;
	   event = event->next)
	;

      event->next = new_event;
    }
  else
    waitpid_queue = new_event;
}

/* Drain all queued events of PID.  If PID is -1, the effect is of
   draining all events.  */
static void
drain_queued_events (int pid)
{
  while (queued_waitpid (pid, NULL, __WALL) != -1)
    ;
}


/* Trivial list manipulation functions to keep track of a list of
   new stopped processes.  */
static void
add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
{
  struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
  new_pid->pid = pid;
  new_pid->status = status;
  new_pid->next = *listp;
  *listp = new_pid;
}

static int
pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
{
  struct simple_pid_list **p;

  for (p = listp; *p != NULL; p = &(*p)->next)
    if ((*p)->pid == pid)
      {
	struct simple_pid_list *next = (*p)->next;
	*status = (*p)->status;
	xfree (*p);
	*p = next;
	return 1;
      }
  return 0;
}

static void
linux_record_stopped_pid (int pid, int status)
{
  add_to_pid_list (&stopped_pids, pid, status);
}


/* A helper function for linux_test_for_tracefork, called after fork ().  */

static void
linux_tracefork_child (void)
{
  int ret;

  ptrace (PTRACE_TRACEME, 0, 0, 0);
  kill (getpid (), SIGSTOP);
  fork ();
  _exit (0);
}

/* Wrapper function for waitpid which handles EINTR, and checks for
   locally queued events.  */

static int
my_waitpid (int pid, int *status, int flags)
{
  int ret;

  /* There should be no concurrent calls to waitpid.  */
  gdb_assert (linux_nat_async_events_state == sigchld_sync);

  ret = queued_waitpid (pid, status, flags);
  if (ret != -1)
    return ret;

  do
    {
      ret = waitpid (pid, status, flags);
    }
  while (ret == -1 && errno == EINTR);

  return ret;
}

/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.

   First, we try to enable fork tracing on ORIGINAL_PID.  If this fails,
   we know that the feature is not available.  This may change the tracing
   options for ORIGINAL_PID, but we'll be setting them shortly anyway.

   However, if it succeeds, we don't know for sure that the feature is
   available; old versions of PTRACE_SETOPTIONS ignored unknown options.  We
   create a child process, attach to it, use PTRACE_SETOPTIONS to enable
   fork tracing, and let it fork.  If the process exits, we assume that we
   can't use TRACEFORK; if we get the fork notification, and we can extract
   the new child's PID, then we assume that we can.  */

static void
linux_test_for_tracefork (int original_pid)
{
  int child_pid, ret, status;
  long second_pid;
  enum sigchld_state async_events_original_state;

  async_events_original_state = linux_nat_async_events (sigchld_sync);

  linux_supports_tracefork_flag = 0;
  linux_supports_tracevforkdone_flag = 0;

  ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
  if (ret != 0)
    return;

  child_pid = fork ();
  if (child_pid == -1)
    perror_with_name (("fork"));

  if (child_pid == 0)
    linux_tracefork_child ();

  ret = my_waitpid (child_pid, &status, 0);
  if (ret == -1)
    perror_with_name (("waitpid"));
  else if (ret != child_pid)
    error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
  if (! WIFSTOPPED (status))
    error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);

  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
  if (ret != 0)
    {
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      if (ret != 0)
	{
	  warning (_("linux_test_for_tracefork: failed to kill child"));
	  linux_nat_async_events (async_events_original_state);
	  return;
	}

      ret = my_waitpid (child_pid, &status, 0);
      if (ret != child_pid)
	warning (_("linux_test_for_tracefork: failed to wait for killed child"));
      else if (!WIFSIGNALED (status))
	warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
		 "killed child"), status);

      linux_nat_async_events (async_events_original_state);
      return;
    }

  /* Check whether PTRACE_O_TRACEVFORKDONE is available.  */
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
		PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
  linux_supports_tracevforkdone_flag = (ret == 0);

  ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
  if (ret != 0)
    warning (_("linux_test_for_tracefork: failed to resume child"));

  ret = my_waitpid (child_pid, &status, 0);

  if (ret == child_pid && WIFSTOPPED (status)
      && status >> 16 == PTRACE_EVENT_FORK)
    {
      second_pid = 0;
      ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
      if (ret == 0 && second_pid != 0)
	{
	  int second_status;

	  linux_supports_tracefork_flag = 1;
	  my_waitpid (second_pid, &second_status, 0);
	  ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
	  if (ret != 0)
	    warning (_("linux_test_for_tracefork: failed to kill second child"));
	  my_waitpid (second_pid, &status, 0);
	}
    }
  else
    warning (_("linux_test_for_tracefork: unexpected result from waitpid "
	     "(%d, status 0x%x)"), ret, status);

  ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
  if (ret != 0)
    warning (_("linux_test_for_tracefork: failed to kill child"));
  my_waitpid (child_pid, &status, 0);

  linux_nat_async_events (async_events_original_state);
}

/* Return non-zero iff we have tracefork functionality available.
   This function also sets linux_supports_tracefork_flag.  */

static int
linux_supports_tracefork (int pid)
{
  if (linux_supports_tracefork_flag == -1)
    linux_test_for_tracefork (pid);
  return linux_supports_tracefork_flag;
}

static int
linux_supports_tracevforkdone (int pid)
{
  if (linux_supports_tracefork_flag == -1)
    linux_test_for_tracefork (pid);
  return linux_supports_tracevforkdone_flag;
}


void
linux_enable_event_reporting (ptid_t ptid)
{
  int pid = ptid_get_lwp (ptid);
  int options;

  if (pid == 0)
    pid = ptid_get_pid (ptid);

  if (! linux_supports_tracefork (pid))
    return;

  options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
    | PTRACE_O_TRACECLONE;
  if (linux_supports_tracevforkdone (pid))
    options |= PTRACE_O_TRACEVFORKDONE;

  /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
     read-only process state.  */

  ptrace (PTRACE_SETOPTIONS, pid, 0, options);
}

static void
linux_child_post_attach (int pid)
{
  linux_enable_event_reporting (pid_to_ptid (pid));
  check_for_thread_db ();
}

static void
linux_child_post_startup_inferior (ptid_t ptid)
{
  linux_enable_event_reporting (ptid);
  check_for_thread_db ();
}

static int
linux_child_follow_fork (struct target_ops *ops, int follow_child)
{
  ptid_t last_ptid;
  struct target_waitstatus last_status;
  int has_vforked;
  int parent_pid, child_pid;

  if (target_can_async_p ())
    target_async (NULL, 0);

  get_last_target_status (&last_ptid, &last_status);
  has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
  parent_pid = ptid_get_lwp (last_ptid);
  if (parent_pid == 0)
    parent_pid = ptid_get_pid (last_ptid);
  child_pid = PIDGET (last_status.value.related_pid);

  if (! follow_child)
    {
      /* We're already attached to the parent, by default. */

      /* Before detaching from the child, remove all breakpoints from
         it.  (This won't actually modify the breakpoint list, but will
         physically remove the breakpoints from the child.) */
      /* If we vforked this will remove the breakpoints from the parent
	 also, but they'll be reinserted below.  */
      detach_breakpoints (child_pid);

      /* Detach new forked process?  */
      if (detach_fork)
	{
	  if (info_verbose || debug_linux_nat)
	    {
	      target_terminal_ours ();
	      fprintf_filtered (gdb_stdlog,
				"Detaching after fork from child process %d.\n",
				child_pid);
	    }

	  ptrace (PTRACE_DETACH, child_pid, 0, 0);
	}
      else
	{
	  struct fork_info *fp;
	  /* Retain child fork in ptrace (stopped) state.  */
	  fp = find_fork_pid (child_pid);
	  if (!fp)
	    fp = add_fork (child_pid);
	  fork_save_infrun_state (fp, 0);
	}

      if (has_vforked)
	{
	  gdb_assert (linux_supports_tracefork_flag >= 0);
	  if (linux_supports_tracevforkdone (0))
	    {
	      int status;

	      ptrace (PTRACE_CONT, parent_pid, 0, 0);
	      my_waitpid (parent_pid, &status, __WALL);
	      if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
		warning (_("Unexpected waitpid result %06x when waiting for "
			 "vfork-done"), status);
	    }
	  else
	    {
	      /* We can't insert breakpoints until the child has
		 finished with the shared memory region.  We need to
		 wait until that happens.  Ideal would be to just
		 call:
		 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
		 - waitpid (parent_pid, &status, __WALL);
		 However, most architectures can't handle a syscall
		 being traced on the way out if it wasn't traced on
		 the way in.

		 We might also think to loop, continuing the child
		 until it exits or gets a SIGTRAP.  One problem is
		 that the child might call ptrace with PTRACE_TRACEME.

		 There's no simple and reliable way to figure out when
		 the vforked child will be done with its copy of the
		 shared memory.  We could step it out of the syscall,
		 two instructions, let it go, and then single-step the
		 parent once.  When we have hardware single-step, this
		 would work; with software single-step it could still
		 be made to work but we'd have to be able to insert
		 single-step breakpoints in the child, and we'd have
		 to insert -just- the single-step breakpoint in the
		 parent.  Very awkward.

		 In the end, the best we can do is to make sure it
		 runs for a little while.  Hopefully it will be out of
		 range of any breakpoints we reinsert.  Usually this
		 is only the single-step breakpoint at vfork's return
		 point.  */

	      usleep (10000);
	    }

	  /* Since we vforked, breakpoints were removed in the parent
	     too.  Put them back.  */
	  reattach_breakpoints (parent_pid);
	}
    }
  else
    {
      struct thread_info *last_tp = find_thread_pid (last_ptid);
      struct thread_info *tp;
      char child_pid_spelling[40];

      /* Copy user stepping state to the new inferior thread.  */
      struct breakpoint *step_resume_breakpoint = last_tp->step_resume_breakpoint;
      CORE_ADDR step_range_start = last_tp->step_range_start;
      CORE_ADDR step_range_end = last_tp->step_range_end;
      struct frame_id step_frame_id = last_tp->step_frame_id;

      /* Otherwise, deleting the parent would get rid of this
	 breakpoint.  */
      last_tp->step_resume_breakpoint = NULL;

      /* Needed to keep the breakpoint lists in sync.  */
      if (! has_vforked)
	detach_breakpoints (child_pid);

      /* Before detaching from the parent, remove all breakpoints from it. */
      remove_breakpoints ();

      if (info_verbose || debug_linux_nat)
	{
	  target_terminal_ours ();
	  fprintf_filtered (gdb_stdlog,
			    "Attaching after fork to child process %d.\n",
			    child_pid);
	}

      /* If we're vforking, we may want to hold on to the parent until
	 the child exits or execs.  At exec time we can remove the old
	 breakpoints from the parent and detach it; at exit time we
	 could do the same (or even, sneakily, resume debugging it - the
	 child's exec has failed, or something similar).

	 This doesn't clean up "properly", because we can't call
	 target_detach, but that's OK; if the current target is "child",
	 then it doesn't need any further cleanups, and lin_lwp will
	 generally not encounter vfork (vfork is defined to fork
	 in libpthread.so).

	 The holding part is very easy if we have VFORKDONE events;
	 but keeping track of both processes is beyond GDB at the
	 moment.  So we don't expose the parent to the rest of GDB.
	 Instead we quietly hold onto it until such time as we can
	 safely resume it.  */

      if (has_vforked)
	linux_parent_pid = parent_pid;
      else if (!detach_fork)
	{
	  struct fork_info *fp;
	  /* Retain parent fork in ptrace (stopped) state.  */
	  fp = find_fork_pid (parent_pid);
	  if (!fp)
	    fp = add_fork (parent_pid);
	  fork_save_infrun_state (fp, 0);
	}
      else
	target_detach (NULL, 0);

      inferior_ptid = ptid_build (child_pid, child_pid, 0);

      /* Reinstall ourselves, since we might have been removed in
	 target_detach (which does other necessary cleanup).  */

      push_target (ops);
      linux_nat_switch_fork (inferior_ptid);
      check_for_thread_db ();

      tp = inferior_thread ();
      tp->step_resume_breakpoint = step_resume_breakpoint;
      tp->step_range_start = step_range_start;
      tp->step_range_end = step_range_end;
      tp->step_frame_id = step_frame_id;

      /* Reset breakpoints in the child as appropriate.  */
      follow_inferior_reset_breakpoints ();
    }

  if (target_can_async_p ())
    target_async (inferior_event_handler, 0);

  return 0;
}


static void
linux_child_insert_fork_catchpoint (int pid)
{
  if (! linux_supports_tracefork (pid))
    error (_("Your system does not support fork catchpoints."));
}

static void
linux_child_insert_vfork_catchpoint (int pid)
{
  if (!linux_supports_tracefork (pid))
    error (_("Your system does not support vfork catchpoints."));
}

static void
linux_child_insert_exec_catchpoint (int pid)
{
  if (!linux_supports_tracefork (pid))
    error (_("Your system does not support exec catchpoints."));
}

/* On GNU/Linux there are no real LWP's.  The closest thing to LWP's
   are processes sharing the same VM space.  A multi-threaded process
   is basically a group of such processes.  However, such a grouping
   is almost entirely a user-space issue; the kernel doesn't enforce
   such a grouping at all (this might change in the future).  In
   general, we'll rely on the threads library (i.e. the GNU/Linux
   Threads library) to provide such a grouping.

   It is perfectly well possible to write a multi-threaded application
   without the assistance of a threads library, by using the clone
   system call directly.  This module should be able to give some
   rudimentary support for debugging such applications if developers
   specify the CLONE_PTRACE flag in the clone system call, and are
   using the Linux kernel 2.4 or above.

   Note that there are some peculiarities in GNU/Linux that affect
   this code:

   - In general one should specify the __WCLONE flag to waitpid in
     order to make it report events for any of the cloned processes
     (and leave it out for the initial process).  However, if a cloned
     process has exited the exit status is only reported if the
     __WCLONE flag is absent.  Linux kernel 2.4 has a __WALL flag, but
     we cannot use it since GDB must work on older systems too.

   - When a traced, cloned process exits and is waited for by the
     debugger, the kernel reassigns it to the original parent and
     keeps it around as a "zombie".  Somehow, the GNU/Linux Threads
     library doesn't notice this, which leads to the "zombie problem":
     When debugged a multi-threaded process that spawns a lot of
     threads will run out of processes, even if the threads exit,
     because the "zombies" stay around.  */

/* List of known LWPs.  */
struct lwp_info *lwp_list;

/* Number of LWPs in the list.  */
static int num_lwps;


/* Original signal mask.  */
static sigset_t normal_mask;

/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
   _initialize_linux_nat.  */
static sigset_t suspend_mask;

/* SIGCHLD action for synchronous mode.  */
struct sigaction sync_sigchld_action;

/* SIGCHLD action for asynchronous mode.  */
static struct sigaction async_sigchld_action;

/* SIGCHLD default action, to pass to new inferiors.  */
static struct sigaction sigchld_default_action;


/* Prototypes for local functions.  */
static int stop_wait_callback (struct lwp_info *lp, void *data);
static int linux_nat_thread_alive (ptid_t ptid);
static char *linux_child_pid_to_exec_file (int pid);
static int cancel_breakpoint (struct lwp_info *lp);


/* Convert wait status STATUS to a string.  Used for printing debug
   messages only.  */

static char *
status_to_str (int status)
{
  static char buf[64];

  if (WIFSTOPPED (status))
    snprintf (buf, sizeof (buf), "%s (stopped)",
	      strsignal (WSTOPSIG (status)));
  else if (WIFSIGNALED (status))
    snprintf (buf, sizeof (buf), "%s (terminated)",
	      strsignal (WSTOPSIG (status)));
  else
    snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));

  return buf;
}

/* Initialize the list of LWPs.  Note that this module, contrary to
   what GDB's generic threads layer does for its thread list,
   re-initializes the LWP lists whenever we mourn or detach (which
   doesn't involve mourning) the inferior.  */

static void
init_lwp_list (void)
{
  struct lwp_info *lp, *lpnext;

  for (lp = lwp_list; lp; lp = lpnext)
    {
      lpnext = lp->next;
      xfree (lp);
    }

  lwp_list = NULL;
  num_lwps = 0;
}

/* Add the LWP specified by PID to the list.  Return a pointer to the
   structure describing the new LWP.  The LWP should already be stopped
   (with an exception for the very first LWP).  */

static struct lwp_info *
add_lwp (ptid_t ptid)
{
  struct lwp_info *lp;

  gdb_assert (is_lwp (ptid));

  lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));

  memset (lp, 0, sizeof (struct lwp_info));

  lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;

  lp->ptid = ptid;

  lp->next = lwp_list;
  lwp_list = lp;
  ++num_lwps;

  if (num_lwps > 1 && linux_nat_new_thread != NULL)
    linux_nat_new_thread (ptid);

  return lp;
}

/* Remove the LWP specified by PID from the list.  */

static void
delete_lwp (ptid_t ptid)
{
  struct lwp_info *lp, *lpprev;

  lpprev = NULL;

  for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
    if (ptid_equal (lp->ptid, ptid))
      break;

  if (!lp)
    return;

  num_lwps--;

  if (lpprev)
    lpprev->next = lp->next;
  else
    lwp_list = lp->next;

  xfree (lp);
}

/* Return a pointer to the structure describing the LWP corresponding
   to PID.  If no corresponding LWP could be found, return NULL.  */

static struct lwp_info *
find_lwp_pid (ptid_t ptid)
{
  struct lwp_info *lp;
  int lwp;

  if (is_lwp (ptid))
    lwp = GET_LWP (ptid);
  else
    lwp = GET_PID (ptid);

  for (lp = lwp_list; lp; lp = lp->next)
    if (lwp == GET_LWP (lp->ptid))
      return lp;

  return NULL;
}

/* Call CALLBACK with its second argument set to DATA for every LWP in
   the list.  If CALLBACK returns 1 for a particular LWP, return a
   pointer to the structure describing that LWP immediately.
   Otherwise return NULL.  */

struct lwp_info *
iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
{
  struct lwp_info *lp, *lpnext;

  for (lp = lwp_list; lp; lp = lpnext)
    {
      lpnext = lp->next;
      if ((*callback) (lp, data))
	return lp;
    }

  return NULL;
}

/* Update our internal state when changing from one fork (checkpoint,
   et cetera) to another indicated by NEW_PTID.  We can only switch
   single-threaded applications, so we only create one new LWP, and
   the previous list is discarded.  */

void
linux_nat_switch_fork (ptid_t new_ptid)
{
  struct lwp_info *lp;

  init_lwp_list ();
  lp = add_lwp (new_ptid);
  lp->stopped = 1;

  init_thread_list ();
  add_thread_silent (new_ptid);
}

/* Handle the exit of a single thread LP.  */

static void
exit_lwp (struct lwp_info *lp)
{
  struct thread_info *th = find_thread_pid (lp->ptid);

  if (th)
    {
      if (print_thread_events)
	printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));

      delete_thread (lp->ptid);
    }

  delete_lwp (lp->ptid);
}

/* Detect `T (stopped)' in `/proc/PID/status'.
   Other states including `T (tracing stop)' are reported as false.  */

static int
pid_is_stopped (pid_t pid)
{
  FILE *status_file;
  char buf[100];
  int retval = 0;

  snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
  status_file = fopen (buf, "r");
  if (status_file != NULL)
    {
      int have_state = 0;

      while (fgets (buf, sizeof (buf), status_file))
	{
	  if (strncmp (buf, "State:", 6) == 0)
	    {
	      have_state = 1;
	      break;
	    }
	}
      if (have_state && strstr (buf, "T (stopped)") != NULL)
	retval = 1;
      fclose (status_file);
    }
  return retval;
}

/* Wait for the LWP specified by LP, which we have just attached to.
   Returns a wait status for that LWP, to cache.  */

static int
linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
			    int *signalled)
{
  pid_t new_pid, pid = GET_LWP (ptid);
  int status;

  if (pid_is_stopped (pid))
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LNPAW: Attaching to a stopped process\n");

      /* The process is definitely stopped.  It is in a job control
	 stop, unless the kernel predates the TASK_STOPPED /
	 TASK_TRACED distinction, in which case it might be in a
	 ptrace stop.  Make sure it is in a ptrace stop; from there we
	 can kill it, signal it, et cetera.

         First make sure there is a pending SIGSTOP.  Since we are
	 already attached, the process can not transition from stopped
	 to running without a PTRACE_CONT; so we know this signal will
	 go into the queue.  The SIGSTOP generated by PTRACE_ATTACH is
	 probably already in the queue (unless this kernel is old
	 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
	 is not an RT signal, it can only be queued once.  */
      kill_lwp (pid, SIGSTOP);

      /* Finally, resume the stopped process.  This will deliver the SIGSTOP
	 (or a higher priority signal, just like normal PTRACE_ATTACH).  */
      ptrace (PTRACE_CONT, pid, 0, 0);
    }

  /* Make sure the initial process is stopped.  The user-level threads
     layer might want to poke around in the inferior, and that won't
     work if things haven't stabilized yet.  */
  new_pid = my_waitpid (pid, &status, 0);
  if (new_pid == -1 && errno == ECHILD)
    {
      if (first)
	warning (_("%s is a cloned process"), target_pid_to_str (ptid));

      /* Try again with __WCLONE to check cloned processes.  */
      new_pid = my_waitpid (pid, &status, __WCLONE);
      *cloned = 1;
    }

  gdb_assert (pid == new_pid && WIFSTOPPED (status));

  if (WSTOPSIG (status) != SIGSTOP)
    {
      *signalled = 1;
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LNPAW: Received %s after attaching\n",
			    status_to_str (status));
    }

  return status;
}

/* Attach to the LWP specified by PID.  Return 0 if successful or -1
   if the new LWP could not be attached.  */

int
lin_lwp_attach_lwp (ptid_t ptid)
{
  struct lwp_info *lp;
  enum sigchld_state async_events_original_state;

  gdb_assert (is_lwp (ptid));

  async_events_original_state = linux_nat_async_events (sigchld_sync);

  lp = find_lwp_pid (ptid);

  /* We assume that we're already attached to any LWP that has an id
     equal to the overall process id, and to any LWP that is already
     in our list of LWPs.  If we're not seeing exit events from threads
     and we've had PID wraparound since we last tried to stop all threads,
     this assumption might be wrong; fortunately, this is very unlikely
     to happen.  */
  if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
    {
      int status, cloned = 0, signalled = 0;

      if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
	{
	  /* If we fail to attach to the thread, issue a warning,
	     but continue.  One way this can happen is if thread
	     creation is interrupted; as of Linux kernel 2.6.19, a
	     bug may place threads in the thread list and then fail
	     to create them.  */
	  warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
		   safe_strerror (errno));
	  return -1;
	}

      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
			    target_pid_to_str (ptid));

      status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
      lp = add_lwp (ptid);
      lp->stopped = 1;
      lp->cloned = cloned;
      lp->signalled = signalled;
      if (WSTOPSIG (status) != SIGSTOP)
	{
	  lp->resumed = 1;
	  lp->status = status;
	}

      target_post_attach (GET_LWP (lp->ptid));

      if (debug_linux_nat)
	{
	  fprintf_unfiltered (gdb_stdlog,
			      "LLAL: waitpid %s received %s\n",
			      target_pid_to_str (ptid),
			      status_to_str (status));
	}
    }
  else
    {
      /* We assume that the LWP representing the original process is
         already stopped.  Mark it as stopped in the data structure
         that the GNU/linux ptrace layer uses to keep track of
         threads.  Note that this won't have already been done since
         the main thread will have, we assume, been stopped by an
         attach from a different layer.  */
      if (lp == NULL)
	lp = add_lwp (ptid);
      lp->stopped = 1;
    }

  linux_nat_async_events (async_events_original_state);
  return 0;
}

static void
linux_nat_create_inferior (char *exec_file, char *allargs, char **env,
			   int from_tty)
{
  int saved_async = 0;
#ifdef HAVE_PERSONALITY
  int personality_orig = 0, personality_set = 0;
#endif /* HAVE_PERSONALITY */

  /* The fork_child mechanism is synchronous and calls target_wait, so
     we have to mask the async mode.  */

  if (target_can_async_p ())
    /* Mask async mode.  Creating a child requires a loop calling
       wait_for_inferior currently.  */
    saved_async = linux_nat_async_mask (0);
  else
    {
      /* Restore the original signal mask.  */
      sigprocmask (SIG_SETMASK, &normal_mask, NULL);
      /* Make sure we don't block SIGCHLD during a sigsuspend.  */
      suspend_mask = normal_mask;
      sigdelset (&suspend_mask, SIGCHLD);
    }

  /* Set SIGCHLD to the default action, until after execing the child,
     since the inferior inherits the superior's signal mask.  It will
     be blocked again in linux_nat_wait, which is only reached after
     the inferior execing.  */
  linux_nat_async_events (sigchld_default);

#ifdef HAVE_PERSONALITY
  if (disable_randomization)
    {
      errno = 0;
      personality_orig = personality (0xffffffff);
      if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
	{
	  personality_set = 1;
	  personality (personality_orig | ADDR_NO_RANDOMIZE);
	}
      if (errno != 0 || (personality_set
			 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
	warning (_("Error disabling address space randomization: %s"),
		 safe_strerror (errno));
    }
#endif /* HAVE_PERSONALITY */

  linux_ops->to_create_inferior (exec_file, allargs, env, from_tty);

#ifdef HAVE_PERSONALITY
  if (personality_set)
    {
      errno = 0;
      personality (personality_orig);
      if (errno != 0)
	warning (_("Error restoring address space randomization: %s"),
		 safe_strerror (errno));
    }
#endif /* HAVE_PERSONALITY */

  if (saved_async)
    linux_nat_async_mask (saved_async);
}

static void
linux_nat_attach (char *args, int from_tty)
{
  struct lwp_info *lp;
  int status;
  ptid_t ptid;

  /* FIXME: We should probably accept a list of process id's, and
     attach all of them.  */
  linux_ops->to_attach (args, from_tty);

  if (!target_can_async_p ())
    {
      /* Restore the original signal mask.  */
      sigprocmask (SIG_SETMASK, &normal_mask, NULL);
      /* Make sure we don't block SIGCHLD during a sigsuspend.  */
      suspend_mask = normal_mask;
      sigdelset (&suspend_mask, SIGCHLD);
    }

  /* The ptrace base target adds the main thread with (pid,0,0)
     format.  Decorate it with lwp info.  */
  ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
  thread_change_ptid (inferior_ptid, ptid);

  /* Add the initial process as the first LWP to the list.  */
  lp = add_lwp (ptid);

  status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
				       &lp->signalled);
  lp->stopped = 1;

  /* Save the wait status to report later.  */
  lp->resumed = 1;
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
			"LNA: waitpid %ld, saving status %s\n",
			(long) GET_PID (lp->ptid), status_to_str (status));

  if (!target_can_async_p ())
    lp->status = status;
  else
    {
      /* We already waited for this LWP, so put the wait result on the
	 pipe.  The event loop will wake up and gets us to handling
	 this event.  */
      linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
				 lp->cloned ? __WCLONE : 0);
      /* Register in the event loop.  */
      target_async (inferior_event_handler, 0);
    }
}

/* Get pending status of LP.  */
static int
get_pending_status (struct lwp_info *lp, int *status)
{
  struct target_waitstatus last;
  ptid_t last_ptid;

  get_last_target_status (&last_ptid, &last);

  /* If this lwp is the ptid that GDB is processing an event from, the
     signal will be in stop_signal.  Otherwise, in all-stop + sync
     mode, we may cache pending events in lp->status while trying to
     stop all threads (see stop_wait_callback).  In async mode, the
     events are always cached in waitpid_queue.  */

  *status = 0;

  if (non_stop)
    {
      enum target_signal signo = TARGET_SIGNAL_0;

      if (is_executing (lp->ptid))
	{
	  /* If the core thought this lwp was executing --- e.g., the
	     executing property hasn't been updated yet, but the
	     thread has been stopped with a stop_callback /
	     stop_wait_callback sequence (see linux_nat_detach for
	     example) --- we can only have pending events in the local
	     queue.  */
	  if (queued_waitpid (GET_LWP (lp->ptid), status, __WALL) != -1)
	    {
	      if (WIFSTOPPED (status))
		signo = target_signal_from_host (WSTOPSIG (status));

	      /* If not stopped, then the lwp is gone, no use in
		 resending a signal.  */
	    }
	}
      else
	{
	  /* If the core knows the thread is not executing, then we
	     have the last signal recorded in
	     thread_info->stop_signal, unless this is inferior_ptid,
	     in which case, it's in the global stop_signal, due to
	     context switching.  */

	  if (ptid_equal (lp->ptid, inferior_ptid))
	    signo = stop_signal;
	  else
	    {
	      struct thread_info *tp = find_thread_pid (lp->ptid);
	      gdb_assert (tp);
	      signo = tp->stop_signal;
	    }
	}

      if (signo != TARGET_SIGNAL_0
	  && !signal_pass_state (signo))
	{
	  if (debug_linux_nat)
	    fprintf_unfiltered (gdb_stdlog, "\
GPT: lwp %s had signal %s, but it is in no pass state\n",
				target_pid_to_str (lp->ptid),
				target_signal_to_string (signo));
	}
      else
	{
	  if (signo != TARGET_SIGNAL_0)
	    *status = W_STOPCODE (target_signal_to_host (signo));

	  if (debug_linux_nat)
	    fprintf_unfiltered (gdb_stdlog,
				"GPT: lwp %s as pending signal %s\n",
				target_pid_to_str (lp->ptid),
				target_signal_to_string (signo));
	}
    }
  else
    {
      if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
	{
	  if (stop_signal != TARGET_SIGNAL_0
	      && signal_pass_state (stop_signal))
	    *status = W_STOPCODE (target_signal_to_host (stop_signal));
	}
      else if (target_can_async_p ())
	queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
      else
	*status = lp->status;
    }

  return 0;
}

static int
detach_callback (struct lwp_info *lp, void *data)
{
  gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));

  if (debug_linux_nat && lp->status)
    fprintf_unfiltered (gdb_stdlog, "DC:  Pending %s for %s on detach.\n",
			strsignal (WSTOPSIG (lp->status)),
			target_pid_to_str (lp->ptid));

  /* If there is a pending SIGSTOP, get rid of it.  */
  if (lp->signalled)
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "DC: Sending SIGCONT to %s\n",
			    target_pid_to_str (lp->ptid));

      kill_lwp (GET_LWP (lp->ptid), SIGCONT);
      lp->signalled = 0;
    }

  /* We don't actually detach from the LWP that has an id equal to the
     overall process id just yet.  */
  if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
    {
      int status = 0;

      /* Pass on any pending signal for this LWP.  */
      get_pending_status (lp, &status);

      errno = 0;
      if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
		  WSTOPSIG (status)) < 0)
	error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
	       safe_strerror (errno));

      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "PTRACE_DETACH (%s, %s, 0) (OK)\n",
			    target_pid_to_str (lp->ptid),
			    strsignal (WSTOPSIG (lp->status)));

      delete_lwp (lp->ptid);
    }

  return 0;
}

static void
linux_nat_detach (char *args, int from_tty)
{
  int pid;
  int status;
  enum target_signal sig;

  if (target_can_async_p ())
    linux_nat_async (NULL, 0);

  /* Stop all threads before detaching.  ptrace requires that the
     thread is stopped to sucessfully detach.  */
  iterate_over_lwps (stop_callback, NULL);
  /* ... and wait until all of them have reported back that
     they're no longer running.  */
  iterate_over_lwps (stop_wait_callback, NULL);

  iterate_over_lwps (detach_callback, NULL);

  /* Only the initial process should be left right now.  */
  gdb_assert (num_lwps == 1);

  /* Pass on any pending signal for the last LWP.  */
  if ((args == NULL || *args == '\0')
      && get_pending_status (lwp_list, &status) != -1
      && WIFSTOPPED (status))
    {
      /* Put the signal number in ARGS so that inf_ptrace_detach will
	 pass it along with PTRACE_DETACH.  */
      args = alloca (8);
      sprintf (args, "%d", (int) WSTOPSIG (status));
      fprintf_unfiltered (gdb_stdlog,
			  "LND: Sending signal %s to %s\n",
			  args,
			  target_pid_to_str (lwp_list->ptid));
    }

  /* Destroy LWP info; it's no longer valid.  */
  init_lwp_list ();

  pid = GET_PID (inferior_ptid);
  inferior_ptid = pid_to_ptid (pid);
  linux_ops->to_detach (args, from_tty);

  if (target_can_async_p ())
    drain_queued_events (pid);
}

/* Resume LP.  */

static int
resume_callback (struct lwp_info *lp, void *data)
{
  if (lp->stopped && lp->status == 0)
    {
      linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
			    0, TARGET_SIGNAL_0);
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "RC:  PTRACE_CONT %s, 0, 0 (resume sibling)\n",
			    target_pid_to_str (lp->ptid));
      lp->stopped = 0;
      lp->step = 0;
      memset (&lp->siginfo, 0, sizeof (lp->siginfo));
    }
  else if (lp->stopped && debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
			target_pid_to_str (lp->ptid));
  else if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
			target_pid_to_str (lp->ptid));

  return 0;
}

static int
resume_clear_callback (struct lwp_info *lp, void *data)
{
  lp->resumed = 0;
  return 0;
}

static int
resume_set_callback (struct lwp_info *lp, void *data)
{
  lp->resumed = 1;
  return 0;
}

static void
linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
{
  struct lwp_info *lp;
  int resume_all;

  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
			"LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
			step ? "step" : "resume",
			target_pid_to_str (ptid),
			signo ? strsignal (signo) : "0",
			target_pid_to_str (inferior_ptid));

  if (target_can_async_p ())
    /* Block events while we're here.  */
    linux_nat_async_events (sigchld_sync);

  /* A specific PTID means `step only this process id'.  */
  resume_all = (PIDGET (ptid) == -1);

  if (non_stop && resume_all)
    internal_error (__FILE__, __LINE__,
		    "can't resume all in non-stop mode");

  if (!non_stop)
    {
      if (resume_all)
	iterate_over_lwps (resume_set_callback, NULL);
      else
	iterate_over_lwps (resume_clear_callback, NULL);
    }

  /* If PID is -1, it's the current inferior that should be
     handled specially.  */
  if (PIDGET (ptid) == -1)
    ptid = inferior_ptid;

  lp = find_lwp_pid (ptid);
  gdb_assert (lp != NULL);

  /* Convert to something the lower layer understands.  */
  ptid = pid_to_ptid (GET_LWP (lp->ptid));

  /* Remember if we're stepping.  */
  lp->step = step;

  /* Mark this LWP as resumed.  */
  lp->resumed = 1;

  /* If we have a pending wait status for this thread, there is no
     point in resuming the process.  But first make sure that
     linux_nat_wait won't preemptively handle the event - we
     should never take this short-circuit if we are going to
     leave LP running, since we have skipped resuming all the
     other threads.  This bit of code needs to be synchronized
     with linux_nat_wait.  */

  /* In async mode, we never have pending wait status.  */
  if (target_can_async_p () && lp->status)
    internal_error (__FILE__, __LINE__, "Pending status in async mode");

  if (lp->status && WIFSTOPPED (lp->status))
    {
      int saved_signo = target_signal_from_host (WSTOPSIG (lp->status));

      if (signal_stop_state (saved_signo) == 0
	  && signal_print_state (saved_signo) == 0
	  && signal_pass_state (saved_signo) == 1)
	{
	  if (debug_linux_nat)
	    fprintf_unfiltered (gdb_stdlog,
				"LLR: Not short circuiting for ignored "
				"status 0x%x\n", lp->status);

	  /* FIXME: What should we do if we are supposed to continue
	     this thread with a signal?  */
	  gdb_assert (signo == TARGET_SIGNAL_0);
	  signo = saved_signo;
	  lp->status = 0;
	}
    }

  if (lp->status)
    {
      /* FIXME: What should we do if we are supposed to continue
	 this thread with a signal?  */
      gdb_assert (signo == TARGET_SIGNAL_0);

      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLR: Short circuiting for status 0x%x\n",
			    lp->status);

      return;
    }

  /* Mark LWP as not stopped to prevent it from being continued by
     resume_callback.  */
  lp->stopped = 0;

  if (resume_all)
    iterate_over_lwps (resume_callback, NULL);

  linux_ops->to_resume (ptid, step, signo);
  memset (&lp->siginfo, 0, sizeof (lp->siginfo));

  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
			"LLR: %s %s, %s (resume event thread)\n",
			step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
			target_pid_to_str (ptid),
			signo ? strsignal (signo) : "0");

  if (target_can_async_p ())
    target_async (inferior_event_handler, 0);
}

/* Issue kill to specified lwp.  */

static int tkill_failed;

static int
kill_lwp (int lwpid, int signo)
{
  errno = 0;

/* Use tkill, if possible, in case we are using nptl threads.  If tkill
   fails, then we are not using nptl threads and we should be using kill.  */

#ifdef HAVE_TKILL_SYSCALL
  if (!tkill_failed)
    {
      int ret = syscall (__NR_tkill, lwpid, signo);
      if (errno != ENOSYS)
	return ret;
      errno = 0;
      tkill_failed = 1;
    }
#endif

  return kill (lwpid, signo);
}

/* Handle a GNU/Linux extended wait response.  If we see a clone
   event, we need to add the new LWP to our list (and not report the
   trap to higher layers).  This function returns non-zero if the
   event should be ignored and we should wait again.  If STOPPING is
   true, the new LWP remains stopped, otherwise it is continued.  */

static int
linux_handle_extended_wait (struct lwp_info *lp, int status,
			    int stopping)
{
  int pid = GET_LWP (lp->ptid);
  struct target_waitstatus *ourstatus = &lp->waitstatus;
  struct lwp_info *new_lp = NULL;
  int event = status >> 16;

  if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
      || event == PTRACE_EVENT_CLONE)
    {
      unsigned long new_pid;
      int ret;

      ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);

      /* If we haven't already seen the new PID stop, wait for it now.  */
      if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
	{
	  /* The new child has a pending SIGSTOP.  We can't affect it until it
	     hits the SIGSTOP, but we're already attached.  */
	  ret = my_waitpid (new_pid, &status,
			    (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
	  if (ret == -1)
	    perror_with_name (_("waiting for new child"));
	  else if (ret != new_pid)
	    internal_error (__FILE__, __LINE__,
			    _("wait returned unexpected PID %d"), ret);
	  else if (!WIFSTOPPED (status))
	    internal_error (__FILE__, __LINE__,
			    _("wait returned unexpected status 0x%x"), status);
	}

      ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);

      if (event == PTRACE_EVENT_FORK)
	ourstatus->kind = TARGET_WAITKIND_FORKED;
      else if (event == PTRACE_EVENT_VFORK)
	ourstatus->kind = TARGET_WAITKIND_VFORKED;
      else
	{
	  struct cleanup *old_chain;

	  ourstatus->kind = TARGET_WAITKIND_IGNORE;
	  new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
	  new_lp->cloned = 1;
	  new_lp->stopped = 1;

	  if (WSTOPSIG (status) != SIGSTOP)
	    {
	      /* This can happen if someone starts sending signals to
		 the new thread before it gets a chance to run, which
		 have a lower number than SIGSTOP (e.g. SIGUSR1).
		 This is an unlikely case, and harder to handle for
		 fork / vfork than for clone, so we do not try - but
		 we handle it for clone events here.  We'll send
		 the other signal on to the thread below.  */

	      new_lp->signalled = 1;
	    }
	  else
	    status = 0;

	  if (non_stop)
	    {
	      /* Add the new thread to GDB's lists as soon as possible
		 so that:

		 1) the frontend doesn't have to wait for a stop to
		 display them, and,

		 2) we tag it with the correct running state.  */

	      /* If the thread_db layer is active, let it know about
		 this new thread, and add it to GDB's list.  */
	      if (!thread_db_attach_lwp (new_lp->ptid))
		{
		  /* We're not using thread_db.  Add it to GDB's
		     list.  */
		  target_post_attach (GET_LWP (new_lp->ptid));
		  add_thread (new_lp->ptid);
		}

	      if (!stopping)
		{
		  set_running (new_lp->ptid, 1);
		  set_executing (new_lp->ptid, 1);
		}
	    }

	  if (!stopping)
	    {
	      new_lp->stopped = 0;
	      new_lp->resumed = 1;
	      ptrace (PTRACE_CONT, new_pid, 0,
		      status ? WSTOPSIG (status) : 0);
	    }

	  if (debug_linux_nat)
	    fprintf_unfiltered (gdb_stdlog,
				"LHEW: Got clone event from LWP %ld, resuming\n",
				GET_LWP (lp->ptid));
	  ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);

	  return 1;
	}

      return 0;
    }

  if (event == PTRACE_EVENT_EXEC)
    {
      ourstatus->kind = TARGET_WAITKIND_EXECD;
      ourstatus->value.execd_pathname
	= xstrdup (linux_child_pid_to_exec_file (pid));

      if (linux_parent_pid)
	{
	  detach_breakpoints (linux_parent_pid);
	  ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);

	  linux_parent_pid = 0;
	}

      /* At this point, all inserted breakpoints are gone.  Doing this
	 as soon as we detect an exec prevents the badness of deleting
	 a breakpoint writing the current "shadow contents" to lift
	 the bp.  That shadow is NOT valid after an exec.

	 Note that we have to do this after the detach_breakpoints
	 call above, otherwise breakpoints wouldn't be lifted from the
	 parent on a vfork, because detach_breakpoints would think
	 that breakpoints are not inserted.  */
      mark_breakpoints_out ();
      return 0;
    }

  internal_error (__FILE__, __LINE__,
		  _("unknown ptrace event %d"), event);
}

/* Wait for LP to stop.  Returns the wait status, or 0 if the LWP has
   exited.  */

static int
wait_lwp (struct lwp_info *lp)
{
  pid_t pid;
  int status;
  int thread_dead = 0;

  gdb_assert (!lp->stopped);
  gdb_assert (lp->status == 0);

  pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
  if (pid == -1 && errno == ECHILD)
    {
      pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
      if (pid == -1 && errno == ECHILD)
	{
	  /* The thread has previously exited.  We need to delete it
	     now because, for some vendor 2.4 kernels with NPTL
	     support backported, there won't be an exit event unless
	     it is the main thread.  2.6 kernels will report an exit
	     event for each thread that exits, as expected.  */
	  thread_dead = 1;
	  if (debug_linux_nat)
	    fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
				target_pid_to_str (lp->ptid));
	}
    }

  if (!thread_dead)
    {
      gdb_assert (pid == GET_LWP (lp->ptid));

      if (debug_linux_nat)
	{
	  fprintf_unfiltered (gdb_stdlog,
			      "WL: waitpid %s received %s\n",
			      target_pid_to_str (lp->ptid),
			      status_to_str (status));
	}
    }

  /* Check if the thread has exited.  */
  if (WIFEXITED (status) || WIFSIGNALED (status))
    {
      thread_dead = 1;
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
			    target_pid_to_str (lp->ptid));
    }

  if (thread_dead)
    {
      exit_lwp (lp);
      return 0;
    }

  gdb_assert (WIFSTOPPED (status));

  /* Handle GNU/Linux's extended waitstatus for trace events.  */
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "WL: Handling extended status 0x%06x\n",
			    status);
      if (linux_handle_extended_wait (lp, status, 1))
	return wait_lwp (lp);
    }

  return status;
}

/* Save the most recent siginfo for LP.  This is currently only called
   for SIGTRAP; some ports use the si_addr field for
   target_stopped_data_address.  In the future, it may also be used to
   restore the siginfo of requeued signals.  */

static void
save_siginfo (struct lwp_info *lp)
{
  errno = 0;
  ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
	  (PTRACE_TYPE_ARG3) 0, &lp->siginfo);

  if (errno != 0)
    memset (&lp->siginfo, 0, sizeof (lp->siginfo));
}

/* Send a SIGSTOP to LP.  */

static int
stop_callback (struct lwp_info *lp, void *data)
{
  if (!lp->stopped && !lp->signalled)
    {
      int ret;

      if (debug_linux_nat)
	{
	  fprintf_unfiltered (gdb_stdlog,
			      "SC:  kill %s **<SIGSTOP>**\n",
			      target_pid_to_str (lp->ptid));
	}
      errno = 0;
      ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
      if (debug_linux_nat)
	{
	  fprintf_unfiltered (gdb_stdlog,
			      "SC:  lwp kill %d %s\n",
			      ret,
			      errno ? safe_strerror (errno) : "ERRNO-OK");
	}

      lp->signalled = 1;
      gdb_assert (lp->status == 0);
    }

  return 0;
}

/* Return non-zero if LWP PID has a pending SIGINT.  */

static int
linux_nat_has_pending_sigint (int pid)
{
  sigset_t pending, blocked, ignored;
  int i;

  linux_proc_pending_signals (pid, &pending, &blocked, &ignored);

  if (sigismember (&pending, SIGINT)
      && !sigismember (&ignored, SIGINT))
    return 1;

  return 0;
}

/* Set a flag in LP indicating that we should ignore its next SIGINT.  */

static int
set_ignore_sigint (struct lwp_info *lp, void *data)
{
  /* If a thread has a pending SIGINT, consume it; otherwise, set a
     flag to consume the next one.  */
  if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
      && WSTOPSIG (lp->status) == SIGINT)
    lp->status = 0;
  else
    lp->ignore_sigint = 1;

  return 0;
}

/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
   This function is called after we know the LWP has stopped; if the LWP
   stopped before the expected SIGINT was delivered, then it will never have
   arrived.  Also, if the signal was delivered to a shared queue and consumed
   by a different thread, it will never be delivered to this LWP.  */

static void
maybe_clear_ignore_sigint (struct lwp_info *lp)
{
  if (!lp->ignore_sigint)
    return;

  if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "MCIS: Clearing bogus flag for %s\n",
			    target_pid_to_str (lp->ptid));
      lp->ignore_sigint = 0;
    }
}

/* Wait until LP is stopped.  */

static int
stop_wait_callback (struct lwp_info *lp, void *data)
{
  if (!lp->stopped)
    {
      int status;

      status = wait_lwp (lp);
      if (status == 0)
	return 0;

      if (lp->ignore_sigint && WIFSTOPPED (status)
	  && WSTOPSIG (status) == SIGINT)
	{
	  lp->ignore_sigint = 0;

	  errno = 0;
	  ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
	  if (debug_linux_nat)
	    fprintf_unfiltered (gdb_stdlog,
				"PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
				target_pid_to_str (lp->ptid),
				errno ? safe_strerror (errno) : "OK");

	  return stop_wait_callback (lp, NULL);
	}

      maybe_clear_ignore_sigint (lp);

      if (WSTOPSIG (status) != SIGSTOP)
	{
	  if (WSTOPSIG (status) == SIGTRAP)
	    {
	      /* If a LWP other than the LWP that we're reporting an
	         event for has hit a GDB breakpoint (as opposed to
	         some random trap signal), then just arrange for it to
	         hit it again later.  We don't keep the SIGTRAP status
	         and don't forward the SIGTRAP signal to the LWP.  We
	         will handle the current event, eventually we will
	         resume all LWPs, and this one will get its breakpoint
	         trap again.

	         If we do not do this, then we run the risk that the
	         user will delete or disable the breakpoint, but the
	         thread will have already tripped on it.  */

	      /* Save the trap's siginfo in case we need it later.  */
	      save_siginfo (lp);

	      /* Now resume this LWP and get the SIGSTOP event. */
	      errno = 0;
	      ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
	      if (debug_linux_nat)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "PTRACE_CONT %s, 0, 0 (%s)\n",
				      target_pid_to_str (lp->ptid),
				      errno ? safe_strerror (errno) : "OK");

		  fprintf_unfiltered (gdb_stdlog,
				      "SWC: Candidate SIGTRAP event in %s\n",
				      target_pid_to_str (lp->ptid));
		}
	      /* Hold this event/waitstatus while we check to see if
		 there are any more (we still want to get that SIGSTOP). */
	      stop_wait_callback (lp, NULL);

	      if (target_can_async_p ())
		{
		  /* Don't leave a pending wait status in async mode.
		     Retrigger the breakpoint.  */
		  if (!cancel_breakpoint (lp))
		    {
		      /* There was no gdb breakpoint set at pc.  Put
			 the event back in the queue.  */
		      if (debug_linux_nat)
			fprintf_unfiltered (gdb_stdlog,
					    "SWC: kill %s, %s\n",
					    target_pid_to_str (lp->ptid),
					    status_to_str ((int) status));
		      kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
		    }
		}
	      else
		{
		  /* Hold the SIGTRAP for handling by
		     linux_nat_wait. */
		  /* If there's another event, throw it back into the
		     queue. */
		  if (lp->status)
		    {
		      if (debug_linux_nat)
			fprintf_unfiltered (gdb_stdlog,
					    "SWC: kill %s, %s\n",
					    target_pid_to_str (lp->ptid),
					    status_to_str ((int) status));
		      kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
		    }
		  /* Save the sigtrap event. */
		  lp->status = status;
		}
	      return 0;
	    }
	  else
	    {
	      /* The thread was stopped with a signal other than
	         SIGSTOP, and didn't accidentally trip a breakpoint. */

	      if (debug_linux_nat)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "SWC: Pending event %s in %s\n",
				      status_to_str ((int) status),
				      target_pid_to_str (lp->ptid));
		}
	      /* Now resume this LWP and get the SIGSTOP event. */
	      errno = 0;
	      ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
	      if (debug_linux_nat)
		fprintf_unfiltered (gdb_stdlog,
				    "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
				    target_pid_to_str (lp->ptid),
				    errno ? safe_strerror (errno) : "OK");

	      /* Hold this event/waitstatus while we check to see if
	         there are any more (we still want to get that SIGSTOP). */
	      stop_wait_callback (lp, NULL);

	      /* If the lp->status field is still empty, use it to
		 hold this event.  If not, then this event must be
		 returned to the event queue of the LWP.  */
	      if (lp->status || target_can_async_p ())
		{
		  if (debug_linux_nat)
		    {
		      fprintf_unfiltered (gdb_stdlog,
					  "SWC: kill %s, %s\n",
					  target_pid_to_str (lp->ptid),
					  status_to_str ((int) status));
		    }
		  kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
		}
	      else
		lp->status = status;
	      return 0;
	    }
	}
      else
	{
	  /* We caught the SIGSTOP that we intended to catch, so
	     there's no SIGSTOP pending.  */
	  lp->stopped = 1;
	  lp->signalled = 0;
	}
    }

  return 0;
}

/* Return non-zero if LP has a wait status pending.  */

static int
status_callback (struct lwp_info *lp, void *data)
{
  /* Only report a pending wait status if we pretend that this has
     indeed been resumed.  */
  return (lp->status != 0 && lp->resumed);
}

/* Return non-zero if LP isn't stopped.  */

static int
running_callback (struct lwp_info *lp, void *data)
{
  return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
}

/* Count the LWP's that have had events.  */

static int
count_events_callback (struct lwp_info *lp, void *data)
{
  int *count = data;

  gdb_assert (count != NULL);

  /* Count only resumed LWPs that have a SIGTRAP event pending.  */
  if (lp->status != 0 && lp->resumed
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
    (*count)++;

  return 0;
}

/* Select the LWP (if any) that is currently being single-stepped.  */

static int
select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
{
  if (lp->step && lp->status != 0)
    return 1;
  else
    return 0;
}

/* Select the Nth LWP that has had a SIGTRAP event.  */

static int
select_event_lwp_callback (struct lwp_info *lp, void *data)
{
  int *selector = data;

  gdb_assert (selector != NULL);

  /* Select only resumed LWPs that have a SIGTRAP event pending. */
  if (lp->status != 0 && lp->resumed
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
    if ((*selector)-- == 0)
      return 1;

  return 0;
}

static int
cancel_breakpoint (struct lwp_info *lp)
{
  /* Arrange for a breakpoint to be hit again later.  We don't keep
     the SIGTRAP status and don't forward the SIGTRAP signal to the
     LWP.  We will handle the current event, eventually we will resume
     this LWP, and this breakpoint will trap again.

     If we do not do this, then we run the risk that the user will
     delete or disable the breakpoint, but the LWP will have already
     tripped on it.  */

  struct regcache *regcache = get_thread_regcache (lp->ptid);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  CORE_ADDR pc;

  pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
  if (breakpoint_inserted_here_p (pc))
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "CB: Push back breakpoint for %s\n",
			    target_pid_to_str (lp->ptid));

      /* Back up the PC if necessary.  */
      if (gdbarch_decr_pc_after_break (gdbarch))
	regcache_write_pc (regcache, pc);

      return 1;
    }
  return 0;
}

static int
cancel_breakpoints_callback (struct lwp_info *lp, void *data)
{
  struct lwp_info *event_lp = data;

  /* Leave the LWP that has been elected to receive a SIGTRAP alone.  */
  if (lp == event_lp)
    return 0;

  /* If a LWP other than the LWP that we're reporting an event for has
     hit a GDB breakpoint (as opposed to some random trap signal),
     then just arrange for it to hit it again later.  We don't keep
     the SIGTRAP status and don't forward the SIGTRAP signal to the
     LWP.  We will handle the current event, eventually we will resume
     all LWPs, and this one will get its breakpoint trap again.

     If we do not do this, then we run the risk that the user will
     delete or disable the breakpoint, but the LWP will have already
     tripped on it.  */

  if (lp->status != 0
      && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
      && cancel_breakpoint (lp))
    /* Throw away the SIGTRAP.  */
    lp->status = 0;

  return 0;
}

/* Select one LWP out of those that have events pending.  */

static void
select_event_lwp (struct lwp_info **orig_lp, int *status)
{
  int num_events = 0;
  int random_selector;
  struct lwp_info *event_lp;

  /* Record the wait status for the original LWP.  */
  (*orig_lp)->status = *status;

  /* Give preference to any LWP that is being single-stepped.  */
  event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
  if (event_lp != NULL)
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "SEL: Select single-step %s\n",
			    target_pid_to_str (event_lp->ptid));
    }
  else
    {
      /* No single-stepping LWP.  Select one at random, out of those
         which have had SIGTRAP events.  */

      /* First see how many SIGTRAP events we have.  */
      iterate_over_lwps (count_events_callback, &num_events);

      /* Now randomly pick a LWP out of those that have had a SIGTRAP.  */
      random_selector = (int)
	((num_events * (double) rand ()) / (RAND_MAX + 1.0));

      if (debug_linux_nat && num_events > 1)
	fprintf_unfiltered (gdb_stdlog,
			    "SEL: Found %d SIGTRAP events, selecting #%d\n",
			    num_events, random_selector);

      event_lp = iterate_over_lwps (select_event_lwp_callback,
				    &random_selector);
    }

  if (event_lp != NULL)
    {
      /* Switch the event LWP.  */
      *orig_lp = event_lp;
      *status = event_lp->status;
    }

  /* Flush the wait status for the event LWP.  */
  (*orig_lp)->status = 0;
}

/* Return non-zero if LP has been resumed.  */

static int
resumed_callback (struct lwp_info *lp, void *data)
{
  return lp->resumed;
}

/* Stop an active thread, verify it still exists, then resume it.  */

static int
stop_and_resume_callback (struct lwp_info *lp, void *data)
{
  struct lwp_info *ptr;

  if (!lp->stopped && !lp->signalled)
    {
      stop_callback (lp, NULL);
      stop_wait_callback (lp, NULL);
      /* Resume if the lwp still exists.  */
      for (ptr = lwp_list; ptr; ptr = ptr->next)
	if (lp == ptr)
	  {
	    resume_callback (lp, NULL);
	    resume_set_callback (lp, NULL);
	  }
    }
  return 0;
}

/* Check if we should go on and pass this event to common code.
   Return the affected lwp if we are, or NULL otherwise.  */
static struct lwp_info *
linux_nat_filter_event (int lwpid, int status, int options)
{
  struct lwp_info *lp;

  lp = find_lwp_pid (pid_to_ptid (lwpid));

  /* Check for stop events reported by a process we didn't already
     know about - anything not already in our LWP list.

     If we're expecting to receive stopped processes after
     fork, vfork, and clone events, then we'll just add the
     new one to our list and go back to waiting for the event
     to be reported - the stopped process might be returned
     from waitpid before or after the event is.  */
  if (WIFSTOPPED (status) && !lp)
    {
      linux_record_stopped_pid (lwpid, status);
      return NULL;
    }

  /* Make sure we don't report an event for the exit of an LWP not in
     our list, i.e.  not part of the current process.  This can happen
     if we detach from a program we original forked and then it
     exits.  */
  if (!WIFSTOPPED (status) && !lp)
    return NULL;

  /* NOTE drow/2003-06-17: This code seems to be meant for debugging
     CLONE_PTRACE processes which do not use the thread library -
     otherwise we wouldn't find the new LWP this way.  That doesn't
     currently work, and the following code is currently unreachable
     due to the two blocks above.  If it's fixed some day, this code
     should be broken out into a function so that we can also pick up
     LWPs from the new interface.  */
  if (!lp)
    {
      lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
      if (options & __WCLONE)
	lp->cloned = 1;

      gdb_assert (WIFSTOPPED (status)
		  && WSTOPSIG (status) == SIGSTOP);
      lp->signalled = 1;

      if (!in_thread_list (inferior_ptid))
	{
	  inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
				     GET_PID (inferior_ptid));
	  add_thread (inferior_ptid);
	}

      add_thread (lp->ptid);
    }

  /* Save the trap's siginfo in case we need it later.  */
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
    save_siginfo (lp);

  /* Handle GNU/Linux's extended waitstatus for trace events.  */
  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: Handling extended status 0x%06x\n",
			    status);
      if (linux_handle_extended_wait (lp, status, 0))
	return NULL;
    }

  /* Check if the thread has exited.  */
  if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
    {
      /* If this is the main thread, we must stop all threads and
	 verify if they are still alive.  This is because in the nptl
	 thread model, there is no signal issued for exiting LWPs
	 other than the main thread.  We only get the main thread exit
	 signal once all child threads have already exited.  If we
	 stop all the threads and use the stop_wait_callback to check
	 if they have exited we can determine whether this signal
	 should be ignored or whether it means the end of the debugged
	 application, regardless of which threading model is being
	 used.  */
      if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
	{
	  lp->stopped = 1;
	  iterate_over_lwps (stop_and_resume_callback, NULL);
	}

      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: %s exited.\n",
			    target_pid_to_str (lp->ptid));

      exit_lwp (lp);

      /* If there is at least one more LWP, then the exit signal was
	 not the end of the debugged application and should be
	 ignored.  */
      if (num_lwps > 0)
	return NULL;
    }

  /* Check if the current LWP has previously exited.  In the nptl
     thread model, LWPs other than the main thread do not issue
     signals when they exit so we must check whenever the thread has
     stopped.  A similar check is made in stop_wait_callback().  */
  if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: %s exited.\n",
			    target_pid_to_str (lp->ptid));

      exit_lwp (lp);

      /* Make sure there is at least one thread running.  */
      gdb_assert (iterate_over_lwps (running_callback, NULL));

      /* Discard the event.  */
      return NULL;
    }

  /* Make sure we don't report a SIGSTOP that we sent ourselves in
     an attempt to stop an LWP.  */
  if (lp->signalled
      && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: Delayed SIGSTOP caught for %s.\n",
			    target_pid_to_str (lp->ptid));

      /* This is a delayed SIGSTOP.  */
      lp->signalled = 0;

      registers_changed ();

      linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
			    lp->step, TARGET_SIGNAL_0);
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
			    lp->step ?
			    "PTRACE_SINGLESTEP" : "PTRACE_CONT",
			    target_pid_to_str (lp->ptid));

      lp->stopped = 0;
      gdb_assert (lp->resumed);

      /* Discard the event.  */
      return NULL;
    }

  /* Make sure we don't report a SIGINT that we have already displayed
     for another thread.  */
  if (lp->ignore_sigint
      && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: Delayed SIGINT caught for %s.\n",
			    target_pid_to_str (lp->ptid));

      /* This is a delayed SIGINT.  */
      lp->ignore_sigint = 0;

      registers_changed ();
      linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
			    lp->step, TARGET_SIGNAL_0);
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: %s %s, 0, 0 (discard SIGINT)\n",
			    lp->step ?
			    "PTRACE_SINGLESTEP" : "PTRACE_CONT",
			    target_pid_to_str (lp->ptid));

      lp->stopped = 0;
      gdb_assert (lp->resumed);

      /* Discard the event.  */
      return NULL;
    }

  /* An interesting event.  */
  gdb_assert (lp);
  return lp;
}

/* Get the events stored in the pipe into the local queue, so they are
   accessible to queued_waitpid.  We need to do this, since it is not
   always the case that the event at the head of the pipe is the event
   we want.  */

static void
pipe_to_local_event_queue (void)
{
  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog,
			"PTLEQ: linux_nat_num_queued_events(%d)\n",
			linux_nat_num_queued_events);
  while (linux_nat_num_queued_events)
    {
      int lwpid, status, options;
      lwpid = linux_nat_event_pipe_pop (&status, &options);
      gdb_assert (lwpid > 0);
      push_waitpid (lwpid, status, options);
    }
}

/* Get the unprocessed events stored in the local queue back into the
   pipe, so the event loop realizes there's something else to
   process.  */

static void
local_event_queue_to_pipe (void)
{
  struct waitpid_result *w = waitpid_queue;
  while (w)
    {
      struct waitpid_result *next = w->next;
      linux_nat_event_pipe_push (w->pid,
				 w->status,
				 w->options);
      xfree (w);
      w = next;
    }
  waitpid_queue = NULL;

  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog,
			"LEQTP: linux_nat_num_queued_events(%d)\n",
			linux_nat_num_queued_events);
}

static ptid_t
linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
{
  struct lwp_info *lp = NULL;
  int options = 0;
  int status = 0;
  pid_t pid = PIDGET (ptid);

  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");

  /* The first time we get here after starting a new inferior, we may
     not have added it to the LWP list yet - this is the earliest
     moment at which we know its PID.  */
  if (num_lwps == 0)
    {
      gdb_assert (!is_lwp (inferior_ptid));

      /* Upgrade the main thread's ptid.  */
      thread_change_ptid (inferior_ptid,
			  BUILD_LWP (GET_PID (inferior_ptid),
				     GET_PID (inferior_ptid)));

      lp = add_lwp (inferior_ptid);
      lp->resumed = 1;
    }

  /* Block events while we're here.  */
  linux_nat_async_events (sigchld_sync);

retry:

  /* Make sure there is at least one LWP that has been resumed.  */
  gdb_assert (iterate_over_lwps (resumed_callback, NULL));

  /* First check if there is a LWP with a wait status pending.  */
  if (pid == -1)
    {
      /* Any LWP that's been resumed will do.  */
      lp = iterate_over_lwps (status_callback, NULL);
      if (lp)
	{
	  if (target_can_async_p ())
	    internal_error (__FILE__, __LINE__,
			    "Found an LWP with a pending status in async mode.");

	  status = lp->status;
	  lp->status = 0;

	  if (debug_linux_nat && status)
	    fprintf_unfiltered (gdb_stdlog,
				"LLW: Using pending wait status %s for %s.\n",
				status_to_str (status),
				target_pid_to_str (lp->ptid));
	}

      /* But if we don't find one, we'll have to wait, and check both
         cloned and uncloned processes.  We start with the cloned
         processes.  */
      options = __WCLONE | WNOHANG;
    }
  else if (is_lwp (ptid))
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: Waiting for specific LWP %s.\n",
			    target_pid_to_str (ptid));

      /* We have a specific LWP to check.  */
      lp = find_lwp_pid (ptid);
      gdb_assert (lp);
      status = lp->status;
      lp->status = 0;

      if (debug_linux_nat && status)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: Using pending wait status %s for %s.\n",
			    status_to_str (status),
			    target_pid_to_str (lp->ptid));

      /* If we have to wait, take into account whether PID is a cloned
         process or not.  And we have to convert it to something that
         the layer beneath us can understand.  */
      options = lp->cloned ? __WCLONE : 0;
      pid = GET_LWP (ptid);
    }

  if (status && lp->signalled)
    {
      /* A pending SIGSTOP may interfere with the normal stream of
         events.  In a typical case where interference is a problem,
         we have a SIGSTOP signal pending for LWP A while
         single-stepping it, encounter an event in LWP B, and take the
         pending SIGSTOP while trying to stop LWP A.  After processing
         the event in LWP B, LWP A is continued, and we'll never see
         the SIGTRAP associated with the last time we were
         single-stepping LWP A.  */

      /* Resume the thread.  It should halt immediately returning the
         pending SIGSTOP.  */
      registers_changed ();
      linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
			    lp->step, TARGET_SIGNAL_0);
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
			    lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
			    target_pid_to_str (lp->ptid));
      lp->stopped = 0;
      gdb_assert (lp->resumed);

      /* This should catch the pending SIGSTOP.  */
      stop_wait_callback (lp, NULL);
    }

  if (!target_can_async_p ())
    {
      /* Causes SIGINT to be passed on to the attached process.  */
      set_sigint_trap ();
      set_sigio_trap ();
    }

  while (status == 0)
    {
      pid_t lwpid;

      if (target_can_async_p ())
	/* In async mode, don't ever block.  Only look at the locally
	   queued events.  */
	lwpid = queued_waitpid (pid, &status, options);
      else
	lwpid = my_waitpid (pid, &status, options);

      if (lwpid > 0)
	{
	  gdb_assert (pid == -1 || lwpid == pid);

	  if (debug_linux_nat)
	    {
	      fprintf_unfiltered (gdb_stdlog,
				  "LLW: waitpid %ld received %s\n",
				  (long) lwpid, status_to_str (status));
	    }

	  lp = linux_nat_filter_event (lwpid, status, options);
	  if (!lp)
	    {
	      /* A discarded event.  */
	      status = 0;
	      continue;
	    }

	  break;
	}

      if (pid == -1)
	{
	  /* Alternate between checking cloned and uncloned processes.  */
	  options ^= __WCLONE;

	  /* And every time we have checked both:
	     In async mode, return to event loop;
	     In sync mode, suspend waiting for a SIGCHLD signal.  */
	  if (options & __WCLONE)
	    {
	      if (target_can_async_p ())
		{
		  /* No interesting event.  */
		  ourstatus->kind = TARGET_WAITKIND_IGNORE;

		  /* Get ready for the next event.  */
		  target_async (inferior_event_handler, 0);

		  if (debug_linux_nat_async)
		    fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");

		  return minus_one_ptid;
		}

	      sigsuspend (&suspend_mask);
	    }
	}

      /* We shouldn't end up here unless we want to try again.  */
      gdb_assert (status == 0);
    }

  if (!target_can_async_p ())
    {
      clear_sigio_trap ();
      clear_sigint_trap ();
    }

  gdb_assert (lp);

  /* Don't report signals that GDB isn't interested in, such as
     signals that are neither printed nor stopped upon.  Stopping all
     threads can be a bit time-consuming so if we want decent
     performance with heavily multi-threaded programs, especially when
     they're using a high frequency timer, we'd better avoid it if we
     can.  */

  if (WIFSTOPPED (status))
    {
      int signo = target_signal_from_host (WSTOPSIG (status));

      /* If we get a signal while single-stepping, we may need special
	 care, e.g. to skip the signal handler.  Defer to common code.  */
      if (!lp->step
	  && signal_stop_state (signo) == 0
	  && signal_print_state (signo) == 0
	  && signal_pass_state (signo) == 1)
	{
	  /* FIMXE: kettenis/2001-06-06: Should we resume all threads
	     here?  It is not clear we should.  GDB may not expect
	     other threads to run.  On the other hand, not resuming
	     newly attached threads may cause an unwanted delay in
	     getting them running.  */
	  registers_changed ();
	  linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
				lp->step, signo);
	  if (debug_linux_nat)
	    fprintf_unfiltered (gdb_stdlog,
				"LLW: %s %s, %s (preempt 'handle')\n",
				lp->step ?
				"PTRACE_SINGLESTEP" : "PTRACE_CONT",
				target_pid_to_str (lp->ptid),
				signo ? strsignal (signo) : "0");
	  lp->stopped = 0;
	  status = 0;
	  goto retry;
	}

      if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
	{
	  /* If ^C/BREAK is typed at the tty/console, SIGINT gets
	     forwarded to the entire process group, that is, all LWPs
	     will receive it - unless they're using CLONE_THREAD to
	     share signals.  Since we only want to report it once, we
	     mark it as ignored for all LWPs except this one.  */
	  iterate_over_lwps (set_ignore_sigint, NULL);
	  lp->ignore_sigint = 0;
	}
      else
	maybe_clear_ignore_sigint (lp);
    }

  /* This LWP is stopped now.  */
  lp->stopped = 1;

  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
			status_to_str (status), target_pid_to_str (lp->ptid));

  if (!non_stop)
    {
      /* Now stop all other LWP's ...  */
      iterate_over_lwps (stop_callback, NULL);

      /* ... and wait until all of them have reported back that
	 they're no longer running.  */
      iterate_over_lwps (stop_wait_callback, NULL);

      /* If we're not waiting for a specific LWP, choose an event LWP
	 from among those that have had events.  Giving equal priority
	 to all LWPs that have had events helps prevent
	 starvation.  */
      if (pid == -1)
	select_event_lwp (&lp, &status);
    }

  /* Now that we've selected our final event LWP, cancel any
     breakpoints in other LWPs that have hit a GDB breakpoint.  See
     the comment in cancel_breakpoints_callback to find out why.  */
  iterate_over_lwps (cancel_breakpoints_callback, lp);

  if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
    {
      if (debug_linux_nat)
	fprintf_unfiltered (gdb_stdlog,
			    "LLW: trap ptid is %s.\n",
			    target_pid_to_str (lp->ptid));
    }

  if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
    {
      *ourstatus = lp->waitstatus;
      lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
    }
  else
    store_waitstatus (ourstatus, status);

  /* Get ready for the next event.  */
  if (target_can_async_p ())
    target_async (inferior_event_handler, 0);

  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");

  return lp->ptid;
}

static int
kill_callback (struct lwp_info *lp, void *data)
{
  errno = 0;
  ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
			"KC:  PTRACE_KILL %s, 0, 0 (%s)\n",
			target_pid_to_str (lp->ptid),
			errno ? safe_strerror (errno) : "OK");

  return 0;
}

static int
kill_wait_callback (struct lwp_info *lp, void *data)
{
  pid_t pid;

  /* We must make sure that there are no pending events (delayed
     SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
     program doesn't interfere with any following debugging session.  */

  /* For cloned processes we must check both with __WCLONE and
     without, since the exit status of a cloned process isn't reported
     with __WCLONE.  */
  if (lp->cloned)
    {
      do
	{
	  pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
	  if (pid != (pid_t) -1)
	    {
	      if (debug_linux_nat)
		fprintf_unfiltered (gdb_stdlog,
				    "KWC: wait %s received unknown.\n",
				    target_pid_to_str (lp->ptid));
	      /* The Linux kernel sometimes fails to kill a thread
		 completely after PTRACE_KILL; that goes from the stop
		 point in do_fork out to the one in
		 get_signal_to_deliever and waits again.  So kill it
		 again.  */
	      kill_callback (lp, NULL);
	    }
	}
      while (pid == GET_LWP (lp->ptid));

      gdb_assert (pid == -1 && errno == ECHILD);
    }

  do
    {
      pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
      if (pid != (pid_t) -1)
	{
	  if (debug_linux_nat)
	    fprintf_unfiltered (gdb_stdlog,
				"KWC: wait %s received unk.\n",
				target_pid_to_str (lp->ptid));
	  /* See the call to kill_callback above.  */
	  kill_callback (lp, NULL);
	}
    }
  while (pid == GET_LWP (lp->ptid));

  gdb_assert (pid == -1 && errno == ECHILD);
  return 0;
}

static void
linux_nat_kill (void)
{
  struct target_waitstatus last;
  ptid_t last_ptid;
  int status;

  if (target_can_async_p ())
    target_async (NULL, 0);

  /* If we're stopped while forking and we haven't followed yet,
     kill the other task.  We need to do this first because the
     parent will be sleeping if this is a vfork.  */

  get_last_target_status (&last_ptid, &last);

  if (last.kind == TARGET_WAITKIND_FORKED
      || last.kind == TARGET_WAITKIND_VFORKED)
    {
      ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
      wait (&status);
    }

  if (forks_exist_p ())
    {
      linux_fork_killall ();
      drain_queued_events (-1);
    }
  else
    {
      /* Stop all threads before killing them, since ptrace requires
	 that the thread is stopped to sucessfully PTRACE_KILL.  */
      iterate_over_lwps (stop_callback, NULL);
      /* ... and wait until all of them have reported back that
	 they're no longer running.  */
      iterate_over_lwps (stop_wait_callback, NULL);

      /* Kill all LWP's ...  */
      iterate_over_lwps (kill_callback, NULL);

      /* ... and wait until we've flushed all events.  */
      iterate_over_lwps (kill_wait_callback, NULL);
    }

  target_mourn_inferior ();
}

static void
linux_nat_mourn_inferior (void)
{
  /* Destroy LWP info; it's no longer valid.  */
  init_lwp_list ();

  if (! forks_exist_p ())
    {
      /* Normal case, no other forks available.  */
      if (target_can_async_p ())
	linux_nat_async (NULL, 0);
      linux_ops->to_mourn_inferior ();
    }
  else
    /* Multi-fork case.  The current inferior_ptid has exited, but
       there are other viable forks to debug.  Delete the exiting
       one and context-switch to the first available.  */
    linux_fork_mourn_inferior ();
}

static LONGEST
linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
			const char *annex, gdb_byte *readbuf,
			const gdb_byte *writebuf,
			ULONGEST offset, LONGEST len)
{
  struct cleanup *old_chain = save_inferior_ptid ();
  LONGEST xfer;

  if (is_lwp (inferior_ptid))
    inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));

  xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
				     offset, len);

  do_cleanups (old_chain);
  return xfer;
}

static int
linux_nat_thread_alive (ptid_t ptid)
{
  int err;

  gdb_assert (is_lwp (ptid));

  /* Send signal 0 instead of anything ptrace, because ptracing a
     running thread errors out claiming that the thread doesn't
     exist.  */
  err = kill_lwp (GET_LWP (ptid), 0);

  if (debug_linux_nat)
    fprintf_unfiltered (gdb_stdlog,
			"LLTA: KILL(SIG0) %s (%s)\n",
			target_pid_to_str (ptid),
			err ? safe_strerror (err) : "OK");

  if (err != 0)
    return 0;

  return 1;
}

static char *
linux_nat_pid_to_str (ptid_t ptid)
{
  static char buf[64];

  if (is_lwp (ptid)
      && ((lwp_list && lwp_list->next)
	  || GET_PID (ptid) != GET_LWP (ptid)))
    {
      snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
      return buf;
    }

  return normal_pid_to_str (ptid);
}

static void
sigchld_handler (int signo)
{
  if (target_async_permitted
      && linux_nat_async_events_state != sigchld_sync
      && signo == SIGCHLD)
    /* It is *always* a bug to hit this.  */
    internal_error (__FILE__, __LINE__,
		    "sigchld_handler called when async events are enabled");

  /* Do nothing.  The only reason for this handler is that it allows
     us to use sigsuspend in linux_nat_wait above to wait for the
     arrival of a SIGCHLD.  */
}

/* Accepts an integer PID; Returns a string representing a file that
   can be opened to get the symbols for the child process.  */

static char *
linux_child_pid_to_exec_file (int pid)
{
  char *name1, *name2;

  name1 = xmalloc (MAXPATHLEN);
  name2 = xmalloc (MAXPATHLEN);
  make_cleanup (xfree, name1);
  make_cleanup (xfree, name2);
  memset (name2, 0, MAXPATHLEN);

  sprintf (name1, "/proc/%d/exe", pid);
  if (readlink (name1, name2, MAXPATHLEN) > 0)
    return name2;
  else
    return name1;
}

/* Service function for corefiles and info proc.  */

static int
read_mapping (FILE *mapfile,
	      long long *addr,
	      long long *endaddr,
	      char *permissions,
	      long long *offset,
	      char *device, long long *inode, char *filename)
{
  int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
		    addr, endaddr, permissions, offset, device, inode);

  filename[0] = '\0';
  if (ret > 0 && ret != EOF)
    {
      /* Eat everything up to EOL for the filename.  This will prevent
         weird filenames (such as one with embedded whitespace) from
         confusing this code.  It also makes this code more robust in
         respect to annotations the kernel may add after the filename.

         Note the filename is used for informational purposes
         only.  */
      ret += fscanf (mapfile, "%[^\n]\n", filename);
    }

  return (ret != 0 && ret != EOF);
}

/* Fills the "to_find_memory_regions" target vector.  Lists the memory
   regions in the inferior for a corefile.  */

static int
linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
					    unsigned long,
					    int, int, int, void *), void *obfd)
{
  long long pid = PIDGET (inferior_ptid);
  char mapsfilename[MAXPATHLEN];
  FILE *mapsfile;
  long long addr, endaddr, size, offset, inode;
  char permissions[8], device[8], filename[MAXPATHLEN];
  int read, write, exec;
  int ret;

  /* Compose the filename for the /proc memory map, and open it.  */
  sprintf (mapsfilename, "/proc/%lld/maps", pid);
  if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
    error (_("Could not open %s."), mapsfilename);

  if (info_verbose)
    fprintf_filtered (gdb_stdout,
		      "Reading memory regions from %s\n", mapsfilename);

  /* Now iterate until end-of-file.  */
  while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
		       &offset, &device[0], &inode, &filename[0]))
    {
      size = endaddr - addr;

      /* Get the segment's permissions.  */
      read = (strchr (permissions, 'r') != 0);
      write = (strchr (permissions, 'w') != 0);
      exec = (strchr (permissions, 'x') != 0);

      if (info_verbose)
	{
	  fprintf_filtered (gdb_stdout,
			    "Save segment, %lld bytes at 0x%s (%c%c%c)",
			    size, paddr_nz (addr),
			    read ? 'r' : ' ',
			    write ? 'w' : ' ', exec ? 'x' : ' ');
	  if (filename[0])
	    fprintf_filtered (gdb_stdout, " for %s", filename);
	  fprintf_filtered (gdb_stdout, "\n");
	}

      /* Invoke the callback function to create the corefile
	 segment.  */
      func (addr, size, read, write, exec, obfd);
    }
  fclose (mapsfile);
  return 0;
}

/* Records the thread's register state for the corefile note
   section.  */

static char *
linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
			       char *note_data, int *note_size)
{
  gdb_gregset_t gregs;
  gdb_fpregset_t fpregs;
  unsigned long lwp = ptid_get_lwp (ptid);
  struct regcache *regcache = get_thread_regcache (ptid);
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  const struct regset *regset;
  int core_regset_p;
  struct cleanup *old_chain;
  struct core_regset_section *sect_list;
  char *gdb_regset;

  old_chain = save_inferior_ptid ();
  inferior_ptid = ptid;
  target_fetch_registers (regcache, -1);
  do_cleanups (old_chain);

  core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
  sect_list = gdbarch_core_regset_sections (gdbarch);

  if (core_regset_p
      && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
						     sizeof (gregs))) != NULL
      && regset->collect_regset != NULL)
    regset->collect_regset (regset, regcache, -1,
			    &gregs, sizeof (gregs));
  else
    fill_gregset (regcache, &gregs, -1);

  note_data = (char *) elfcore_write_prstatus (obfd,
					       note_data,
					       note_size,
					       lwp,
					       stop_signal, &gregs);

  /* The loop below uses the new struct core_regset_section, which stores
     the supported section names and sizes for the core file.  Note that
     note PRSTATUS needs to be treated specially.  But the other notes are
     structurally the same, so they can benefit from the new struct.  */
  if (core_regset_p && sect_list != NULL)
    while (sect_list->sect_name != NULL)
      {
	/* .reg was already handled above.  */
	if (strcmp (sect_list->sect_name, ".reg") == 0)
	  {
	    sect_list++;
	    continue;
	  }
	regset = gdbarch_regset_from_core_section (gdbarch,
						   sect_list->sect_name,
						   sect_list->size);
	gdb_assert (regset && regset->collect_regset);
	gdb_regset = xmalloc (sect_list->size);
	regset->collect_regset (regset, regcache, -1,
				gdb_regset, sect_list->size);
	note_data = (char *) elfcore_write_register_note (obfd,
							  note_data,
							  note_size,
							  sect_list->sect_name,
							  gdb_regset,
							  sect_list->size);
	xfree (gdb_regset);
	sect_list++;
      }

  /* For architectures that does not have the struct core_regset_section
     implemented, we use the old method.  When all the architectures have
     the new support, the code below should be deleted.  */
  else
    {
      if (core_regset_p
          && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
							 sizeof (fpregs))) != NULL
	  && regset->collect_regset != NULL)
	regset->collect_regset (regset, regcache, -1,
				&fpregs, sizeof (fpregs));
      else
	fill_fpregset (regcache, &fpregs, -1);

      note_data = (char *) elfcore_write_prfpreg (obfd,
						  note_data,
						  note_size,
						  &fpregs, sizeof (fpregs));
    }

  return note_data;
}

struct linux_nat_corefile_thread_data
{
  bfd *obfd;
  char *note_data;
  int *note_size;
  int num_notes;
};

/* Called by gdbthread.c once per thread.  Records the thread's
   register state for the corefile note section.  */

static int
linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
{
  struct linux_nat_corefile_thread_data *args = data;

  args->note_data = linux_nat_do_thread_registers (args->obfd,
						   ti->ptid,
						   args->note_data,
						   args->note_size);
  args->num_notes++;

  return 0;
}

/* Records the register state for the corefile note section.  */

static char *
linux_nat_do_registers (bfd *obfd, ptid_t ptid,
			char *note_data, int *note_size)
{
  return linux_nat_do_thread_registers (obfd,
					ptid_build (ptid_get_pid (inferior_ptid),
						    ptid_get_pid (inferior_ptid),
						    0),
					note_data, note_size);
}

/* Fills the "to_make_corefile_note" target vector.  Builds the note
   section for a corefile, and returns it in a malloc buffer.  */

static char *
linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
{
  struct linux_nat_corefile_thread_data thread_args;
  struct cleanup *old_chain;
  /* The variable size must be >= sizeof (prpsinfo_t.pr_fname).  */
  char fname[16] = { '\0' };
  /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs).  */
  char psargs[80] = { '\0' };
  char *note_data = NULL;
  ptid_t current_ptid = inferior_ptid;
  gdb_byte *auxv;
  int auxv_len;

  if (get_exec_file (0))
    {
      strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
      strncpy (psargs, get_exec_file (0), sizeof (psargs));
      if (get_inferior_args ())
	{
	  char *string_end;
	  char *psargs_end = psargs + sizeof (psargs);

	  /* linux_elfcore_write_prpsinfo () handles zero unterminated
	     strings fine.  */
	  string_end = memchr (psargs, 0, sizeof (psargs));
	  if (string_end != NULL)
	    {
	      *string_end++ = ' ';
	      strncpy (string_end, get_inferior_args (),
		       psargs_end - string_end);
	    }
	}
      note_data = (char *) elfcore_write_prpsinfo (obfd,
						   note_data,
						   note_size, fname, psargs);
    }

  /* Dump information for threads.  */
  thread_args.obfd = obfd;
  thread_args.note_data = note_data;
  thread_args.note_size = note_size;
  thread_args.num_notes = 0;
  iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
  if (thread_args.num_notes == 0)
    {
      /* iterate_over_threads didn't come up with any threads; just
         use inferior_ptid.  */
      note_data = linux_nat_do_registers (obfd, inferior_ptid,
					  note_data, note_size);
    }
  else
    {
      note_data = thread_args.note_data;
    }

  auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
				NULL, &auxv);
  if (auxv_len > 0)
    {
      note_data = elfcore_write_note (obfd, note_data, note_size,
				      "CORE", NT_AUXV, auxv, auxv_len);
      xfree (auxv);
    }

  make_cleanup (xfree, note_data);
  return note_data;
}

/* Implement the "info proc" command.  */

static void
linux_nat_info_proc_cmd (char *args, int from_tty)
{
  long long pid = PIDGET (inferior_ptid);
  FILE *procfile;
  char **argv = NULL;
  char buffer[MAXPATHLEN];
  char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
  int cmdline_f = 1;
  int cwd_f = 1;
  int exe_f = 1;
  int mappings_f = 0;
  int environ_f = 0;
  int status_f = 0;
  int stat_f = 0;
  int all = 0;
  struct stat dummy;

  if (args)
    {
      /* Break up 'args' into an argv array.  */
      if ((argv = buildargv (args)) == NULL)
	nomem (0);
      else
	make_cleanup_freeargv (argv);
    }
  while (argv != NULL && *argv != NULL)
    {
      if (isdigit (argv[0][0]))
	{
	  pid = strtoul (argv[0], NULL, 10);
	}
      else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
	{
	  mappings_f = 1;
	}
      else if (strcmp (argv[0], "status") == 0)
	{
	  status_f = 1;
	}
      else if (strcmp (argv[0], "stat") == 0)
	{
	  stat_f = 1;
	}
      else if (strcmp (argv[0], "cmd") == 0)
	{
	  cmdline_f = 1;
	}
      else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
	{
	  exe_f = 1;
	}
      else if (strcmp (argv[0], "cwd") == 0)
	{
	  cwd_f = 1;
	}
      else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
	{
	  all = 1;
	}
      else
	{
	  /* [...] (future options here) */
	}
      argv++;
    }
  if (pid == 0)
    error (_("No current process: you must name one."));

  sprintf (fname1, "/proc/%lld", pid);
  if (stat (fname1, &dummy) != 0)
    error (_("No /proc directory: '%s'"), fname1);

  printf_filtered (_("process %lld\n"), pid);
  if (cmdline_f || all)
    {
      sprintf (fname1, "/proc/%lld/cmdline", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
	{
	  fgets (buffer, sizeof (buffer), procfile);
	  printf_filtered ("cmdline = '%s'\n", buffer);
	  fclose (procfile);
	}
      else
	warning (_("unable to open /proc file '%s'"), fname1);
    }
  if (cwd_f || all)
    {
      sprintf (fname1, "/proc/%lld/cwd", pid);
      memset (fname2, 0, sizeof (fname2));
      if (readlink (fname1, fname2, sizeof (fname2)) > 0)
	printf_filtered ("cwd = '%s'\n", fname2);
      else
	warning (_("unable to read link '%s'"), fname1);
    }
  if (exe_f || all)
    {
      sprintf (fname1, "/proc/%lld/exe", pid);
      memset (fname2, 0, sizeof (fname2));
      if (readlink (fname1, fname2, sizeof (fname2)) > 0)
	printf_filtered ("exe = '%s'\n", fname2);
      else
	warning (_("unable to read link '%s'"), fname1);
    }
  if (mappings_f || all)
    {
      sprintf (fname1, "/proc/%lld/maps", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
	{
	  long long addr, endaddr, size, offset, inode;
	  char permissions[8], device[8], filename[MAXPATHLEN];

	  printf_filtered (_("Mapped address spaces:\n\n"));
	  if (gdbarch_addr_bit (current_gdbarch) == 32)
	    {
	      printf_filtered ("\t%10s %10s %10s %10s %7s\n",
			   "Start Addr",
			   "  End Addr",
			   "      Size", "    Offset", "objfile");
            }
	  else
            {
	      printf_filtered ("  %18s %18s %10s %10s %7s\n",
			   "Start Addr",
			   "  End Addr",
			   "      Size", "    Offset", "objfile");
	    }

	  while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
			       &offset, &device[0], &inode, &filename[0]))
	    {
	      size = endaddr - addr;

	      /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
		 calls here (and possibly above) should be abstracted
		 out into their own functions?  Andrew suggests using
		 a generic local_address_string instead to print out
		 the addresses; that makes sense to me, too.  */

	      if (gdbarch_addr_bit (current_gdbarch) == 32)
	        {
	          printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
			       (unsigned long) addr,	/* FIXME: pr_addr */
			       (unsigned long) endaddr,
			       (int) size,
			       (unsigned int) offset,
			       filename[0] ? filename : "");
		}
	      else
	        {
	          printf_filtered ("  %#18lx %#18lx %#10x %#10x %7s\n",
			       (unsigned long) addr,	/* FIXME: pr_addr */
			       (unsigned long) endaddr,
			       (int) size,
			       (unsigned int) offset,
			       filename[0] ? filename : "");
	        }
	    }

	  fclose (procfile);
	}
      else
	warning (_("unable to open /proc file '%s'"), fname1);
    }
  if (status_f || all)
    {
      sprintf (fname1, "/proc/%lld/status", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
	{
	  while (fgets (buffer, sizeof (buffer), procfile) != NULL)
	    puts_filtered (buffer);
	  fclose (procfile);
	}
      else
	warning (_("unable to open /proc file '%s'"), fname1);
    }
  if (stat_f || all)
    {
      sprintf (fname1, "/proc/%lld/stat", pid);
      if ((procfile = fopen (fname1, "r")) != NULL)
	{
	  int itmp;
	  char ctmp;
	  long ltmp;

	  if (fscanf (procfile, "%d ", &itmp) > 0)
	    printf_filtered (_("Process: %d\n"), itmp);
	  if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
	    printf_filtered (_("Exec file: %s\n"), buffer);
	  if (fscanf (procfile, "%c ", &ctmp) > 0)
	    printf_filtered (_("State: %c\n"), ctmp);
	  if (fscanf (procfile, "%d ", &itmp) > 0)
	    printf_filtered (_("Parent process: %d\n"), itmp);
	  if (fscanf (procfile, "%d ", &itmp) > 0)
	    printf_filtered (_("Process group: %d\n"), itmp);
	  if (fscanf (procfile, "%d ", &itmp) > 0)
	    printf_filtered (_("Session id: %d\n"), itmp);
	  if (fscanf (procfile, "%d ", &itmp) > 0)
	    printf_filtered (_("TTY: %d\n"), itmp);
	  if (fscanf (procfile, "%d ", &itmp) > 0)
	    printf_filtered (_("TTY owner process group: %d\n"), itmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("Flags: 0x%lx\n"), ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("Minor faults (no memory page): %lu\n"),
			     (unsigned long) ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("Minor faults, children: %lu\n"),
			     (unsigned long) ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("Major faults (memory page faults): %lu\n"),
			     (unsigned long) ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("Major faults, children: %lu\n"),
			     (unsigned long) ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("utime: %ld\n"), ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("stime: %ld\n"), ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("utime, children: %ld\n"), ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("stime, children: %ld\n"), ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
			     ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("'nice' value: %ld\n"), ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("jiffies until next timeout: %lu\n"),
			     (unsigned long) ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
			     (unsigned long) ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("start time (jiffies since system boot): %ld\n"),
			     ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("Virtual memory size: %lu\n"),
			     (unsigned long) ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("End of text: 0x%lx\n"), ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)
	    printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
#if 0				/* Don't know how architecture-dependent the rest is...
				   Anyway the signal bitmap info is available from "status".  */
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)	/* FIXME arch? */
	    printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)	/* FIXME arch? */
	    printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
	  if (fscanf (procfile, "%ld ", &ltmp) > 0)
	    printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
	  if (fscanf (procfile, "%lu ", &ltmp) > 0)	/* FIXME arch? */
	    printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
#endif
	  fclose (procfile);
	}
      else
	warning (_("unable to open /proc file '%s'"), fname1);
    }
}

/* Implement the to_xfer_partial interface for memory reads using the /proc
   filesystem.  Because we can use a single read() call for /proc, this
   can be much more efficient than banging away at PTRACE_PEEKTEXT,
   but it doesn't support writes.  */

static LONGEST
linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
			 const char *annex, gdb_byte *readbuf,
			 const gdb_byte *writebuf,
			 ULONGEST offset, LONGEST len)
{
  LONGEST ret;
  int fd;
  char filename[64];

  if (object != TARGET_OBJECT_MEMORY || !readbuf)
    return 0;

  /* Don't bother for one word.  */
  if (len < 3 * sizeof (long))
    return 0;

  /* We could keep this file open and cache it - possibly one per
     thread.  That requires some juggling, but is even faster.  */
  sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
  fd = open (filename, O_RDONLY | O_LARGEFILE);
  if (fd == -1)
    return 0;

  /* If pread64 is available, use it.  It's faster if the kernel
     supports it (only one syscall), and it's 64-bit safe even on
     32-bit platforms (for instance, SPARC debugging a SPARC64
     application).  */
#ifdef HAVE_PREAD64
  if (pread64 (fd, readbuf, len, offset) != len)
#else
  if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
#endif
    ret = 0;
  else
    ret = len;

  close (fd);
  return ret;
}

/* Parse LINE as a signal set and add its set bits to SIGS.  */

static void
add_line_to_sigset (const char *line, sigset_t *sigs)
{
  int len = strlen (line) - 1;
  const char *p;
  int signum;

  if (line[len] != '\n')
    error (_("Could not parse signal set: %s"), line);

  p = line;
  signum = len * 4;
  while (len-- > 0)
    {
      int digit;

      if (*p >= '0' && *p <= '9')
	digit = *p - '0';
      else if (*p >= 'a' && *p <= 'f')
	digit = *p - 'a' + 10;
      else
	error (_("Could not parse signal set: %s"), line);

      signum -= 4;

      if (digit & 1)
	sigaddset (sigs, signum + 1);
      if (digit & 2)
	sigaddset (sigs, signum + 2);
      if (digit & 4)
	sigaddset (sigs, signum + 3);
      if (digit & 8)
	sigaddset (sigs, signum + 4);

      p++;
    }
}

/* Find process PID's pending signals from /proc/pid/status and set
   SIGS to match.  */

void
linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
{
  FILE *procfile;
  char buffer[MAXPATHLEN], fname[MAXPATHLEN];
  int signum;

  sigemptyset (pending);
  sigemptyset (blocked);
  sigemptyset (ignored);
  sprintf (fname, "/proc/%d/status", pid);
  procfile = fopen (fname, "r");
  if (procfile == NULL)
    error (_("Could not open %s"), fname);

  while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
    {
      /* Normal queued signals are on the SigPnd line in the status
	 file.  However, 2.6 kernels also have a "shared" pending
	 queue for delivering signals to a thread group, so check for
	 a ShdPnd line also.

	 Unfortunately some Red Hat kernels include the shared pending
	 queue but not the ShdPnd status field.  */

      if (strncmp (buffer, "SigPnd:\t", 8) == 0)
	add_line_to_sigset (buffer + 8, pending);
      else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
	add_line_to_sigset (buffer + 8, pending);
      else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
	add_line_to_sigset (buffer + 8, blocked);
      else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
	add_line_to_sigset (buffer + 8, ignored);
    }

  fclose (procfile);
}

static LONGEST
linux_xfer_partial (struct target_ops *ops, enum target_object object,
                    const char *annex, gdb_byte *readbuf,
		    const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
  LONGEST xfer;

  if (object == TARGET_OBJECT_AUXV)
    return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
			     offset, len);

  xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
				  offset, len);
  if (xfer != 0)
    return xfer;

  return super_xfer_partial (ops, object, annex, readbuf, writebuf,
			     offset, len);
}

/* Create a prototype generic GNU/Linux target.  The client can override
   it with local methods.  */

static void
linux_target_install_ops (struct target_ops *t)
{
  t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
  t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
  t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
  t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
  t->to_post_startup_inferior = linux_child_post_startup_inferior;
  t->to_post_attach = linux_child_post_attach;
  t->to_follow_fork = linux_child_follow_fork;
  t->to_find_memory_regions = linux_nat_find_memory_regions;
  t->to_make_corefile_notes = linux_nat_make_corefile_notes;

  super_xfer_partial = t->to_xfer_partial;
  t->to_xfer_partial = linux_xfer_partial;
}

struct target_ops *
linux_target (void)
{
  struct target_ops *t;

  t = inf_ptrace_target ();
  linux_target_install_ops (t);

  return t;
}

struct target_ops *
linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
{
  struct target_ops *t;

  t = inf_ptrace_trad_target (register_u_offset);
  linux_target_install_ops (t);

  return t;
}

/* target_is_async_p implementation.  */

static int
linux_nat_is_async_p (void)
{
  /* NOTE: palves 2008-03-21: We're only async when the user requests
     it explicitly with the "maintenance set target-async" command.
     Someday, linux will always be async.  */
  if (!target_async_permitted)
    return 0;

  return 1;
}

/* target_can_async_p implementation.  */

static int
linux_nat_can_async_p (void)
{
  /* NOTE: palves 2008-03-21: We're only async when the user requests
     it explicitly with the "maintenance set target-async" command.
     Someday, linux will always be async.  */
  if (!target_async_permitted)
    return 0;

  /* See target.h/target_async_mask.  */
  return linux_nat_async_mask_value;
}

static int
linux_nat_supports_non_stop (void)
{
  return 1;
}

/* target_async_mask implementation.  */

static int
linux_nat_async_mask (int mask)
{
  int current_state;
  current_state = linux_nat_async_mask_value;

  if (current_state != mask)
    {
      if (mask == 0)
	{
	  linux_nat_async (NULL, 0);
	  linux_nat_async_mask_value = mask;
	}
      else
	{
	  linux_nat_async_mask_value = mask;
	  linux_nat_async (inferior_event_handler, 0);
	}
    }

  return current_state;
}

/* Pop an event from the event pipe.  */

static int
linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
{
  struct waitpid_result event = {0};
  int ret;

  do
    {
      ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
    }
  while (ret == -1 && errno == EINTR);

  gdb_assert (ret == sizeof (event));

  *ptr_status = event.status;
  *ptr_options = event.options;

  linux_nat_num_queued_events--;

  return event.pid;
}

/* Push an event into the event pipe.  */

static void
linux_nat_event_pipe_push (int pid, int status, int options)
{
  int ret;
  struct waitpid_result event = {0};
  event.pid = pid;
  event.status = status;
  event.options = options;

  do
    {
      ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
      gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
    } while (ret == -1 && errno == EINTR);

  linux_nat_num_queued_events++;
}

static void
get_pending_events (void)
{
  int status, options, pid;

  if (!target_async_permitted
      || linux_nat_async_events_state != sigchld_async)
    internal_error (__FILE__, __LINE__,
		    "get_pending_events called with async masked");

  while (1)
    {
      status = 0;
      options = __WCLONE | WNOHANG;

      do
	{
	  pid = waitpid (-1, &status, options);
	}
      while (pid == -1 && errno == EINTR);

      if (pid <= 0)
	{
	  options = WNOHANG;
	  do
	    {
	      pid = waitpid (-1, &status, options);
	    }
	  while (pid == -1 && errno == EINTR);
	}

      if (pid <= 0)
	/* No more children reporting events.  */
	break;

      if (debug_linux_nat_async)
	fprintf_unfiltered (gdb_stdlog, "\
get_pending_events: pid(%d), status(%x), options (%x)\n",
			    pid, status, options);

      linux_nat_event_pipe_push (pid, status, options);
    }

  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog, "\
get_pending_events: linux_nat_num_queued_events(%d)\n",
			linux_nat_num_queued_events);
}

/* SIGCHLD handler for async mode.  */

static void
async_sigchld_handler (int signo)
{
  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");

  get_pending_events ();
}

/* Set SIGCHLD handling state to STATE.  Returns previous state.  */

static enum sigchld_state
linux_nat_async_events (enum sigchld_state state)
{
  enum sigchld_state current_state = linux_nat_async_events_state;

  if (debug_linux_nat_async)
    fprintf_unfiltered (gdb_stdlog,
			"LNAE: state(%d): linux_nat_async_events_state(%d), "
			"linux_nat_num_queued_events(%d)\n",
			state, linux_nat_async_events_state,
			linux_nat_num_queued_events);

  if (current_state != state)
    {
      sigset_t mask;
      sigemptyset (&mask);
      sigaddset (&mask, SIGCHLD);

      /* Always block before changing state.  */
      sigprocmask (SIG_BLOCK, &mask, NULL);

      /* Set new state.  */
      linux_nat_async_events_state = state;

      switch (state)
	{
	case sigchld_sync:
	  {
	    /* Block target events.  */
	    sigprocmask (SIG_BLOCK, &mask, NULL);
	    sigaction (SIGCHLD, &sync_sigchld_action, NULL);
	    /* Get events out of queue, and make them available to
	       queued_waitpid / my_waitpid.  */
	    pipe_to_local_event_queue ();
	  }
	  break;
	case sigchld_async:
	  {
	    /* Unblock target events for async mode.  */

	    sigprocmask (SIG_BLOCK, &mask, NULL);

	    /* Put events we already waited on, in the pipe first, so
	       events are FIFO.  */
	    local_event_queue_to_pipe ();
	    /* While in masked async, we may have not collected all
	       the pending events.  Get them out now.  */
	    get_pending_events ();

	    /* Let'em come.   */
	    sigaction (SIGCHLD, &async_sigchld_action, NULL);
	    sigprocmask (SIG_UNBLOCK, &mask, NULL);
	  }
	  break;
	case sigchld_default:
	  {
	    /* SIGCHLD default mode.  */
	    sigaction (SIGCHLD, &sigchld_default_action, NULL);

	    /* Get events out of queue, and make them available to
	       queued_waitpid / my_waitpid.  */
	    pipe_to_local_event_queue ();

	    /* Unblock SIGCHLD.  */
	    sigprocmask (SIG_UNBLOCK, &mask, NULL);
	  }
	  break;
	}
    }

  return current_state;
}

static int async_terminal_is_ours = 1;

/* target_terminal_inferior implementation.  */

static void
linux_nat_terminal_inferior (void)
{
  if (!target_is_async_p ())
    {
      /* Async mode is disabled.  */
      terminal_inferior ();
      return;
    }

  /* GDB should never give the terminal to the inferior, if the
     inferior is running in the background (run&, continue&, etc.).
     This check can be removed when the common code is fixed.  */
  if (!sync_execution)
    return;

  terminal_inferior ();

  if (!async_terminal_is_ours)
    return;

  delete_file_handler (input_fd);
  async_terminal_is_ours = 0;
  set_sigint_trap ();
}

/* target_terminal_ours implementation.  */

void
linux_nat_terminal_ours (void)
{
  if (!target_is_async_p ())
    {
      /* Async mode is disabled.  */
      terminal_ours ();
      return;
    }

  /* GDB should never give the terminal to the inferior if the
     inferior is running in the background (run&, continue&, etc.),
     but claiming it sure should.  */
  terminal_ours ();

  if (!sync_execution)
    return;

  if (async_terminal_is_ours)
    return;

  clear_sigint_trap ();
  add_file_handler (input_fd, stdin_event_handler, 0);
  async_terminal_is_ours = 1;
}

static void (*async_client_callback) (enum inferior_event_type event_type,
				      void *context);
static void *async_client_context;

static void
linux_nat_async_file_handler (int error, gdb_client_data client_data)
{
  async_client_callback (INF_REG_EVENT, async_client_context);
}

/* target_async implementation.  */

static void
linux_nat_async (void (*callback) (enum inferior_event_type event_type,
				   void *context), void *context)
{
  if (linux_nat_async_mask_value == 0 || !target_async_permitted)
    internal_error (__FILE__, __LINE__,
		    "Calling target_async when async is masked");

  if (callback != NULL)
    {
      async_client_callback = callback;
      async_client_context = context;
      add_file_handler (linux_nat_event_pipe[0],
			linux_nat_async_file_handler, NULL);

      linux_nat_async_events (sigchld_async);
    }
  else
    {
      async_client_callback = callback;
      async_client_context = context;

      linux_nat_async_events (sigchld_sync);
      delete_file_handler (linux_nat_event_pipe[0]);
    }
  return;
}

static int
send_sigint_callback (struct lwp_info *lp, void *data)
{
  /* Use is_running instead of !lp->stopped, because the lwp may be
     stopped due to an internal event, and we want to interrupt it in
     that case too.  What we want is to check if the thread is stopped
     from the point of view of the user.  */
  if (is_running (lp->ptid))
    kill_lwp (GET_LWP (lp->ptid), SIGINT);
  return 0;
}

static void
linux_nat_stop (ptid_t ptid)
{
  if (non_stop)
    {
      if (ptid_equal (ptid, minus_one_ptid))
	iterate_over_lwps (send_sigint_callback, &ptid);
      else
	{
	  struct lwp_info *lp = find_lwp_pid (ptid);
	  send_sigint_callback (lp, NULL);
	}
    }
  else
    linux_ops->to_stop (ptid);
}

void
linux_nat_add_target (struct target_ops *t)
{
  /* Save the provided single-threaded target.  We save this in a separate
     variable because another target we've inherited from (e.g. inf-ptrace)
     may have saved a pointer to T; we want to use it for the final
     process stratum target.  */
  linux_ops_saved = *t;
  linux_ops = &linux_ops_saved;

  /* Override some methods for multithreading.  */
  t->to_create_inferior = linux_nat_create_inferior;
  t->to_attach = linux_nat_attach;
  t->to_detach = linux_nat_detach;
  t->to_resume = linux_nat_resume;
  t->to_wait = linux_nat_wait;
  t->to_xfer_partial = linux_nat_xfer_partial;
  t->to_kill = linux_nat_kill;
  t->to_mourn_inferior = linux_nat_mourn_inferior;
  t->to_thread_alive = linux_nat_thread_alive;
  t->to_pid_to_str = linux_nat_pid_to_str;
  t->to_has_thread_control = tc_schedlock;

  t->to_can_async_p = linux_nat_can_async_p;
  t->to_is_async_p = linux_nat_is_async_p;
  t->to_supports_non_stop = linux_nat_supports_non_stop;
  t->to_async = linux_nat_async;
  t->to_async_mask = linux_nat_async_mask;
  t->to_terminal_inferior = linux_nat_terminal_inferior;
  t->to_terminal_ours = linux_nat_terminal_ours;

  /* Methods for non-stop support.  */
  t->to_stop = linux_nat_stop;

  /* We don't change the stratum; this target will sit at
     process_stratum and thread_db will set at thread_stratum.  This
     is a little strange, since this is a multi-threaded-capable
     target, but we want to be on the stack below thread_db, and we
     also want to be used for single-threaded processes.  */

  add_target (t);

  /* TODO: Eliminate this and have libthread_db use
     find_target_beneath.  */
  thread_db_init (t);
}

/* Register a method to call whenever a new thread is attached.  */
void
linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
{
  /* Save the pointer.  We only support a single registered instance
     of the GNU/Linux native target, so we do not need to map this to
     T.  */
  linux_nat_new_thread = new_thread;
}

/* Return the saved siginfo associated with PTID.  */
struct siginfo *
linux_nat_get_siginfo (ptid_t ptid)
{
  struct lwp_info *lp = find_lwp_pid (ptid);

  gdb_assert (lp != NULL);

  return &lp->siginfo;
}

/* Enable/Disable async mode.  */

static void
linux_nat_setup_async (void)
{
  if (pipe (linux_nat_event_pipe) == -1)
    internal_error (__FILE__, __LINE__,
		    "creating event pipe failed.");
  fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
  fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
}

void
_initialize_linux_nat (void)
{
  sigset_t mask;

  add_info ("proc", linux_nat_info_proc_cmd, _("\
Show /proc process information about any running process.\n\
Specify any process id, or use the program being debugged by default.\n\
Specify any of the following keywords for detailed info:\n\
  mappings -- list of mapped memory regions.\n\
  stat     -- list a bunch of random process info.\n\
  status   -- list a different bunch of random process info.\n\
  all      -- list all available /proc info."));

  add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
			    &debug_linux_nat, _("\
Set debugging of GNU/Linux lwp module."), _("\
Show debugging of GNU/Linux lwp module."), _("\
Enables printf debugging output."),
			    NULL,
			    show_debug_linux_nat,
			    &setdebuglist, &showdebuglist);

  add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
			    &debug_linux_nat_async, _("\
Set debugging of GNU/Linux async lwp module."), _("\
Show debugging of GNU/Linux async lwp module."), _("\
Enables printf debugging output."),
			    NULL,
			    show_debug_linux_nat_async,
			    &setdebuglist, &showdebuglist);

  /* Get the default SIGCHLD action.  Used while forking an inferior
     (see linux_nat_create_inferior/linux_nat_async_events).  */
  sigaction (SIGCHLD, NULL, &sigchld_default_action);

  /* Block SIGCHLD by default.  Doing this early prevents it getting
     unblocked if an exception is thrown due to an error while the
     inferior is starting (sigsetjmp/siglongjmp).  */
  sigemptyset (&mask);
  sigaddset (&mask, SIGCHLD);
  sigprocmask (SIG_BLOCK, &mask, NULL);

  /* Save this mask as the default.  */
  sigprocmask (SIG_SETMASK, NULL, &normal_mask);

  /* The synchronous SIGCHLD handler.  */
  sync_sigchld_action.sa_handler = sigchld_handler;
  sigemptyset (&sync_sigchld_action.sa_mask);
  sync_sigchld_action.sa_flags = SA_RESTART;

  /* Make it the default.  */
  sigaction (SIGCHLD, &sync_sigchld_action, NULL);

  /* Make sure we don't block SIGCHLD during a sigsuspend.  */
  sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
  sigdelset (&suspend_mask, SIGCHLD);

  /* SIGCHLD handler for async mode.  */
  async_sigchld_action.sa_handler = async_sigchld_handler;
  sigemptyset (&async_sigchld_action.sa_mask);
  async_sigchld_action.sa_flags = SA_RESTART;

  linux_nat_setup_async ();

  add_setshow_boolean_cmd ("disable-randomization", class_support,
			   &disable_randomization, _("\
Set disabling of debuggee's virtual address space randomization."), _("\
Show disabling of debuggee's virtual address space randomization."), _("\
When this mode is on (which is the default), randomization of the virtual\n\
address space is disabled.  Standalone programs run with the randomization\n\
enabled by default on some platforms."),
			   &set_disable_randomization,
			   &show_disable_randomization,
			   &setlist, &showlist);
}


/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
   the GNU/Linux Threads library and therefore doesn't really belong
   here.  */

/* Read variable NAME in the target and return its value if found.
   Otherwise return zero.  It is assumed that the type of the variable
   is `int'.  */

static int
get_signo (const char *name)
{
  struct minimal_symbol *ms;
  int signo;

  ms = lookup_minimal_symbol (name, NULL, NULL);
  if (ms == NULL)
    return 0;

  if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
			  sizeof (signo)) != 0)
    return 0;

  return signo;
}

/* Return the set of signals used by the threads library in *SET.  */

void
lin_thread_get_thread_signals (sigset_t *set)
{
  struct sigaction action;
  int restart, cancel;
  sigset_t blocked_mask;

  sigemptyset (&blocked_mask);
  sigemptyset (set);

  restart = get_signo ("__pthread_sig_restart");
  cancel = get_signo ("__pthread_sig_cancel");

  /* LinuxThreads normally uses the first two RT signals, but in some legacy
     cases may use SIGUSR1/SIGUSR2.  NPTL always uses RT signals, but does
     not provide any way for the debugger to query the signal numbers -
     fortunately they don't change!  */

  if (restart == 0)
    restart = __SIGRTMIN;

  if (cancel == 0)
    cancel = __SIGRTMIN + 1;

  sigaddset (set, restart);
  sigaddset (set, cancel);

  /* The GNU/Linux Threads library makes terminating threads send a
     special "cancel" signal instead of SIGCHLD.  Make sure we catch
     those (to prevent them from terminating GDB itself, which is
     likely to be their default action) and treat them the same way as
     SIGCHLD.  */

  action.sa_handler = sigchld_handler;
  sigemptyset (&action.sa_mask);
  action.sa_flags = SA_RESTART;
  sigaction (cancel, &action, NULL);

  /* We block the "cancel" signal throughout this code ...  */
  sigaddset (&blocked_mask, cancel);
  sigprocmask (SIG_BLOCK, &blocked_mask, NULL);

  /* ... except during a sigsuspend.  */
  sigdelset (&suspend_mask, cancel);
}