aboutsummaryrefslogtreecommitdiff
path: root/gdb/irix5-nat.c
blob: ea37b8c23b47132f8fdb958b22d395c68ec52430 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
/* Native support for the SGI Iris running IRIX version 5, for GDB.
   Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 98, 1999
   Free Software Foundation, Inc.
   Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
   and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
   Implemented for Irix 4.x by Garrett A. Wollman.
   Modified for Irix 5.x by Ian Lance Taylor.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"

#include "gdb_string.h"
#include <sys/time.h>
#include <sys/procfs.h>
#include <setjmp.h>		/* For JB_XXX.  */

/* Prototypes for supply_gregset etc. */
#include "gregset.h"

static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);

/* Size of elements in jmpbuf */

#define JB_ELEMENT_SIZE 4

/*
 * See the comment in m68k-tdep.c regarding the utility of these functions.
 *
 * These definitions are from the MIPS SVR4 ABI, so they may work for
 * any MIPS SVR4 target.
 */

void
supply_gregset (gregsetp)
     gregset_t *gregsetp;
{
  register int regi;
  register greg_t *regp = &(*gregsetp)[0];
  int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
  static char zerobuf[MAX_REGISTER_RAW_SIZE] =
  {0};

  for (regi = 0; regi <= CTX_RA; regi++)
    supply_register (regi, (char *) (regp + regi) + gregoff);

  supply_register (PC_REGNUM, (char *) (regp + CTX_EPC) + gregoff);
  supply_register (HI_REGNUM, (char *) (regp + CTX_MDHI) + gregoff);
  supply_register (LO_REGNUM, (char *) (regp + CTX_MDLO) + gregoff);
  supply_register (CAUSE_REGNUM, (char *) (regp + CTX_CAUSE) + gregoff);

  /* Fill inaccessible registers with zero.  */
  supply_register (BADVADDR_REGNUM, zerobuf);
}

void
fill_gregset (gregsetp, regno)
     gregset_t *gregsetp;
     int regno;
{
  int regi;
  register greg_t *regp = &(*gregsetp)[0];

  /* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
     executable, we have to sign extend the registers to 64 bits before
     filling in the gregset structure.  */

  for (regi = 0; regi <= CTX_RA; regi++)
    if ((regno == -1) || (regno == regi))
      *(regp + regi) =
	extract_signed_integer (&registers[REGISTER_BYTE (regi)],
				REGISTER_RAW_SIZE (regi));

  if ((regno == -1) || (regno == PC_REGNUM))
    *(regp + CTX_EPC) =
      extract_signed_integer (&registers[REGISTER_BYTE (PC_REGNUM)],
			      REGISTER_RAW_SIZE (PC_REGNUM));

  if ((regno == -1) || (regno == CAUSE_REGNUM))
    *(regp + CTX_CAUSE) =
      extract_signed_integer (&registers[REGISTER_BYTE (CAUSE_REGNUM)],
			      REGISTER_RAW_SIZE (CAUSE_REGNUM));

  if ((regno == -1) || (regno == HI_REGNUM))
    *(regp + CTX_MDHI) =
      extract_signed_integer (&registers[REGISTER_BYTE (HI_REGNUM)],
			      REGISTER_RAW_SIZE (HI_REGNUM));

  if ((regno == -1) || (regno == LO_REGNUM))
    *(regp + CTX_MDLO) =
      extract_signed_integer (&registers[REGISTER_BYTE (LO_REGNUM)],
			      REGISTER_RAW_SIZE (LO_REGNUM));
}

/*
 * Now we do the same thing for floating-point registers.
 * We don't bother to condition on FP0_REGNUM since any
 * reasonable MIPS configuration has an R3010 in it.
 *
 * Again, see the comments in m68k-tdep.c.
 */

void
supply_fpregset (fpregsetp)
     fpregset_t *fpregsetp;
{
  register int regi;
  static char zerobuf[MAX_REGISTER_RAW_SIZE] =
  {0};

  /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */

  for (regi = 0; regi < 32; regi++)
    supply_register (FP0_REGNUM + regi,
		     (char *) &fpregsetp->fp_r.fp_regs[regi]);

  supply_register (FCRCS_REGNUM, (char *) &fpregsetp->fp_csr);

  /* FIXME: how can we supply FCRIR_REGNUM?  SGI doesn't tell us. */
  supply_register (FCRIR_REGNUM, zerobuf);
}

void
fill_fpregset (fpregsetp, regno)
     fpregset_t *fpregsetp;
     int regno;
{
  int regi;
  char *from, *to;

  /* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */

  for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
    {
      if ((regno == -1) || (regno == regi))
	{
	  from = (char *) &registers[REGISTER_BYTE (regi)];
	  to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
	  memcpy (to, from, REGISTER_RAW_SIZE (regi));
	}
    }

  if ((regno == -1) || (regno == FCRCS_REGNUM))
    fpregsetp->fp_csr = *(unsigned *) &registers[REGISTER_BYTE (FCRCS_REGNUM)];
}


/* Figure out where the longjmp will land.
   We expect the first arg to be a pointer to the jmp_buf structure from which
   we extract the pc (JB_PC) that we will land at.  The pc is copied into PC.
   This routine returns true on success. */

int
get_longjmp_target (pc)
     CORE_ADDR *pc;
{
  char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
  CORE_ADDR jb_addr;

  jb_addr = read_register (A0_REGNUM);

  if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
			  TARGET_PTR_BIT / TARGET_CHAR_BIT))
    return 0;

  *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);

  return 1;
}

static void
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
     char *core_reg_sect;
     unsigned core_reg_size;
     int which;			/* Unused */
     CORE_ADDR reg_addr;	/* Unused */
{
  if (core_reg_size == REGISTER_BYTES)
    {
      memcpy ((char *) registers, core_reg_sect, core_reg_size);
    }
  else if (MIPS_REGSIZE == 4 &&
	   core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
    {
      /* This is a core file from a N32 executable, 64 bits are saved
         for all registers.  */
      char *srcp = core_reg_sect;
      char *dstp = registers;
      int regno;

      for (regno = 0; regno < NUM_REGS; regno++)
	{
	  if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
	    {
	      /* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
	         currently assumes that they are 32 bit.  */
	      *dstp++ = *srcp++;
	      *dstp++ = *srcp++;
	      *dstp++ = *srcp++;
	      *dstp++ = *srcp++;
	      if (REGISTER_RAW_SIZE (regno) == 4)
		{
		  /* copying 4 bytes from eight bytes?
		     I don't see how this can be right...  */
		  srcp += 4;
		}
	      else
		{
		  /* copy all 8 bytes (sizeof(double)) */
		  *dstp++ = *srcp++;
		  *dstp++ = *srcp++;
		  *dstp++ = *srcp++;
		  *dstp++ = *srcp++;
		}
	    }
	  else
	    {
	      srcp += 4;
	      *dstp++ = *srcp++;
	      *dstp++ = *srcp++;
	      *dstp++ = *srcp++;
	      *dstp++ = *srcp++;
	    }
	}
    }
  else
    {
      warning ("wrong size gregset struct in core file");
      return;
    }

  registers_fetched ();
}

/* Irix 5 uses what appears to be a unique form of shared library
   support.  This is a copy of solib.c modified for Irix 5.  */
/* FIXME: Most of this code could be merged with osfsolib.c and solib.c
   by using next_link_map_member and xfer_link_map_member in solib.c.  */

#include <sys/types.h>
#include <signal.h>
#include <sys/param.h>
#include <fcntl.h>

/* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
   with our versions of those files included by tm-mips.h.  Prevent
   <obj.h> from including them with some appropriate defines.  */
#define __SYM_H__
#define __SYMCONST_H__
#include <obj.h>
#ifdef HAVE_OBJLIST_H
#include <objlist.h>
#endif

#ifdef NEW_OBJ_INFO_MAGIC
#define HANDLE_NEW_OBJ_LIST
#endif

#include "symtab.h"
#include "bfd.h"
#include "symfile.h"
#include "objfiles.h"
#include "command.h"
#include "frame.h"
#include "gdb_regex.h"
#include "inferior.h"
#include "language.h"
#include "gdbcmd.h"

/* The symbol which starts off the list of shared libraries.  */
#define DEBUG_BASE "__rld_obj_head"

/* Irix 6.x introduces a new variant of object lists.
   To be able to debug O32 executables under Irix 6, we have to handle both
   variants.  */

typedef enum
{
  OBJ_LIST_OLD,			/* Pre Irix 6.x object list.  */
  OBJ_LIST_32,			/* 32 Bit Elf32_Obj_Info.  */
  OBJ_LIST_64			/* 64 Bit Elf64_Obj_Info, FIXME not yet implemented.  */
}
obj_list_variant;

/* Define our own link_map structure.
   This will help to share code with osfsolib.c and solib.c.  */

struct link_map
  {
    obj_list_variant l_variant;	/* which variant of object list */
    CORE_ADDR l_lladdr;		/* addr in inferior list was read from */
    CORE_ADDR l_next;		/* address of next object list entry */
  };

/* Irix 5 shared objects are pre-linked to particular addresses
   although the dynamic linker may have to relocate them if the
   address ranges of the libraries used by the main program clash.
   The offset is the difference between the address where the object
   is mapped and the binding address of the shared library.  */
#define LM_OFFSET(so) ((so) -> offset)
/* Loaded address of shared library.  */
#define LM_ADDR(so) ((so) -> lmstart)

char shadow_contents[BREAKPOINT_MAX];	/* Stash old bkpt addr contents */

struct so_list
  {
    struct so_list *next;	/* next structure in linked list */
    struct link_map lm;
    CORE_ADDR offset;		/* prelink to load address offset */
    char *so_name;		/* shared object lib name */
    CORE_ADDR lmstart;		/* lower addr bound of mapped object */
    CORE_ADDR lmend;		/* upper addr bound of mapped object */
    char symbols_loaded;	/* flag: symbols read in yet? */
    char from_tty;		/* flag: print msgs? */
    struct objfile *objfile;	/* objfile for loaded lib */
    struct section_table *sections;
    struct section_table *sections_end;
    struct section_table *textsection;
    bfd *abfd;
  };

static struct so_list *so_list_head;	/* List of known shared objects */
static CORE_ADDR debug_base;	/* Base of dynamic linker structures */
static CORE_ADDR breakpoint_addr;	/* Address where end bkpt is set */

/* Local function prototypes */

static void sharedlibrary_command (char *, int);

static int enable_break (void);

static int disable_break (void);

static void info_sharedlibrary_command (char *, int);

static int symbol_add_stub (void *);

static struct so_list *find_solib (struct so_list *);

static struct link_map *first_link_map_member (void);

static struct link_map *next_link_map_member (struct so_list *);

static void xfer_link_map_member (struct so_list *, struct link_map *);

static CORE_ADDR locate_base (void);

static int solib_map_sections (void *);

/*

   LOCAL FUNCTION

   solib_map_sections -- open bfd and build sections for shared lib

   SYNOPSIS

   static int solib_map_sections (struct so_list *so)

   DESCRIPTION

   Given a pointer to one of the shared objects in our list
   of mapped objects, use the recorded name to open a bfd
   descriptor for the object, build a section table, and then
   relocate all the section addresses by the base address at
   which the shared object was mapped.

   FIXMES

   In most (all?) cases the shared object file name recorded in the
   dynamic linkage tables will be a fully qualified pathname.  For
   cases where it isn't, do we really mimic the systems search
   mechanism correctly in the below code (particularly the tilde
   expansion stuff?).
 */

static int
solib_map_sections (void *arg)
{
  struct so_list *so = (struct so_list *) arg;	/* catch_errors bogon */
  char *filename;
  char *scratch_pathname;
  int scratch_chan;
  struct section_table *p;
  struct cleanup *old_chain;
  bfd *abfd;

  filename = tilde_expand (so->so_name);
  old_chain = make_cleanup (free, filename);

  scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
			&scratch_pathname);
  if (scratch_chan < 0)
    {
      scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
			    O_RDONLY, 0, &scratch_pathname);
    }
  if (scratch_chan < 0)
    {
      perror_with_name (filename);
    }
  /* Leave scratch_pathname allocated.  abfd->name will point to it.  */

  abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
  if (!abfd)
    {
      close (scratch_chan);
      error ("Could not open `%s' as an executable file: %s",
	     scratch_pathname, bfd_errmsg (bfd_get_error ()));
    }
  /* Leave bfd open, core_xfer_memory and "info files" need it.  */
  so->abfd = abfd;
  abfd->cacheable = true;

  if (!bfd_check_format (abfd, bfd_object))
    {
      error ("\"%s\": not in executable format: %s.",
	     scratch_pathname, bfd_errmsg (bfd_get_error ()));
    }
  if (build_section_table (abfd, &so->sections, &so->sections_end))
    {
      error ("Can't find the file sections in `%s': %s",
	     bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
    }

  for (p = so->sections; p < so->sections_end; p++)
    {
      /* Relocate the section binding addresses as recorded in the shared
         object's file by the offset to get the address to which the
         object was actually mapped.  */
      p->addr += LM_OFFSET (so);
      p->endaddr += LM_OFFSET (so);
      so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
      if (STREQ (p->the_bfd_section->name, ".text"))
	{
	  so->textsection = p;
	}
    }

  /* Free the file names, close the file now.  */
  do_cleanups (old_chain);

  /* must be non-zero */
  return (1);
}

/*

   LOCAL FUNCTION

   locate_base -- locate the base address of dynamic linker structs

   SYNOPSIS

   CORE_ADDR locate_base (void)

   DESCRIPTION

   For both the SunOS and SVR4 shared library implementations, if the
   inferior executable has been linked dynamically, there is a single
   address somewhere in the inferior's data space which is the key to
   locating all of the dynamic linker's runtime structures.  This
   address is the value of the symbol defined by the macro DEBUG_BASE.
   The job of this function is to find and return that address, or to
   return 0 if there is no such address (the executable is statically
   linked for example).

   For SunOS, the job is almost trivial, since the dynamic linker and
   all of it's structures are statically linked to the executable at
   link time.  Thus the symbol for the address we are looking for has
   already been added to the minimal symbol table for the executable's
   objfile at the time the symbol file's symbols were read, and all we
   have to do is look it up there.  Note that we explicitly do NOT want
   to find the copies in the shared library.

   The SVR4 version is much more complicated because the dynamic linker
   and it's structures are located in the shared C library, which gets
   run as the executable's "interpreter" by the kernel.  We have to go
   to a lot more work to discover the address of DEBUG_BASE.  Because
   of this complexity, we cache the value we find and return that value
   on subsequent invocations.  Note there is no copy in the executable
   symbol tables.

   Irix 5 is basically like SunOS.

   Note that we can assume nothing about the process state at the time
   we need to find this address.  We may be stopped on the first instruc-
   tion of the interpreter (C shared library), the first instruction of
   the executable itself, or somewhere else entirely (if we attached
   to the process for example).

 */

static CORE_ADDR
locate_base ()
{
  struct minimal_symbol *msymbol;
  CORE_ADDR address = 0;

  msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
  if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
    {
      address = SYMBOL_VALUE_ADDRESS (msymbol);
    }
  return (address);
}

/*

   LOCAL FUNCTION

   first_link_map_member -- locate first member in dynamic linker's map

   SYNOPSIS

   static struct link_map *first_link_map_member (void)

   DESCRIPTION

   Read in a copy of the first member in the inferior's dynamic
   link map from the inferior's dynamic linker structures, and return
   a pointer to the link map descriptor.
 */

static struct link_map *
first_link_map_member ()
{
  struct obj_list *listp;
  struct obj_list list_old;
  struct link_map *lm;
  static struct link_map first_lm;
  CORE_ADDR lladdr;
  CORE_ADDR next_lladdr;

  /* We have not already read in the dynamic linking structures
     from the inferior, lookup the address of the base structure. */
  debug_base = locate_base ();
  if (debug_base == 0)
    return NULL;

  /* Get address of first list entry.  */
  read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));

  if (listp == NULL)
    return NULL;

  /* Get first list entry.  */
  /* The MIPS Sign extends addresses. */
  lladdr = host_pointer_to_address (listp);
  read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));

  /* The first entry in the list is the object file we are debugging,
     so skip it.  */
  next_lladdr = host_pointer_to_address (list_old.next);

#ifdef HANDLE_NEW_OBJ_LIST
  if (list_old.data == NEW_OBJ_INFO_MAGIC)
    {
      Elf32_Obj_Info list_32;

      read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
      if (list_32.oi_size != sizeof (Elf32_Obj_Info))
	return NULL;
      next_lladdr = (CORE_ADDR) list_32.oi_next;
    }
#endif

  if (next_lladdr == 0)
    return NULL;

  first_lm.l_lladdr = next_lladdr;
  lm = &first_lm;
  return lm;
}

/*

   LOCAL FUNCTION

   next_link_map_member -- locate next member in dynamic linker's map

   SYNOPSIS

   static struct link_map *next_link_map_member (so_list_ptr)

   DESCRIPTION

   Read in a copy of the next member in the inferior's dynamic
   link map from the inferior's dynamic linker structures, and return
   a pointer to the link map descriptor.
 */

static struct link_map *
next_link_map_member (so_list_ptr)
     struct so_list *so_list_ptr;
{
  struct link_map *lm = &so_list_ptr->lm;
  CORE_ADDR next_lladdr = lm->l_next;
  static struct link_map next_lm;

  if (next_lladdr == 0)
    {
      /* We have hit the end of the list, so check to see if any were
         added, but be quiet if we can't read from the target any more. */
      int status = 0;

      if (lm->l_variant == OBJ_LIST_OLD)
	{
	  struct obj_list list_old;

	  status = target_read_memory (lm->l_lladdr,
				       (char *) &list_old,
				       sizeof (struct obj_list));
	  next_lladdr = host_pointer_to_address (list_old.next);
	}
#ifdef HANDLE_NEW_OBJ_LIST
      else if (lm->l_variant == OBJ_LIST_32)
	{
	  Elf32_Obj_Info list_32;
	  status = target_read_memory (lm->l_lladdr,
				       (char *) &list_32,
				       sizeof (Elf32_Obj_Info));
	  next_lladdr = (CORE_ADDR) list_32.oi_next;
	}
#endif

      if (status != 0 || next_lladdr == 0)
	return NULL;
    }

  next_lm.l_lladdr = next_lladdr;
  lm = &next_lm;
  return lm;
}

/*

   LOCAL FUNCTION

   xfer_link_map_member -- set local variables from dynamic linker's map

   SYNOPSIS

   static void xfer_link_map_member (so_list_ptr, lm)

   DESCRIPTION

   Read in a copy of the requested member in the inferior's dynamic
   link map from the inferior's dynamic linker structures, and fill
   in the necessary so_list_ptr elements.
 */

static void
xfer_link_map_member (so_list_ptr, lm)
     struct so_list *so_list_ptr;
     struct link_map *lm;
{
  struct obj_list list_old;
  CORE_ADDR lladdr = lm->l_lladdr;
  struct link_map *new_lm = &so_list_ptr->lm;
  int errcode;

  read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));

  new_lm->l_variant = OBJ_LIST_OLD;
  new_lm->l_lladdr = lladdr;
  new_lm->l_next = host_pointer_to_address (list_old.next);

#ifdef HANDLE_NEW_OBJ_LIST
  if (list_old.data == NEW_OBJ_INFO_MAGIC)
    {
      Elf32_Obj_Info list_32;

      read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
      if (list_32.oi_size != sizeof (Elf32_Obj_Info))
	return;
      new_lm->l_variant = OBJ_LIST_32;
      new_lm->l_next = (CORE_ADDR) list_32.oi_next;

      target_read_string ((CORE_ADDR) list_32.oi_pathname,
			  &so_list_ptr->so_name,
			  list_32.oi_pathname_len + 1, &errcode);
      if (errcode != 0)
	memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);

      LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
      LM_OFFSET (so_list_ptr) =
	(CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
    }
  else
#endif
    {
#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
      /* If we are compiling GDB under N32 ABI, the alignments in
         the obj struct are different from the O32 ABI and we will get
         wrong values when accessing the struct.
         As a workaround we use fixed values which are good for
         Irix 6.2.  */
      char buf[432];

      read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));

      target_read_string (extract_address (&buf[236], 4),
			  &so_list_ptr->so_name,
			  INT_MAX, &errcode);
      if (errcode != 0)
	memory_error (errcode, extract_address (&buf[236], 4));

      LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
      LM_OFFSET (so_list_ptr) =
	extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
#else
      struct obj obj_old;

      read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
		   sizeof (struct obj));

      target_read_string ((CORE_ADDR) obj_old.o_path,
			  &so_list_ptr->so_name,
			  INT_MAX, &errcode);
      if (errcode != 0)
	memory_error (errcode, (CORE_ADDR) obj_old.o_path);

      LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
      LM_OFFSET (so_list_ptr) =
	(CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
#endif
    }

  catch_errors (solib_map_sections, (char *) so_list_ptr,
		"Error while mapping shared library sections:\n",
		RETURN_MASK_ALL);
}


/*

   LOCAL FUNCTION

   find_solib -- step through list of shared objects

   SYNOPSIS

   struct so_list *find_solib (struct so_list *so_list_ptr)

   DESCRIPTION

   This module contains the routine which finds the names of any
   loaded "images" in the current process. The argument in must be
   NULL on the first call, and then the returned value must be passed
   in on subsequent calls. This provides the capability to "step" down
   the list of loaded objects. On the last object, a NULL value is
   returned.
 */

static struct so_list *
find_solib (so_list_ptr)
     struct so_list *so_list_ptr;	/* Last lm or NULL for first one */
{
  struct so_list *so_list_next = NULL;
  struct link_map *lm = NULL;
  struct so_list *new;

  if (so_list_ptr == NULL)
    {
      /* We are setting up for a new scan through the loaded images. */
      if ((so_list_next = so_list_head) == NULL)
	{
	  /* Find the first link map list member. */
	  lm = first_link_map_member ();
	}
    }
  else
    {
      /* We have been called before, and are in the process of walking
         the shared library list.  Advance to the next shared object. */
      lm = next_link_map_member (so_list_ptr);
      so_list_next = so_list_ptr->next;
    }
  if ((so_list_next == NULL) && (lm != NULL))
    {
      new = (struct so_list *) xmalloc (sizeof (struct so_list));
      memset ((char *) new, 0, sizeof (struct so_list));
      /* Add the new node as the next node in the list, or as the root
         node if this is the first one. */
      if (so_list_ptr != NULL)
	{
	  so_list_ptr->next = new;
	}
      else
	{
	  so_list_head = new;
	}
      so_list_next = new;
      xfer_link_map_member (new, lm);
    }
  return (so_list_next);
}

/* A small stub to get us past the arg-passing pinhole of catch_errors.  */

static int
symbol_add_stub (void *arg)
{
  register struct so_list *so = (struct so_list *) arg;		/* catch_errs bogon */
  CORE_ADDR text_addr = 0;
  struct section_addr_info section_addrs;

  memset (&section_addrs, 0, sizeof (section_addrs));
  if (so->textsection)
    text_addr = so->textsection->addr;
  else if (so->abfd != NULL)
    {
      asection *lowest_sect;

      /* If we didn't find a mapped non zero sized .text section, set up
         text_addr so that the relocation in symbol_file_add does no harm.  */

      lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
      if (lowest_sect == NULL)
	bfd_map_over_sections (so->abfd, find_lowest_section,
			       (PTR) &lowest_sect);
      if (lowest_sect)
	text_addr = bfd_section_vma (so->abfd, lowest_sect) + LM_OFFSET (so);
    }


  section_addrs.other[0].name = ".text";
  section_addrs.other[0].addr = text_addr;
  so->objfile = symbol_file_add (so->so_name, so->from_tty,
				 &section_addrs, 0, 0);
  /* must be non-zero */
  return (1);
}

/*

   GLOBAL FUNCTION

   solib_add -- add a shared library file to the symtab and section list

   SYNOPSIS

   void solib_add (char *arg_string, int from_tty,
   struct target_ops *target)

   DESCRIPTION

 */

void
solib_add (arg_string, from_tty, target)
     char *arg_string;
     int from_tty;
     struct target_ops *target;
{
  register struct so_list *so = NULL;	/* link map state variable */

  /* Last shared library that we read.  */
  struct so_list *so_last = NULL;

  char *re_err;
  int count;
  int old;

  if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
    {
      error ("Invalid regexp: %s", re_err);
    }

  /* Add the shared library sections to the section table of the
     specified target, if any.  */
  if (target)
    {
      /* Count how many new section_table entries there are.  */
      so = NULL;
      count = 0;
      while ((so = find_solib (so)) != NULL)
	{
	  if (so->so_name[0])
	    {
	      count += so->sections_end - so->sections;
	    }
	}

      if (count)
	{
	  old = target_resize_to_sections (target, count);
	  
	  /* Add these section table entries to the target's table.  */
	  while ((so = find_solib (so)) != NULL)
	    {
	      if (so->so_name[0])
		{
		  count = so->sections_end - so->sections;
		  memcpy ((char *) (target->to_sections + old),
			  so->sections,
			  (sizeof (struct section_table)) * count);
		  old += count;
		}
	    }
	}
    }

  /* Now add the symbol files.  */
  while ((so = find_solib (so)) != NULL)
    {
      if (so->so_name[0] && re_exec (so->so_name))
	{
	  so->from_tty = from_tty;
	  if (so->symbols_loaded)
	    {
	      if (from_tty)
		{
		  printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
		}
	    }
	  else if (catch_errors
		   (symbol_add_stub, (char *) so,
		    "Error while reading shared library symbols:\n",
		    RETURN_MASK_ALL))
	    {
	      so_last = so;
	      so->symbols_loaded = 1;
	    }
	}
    }

  /* Getting new symbols may change our opinion about what is
     frameless.  */
  if (so_last)
    reinit_frame_cache ();
}

/*

   LOCAL FUNCTION

   info_sharedlibrary_command -- code for "info sharedlibrary"

   SYNOPSIS

   static void info_sharedlibrary_command ()

   DESCRIPTION

   Walk through the shared library list and print information
   about each attached library.
 */

static void
info_sharedlibrary_command (ignore, from_tty)
     char *ignore;
     int from_tty;
{
  register struct so_list *so = NULL;	/* link map state variable */
  int header_done = 0;

  if (exec_bfd == NULL)
    {
      printf_unfiltered ("No executable file.\n");
      return;
    }
  while ((so = find_solib (so)) != NULL)
    {
      if (so->so_name[0])
	{
	  if (!header_done)
	    {
	      printf_unfiltered ("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
				 "Shared Object Library");
	      header_done++;
	    }
	  printf_unfiltered ("%-12s",
		      local_hex_string_custom ((unsigned long) LM_ADDR (so),
					       "08l"));
	  printf_unfiltered ("%-12s",
			 local_hex_string_custom ((unsigned long) so->lmend,
						  "08l"));
	  printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
	  printf_unfiltered ("%s\n", so->so_name);
	}
    }
  if (so_list_head == NULL)
    {
      printf_unfiltered ("No shared libraries loaded at this time.\n");
    }
}

/*

   GLOBAL FUNCTION

   solib_address -- check to see if an address is in a shared lib

   SYNOPSIS

   char *solib_address (CORE_ADDR address)

   DESCRIPTION

   Provides a hook for other gdb routines to discover whether or
   not a particular address is within the mapped address space of
   a shared library.  Any address between the base mapping address
   and the first address beyond the end of the last mapping, is
   considered to be within the shared library address space, for
   our purposes.

   For example, this routine is called at one point to disable
   breakpoints which are in shared libraries that are not currently
   mapped in.
 */

char *
solib_address (address)
     CORE_ADDR address;
{
  register struct so_list *so = 0;	/* link map state variable */

  while ((so = find_solib (so)) != NULL)
    {
      if (so->so_name[0])
	{
	  if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
	      (address < (CORE_ADDR) so->lmend))
	    return (so->so_name);
	}
    }
  return (0);
}

/* Called by free_all_symtabs */

void
clear_solib ()
{
  struct so_list *next;
  char *bfd_filename;

  disable_breakpoints_in_shlibs (1);

  while (so_list_head)
    {
      if (so_list_head->sections)
	{
	  free ((PTR) so_list_head->sections);
	}
      if (so_list_head->abfd)
	{
	  bfd_filename = bfd_get_filename (so_list_head->abfd);
	  if (!bfd_close (so_list_head->abfd))
	    warning ("cannot close \"%s\": %s",
		     bfd_filename, bfd_errmsg (bfd_get_error ()));
	}
      else
	/* This happens for the executable on SVR4.  */
	bfd_filename = NULL;

      next = so_list_head->next;
      if (bfd_filename)
	free ((PTR) bfd_filename);
      free (so_list_head->so_name);
      free ((PTR) so_list_head);
      so_list_head = next;
    }
  debug_base = 0;
}

/*

   LOCAL FUNCTION

   disable_break -- remove the "mapping changed" breakpoint

   SYNOPSIS

   static int disable_break ()

   DESCRIPTION

   Removes the breakpoint that gets hit when the dynamic linker
   completes a mapping change.

 */

static int
disable_break ()
{
  int status = 1;


  /* Note that breakpoint address and original contents are in our address
     space, so we just need to write the original contents back. */

  if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
    {
      status = 0;
    }

  /* For the SVR4 version, we always know the breakpoint address.  For the
     SunOS version we don't know it until the above code is executed.
     Grumble if we are stopped anywhere besides the breakpoint address. */

  if (stop_pc != breakpoint_addr)
    {
      warning ("stopped at unknown breakpoint while handling shared libraries");
    }

  return (status);
}

/*

   LOCAL FUNCTION

   enable_break -- arrange for dynamic linker to hit breakpoint

   SYNOPSIS

   int enable_break (void)

   DESCRIPTION

   This functions inserts a breakpoint at the entry point of the
   main executable, where all shared libraries are mapped in.
 */

static int
enable_break ()
{
  if (symfile_objfile != NULL
      && target_insert_breakpoint (symfile_objfile->ei.entry_point,
				   shadow_contents) == 0)
    {
      breakpoint_addr = symfile_objfile->ei.entry_point;
      return 1;
    }

  return 0;
}

/*

   GLOBAL FUNCTION

   solib_create_inferior_hook -- shared library startup support

   SYNOPSIS

   void solib_create_inferior_hook()

   DESCRIPTION

   When gdb starts up the inferior, it nurses it along (through the
   shell) until it is ready to execute it's first instruction.  At this
   point, this function gets called via expansion of the macro
   SOLIB_CREATE_INFERIOR_HOOK.

   For SunOS executables, this first instruction is typically the
   one at "_start", or a similar text label, regardless of whether
   the executable is statically or dynamically linked.  The runtime
   startup code takes care of dynamically linking in any shared
   libraries, once gdb allows the inferior to continue.

   For SVR4 executables, this first instruction is either the first
   instruction in the dynamic linker (for dynamically linked
   executables) or the instruction at "start" for statically linked
   executables.  For dynamically linked executables, the system
   first exec's /lib/libc.so.N, which contains the dynamic linker,
   and starts it running.  The dynamic linker maps in any needed
   shared libraries, maps in the actual user executable, and then
   jumps to "start" in the user executable.

   For both SunOS shared libraries, and SVR4 shared libraries, we
   can arrange to cooperate with the dynamic linker to discover the
   names of shared libraries that are dynamically linked, and the
   base addresses to which they are linked.

   This function is responsible for discovering those names and
   addresses, and saving sufficient information about them to allow
   their symbols to be read at a later time.

   FIXME

   Between enable_break() and disable_break(), this code does not
   properly handle hitting breakpoints which the user might have
   set in the startup code or in the dynamic linker itself.  Proper
   handling will probably have to wait until the implementation is
   changed to use the "breakpoint handler function" method.

   Also, what if child has exit()ed?  Must exit loop somehow.
 */

void
solib_create_inferior_hook ()
{
  if (!enable_break ())
    {
      warning ("shared library handler failed to enable breakpoint");
      return;
    }

  /* Now run the target.  It will eventually hit the breakpoint, at
     which point all of the libraries will have been mapped in and we
     can go groveling around in the dynamic linker structures to find
     out what we need to know about them. */

  clear_proceed_status ();
  stop_soon_quietly = 1;
  stop_signal = TARGET_SIGNAL_0;
  do
    {
      target_resume (-1, 0, stop_signal);
      wait_for_inferior ();
    }
  while (stop_signal != TARGET_SIGNAL_TRAP);

  /* We are now either at the "mapping complete" breakpoint (or somewhere
     else, a condition we aren't prepared to deal with anyway), so adjust
     the PC as necessary after a breakpoint, disable the breakpoint, and
     add any shared libraries that were mapped in. */

  if (DECR_PC_AFTER_BREAK)
    {
      stop_pc -= DECR_PC_AFTER_BREAK;
      write_register (PC_REGNUM, stop_pc);
    }

  if (!disable_break ())
    {
      warning ("shared library handler failed to disable breakpoint");
    }

  /*  solib_add will call reinit_frame_cache.
     But we are stopped in the startup code and we might not have symbols
     for the startup code, so heuristic_proc_start could be called
     and will put out an annoying warning.
     Delaying the resetting of stop_soon_quietly until after symbol loading
     suppresses the warning.  */
  if (auto_solib_add)
    solib_add ((char *) 0, 0, (struct target_ops *) 0);
  stop_soon_quietly = 0;
}

/*

   LOCAL FUNCTION

   sharedlibrary_command -- handle command to explicitly add library

   SYNOPSIS

   static void sharedlibrary_command (char *args, int from_tty)

   DESCRIPTION

 */

static void
sharedlibrary_command (args, from_tty)
     char *args;
     int from_tty;
{
  dont_repeat ();
  solib_add (args, from_tty, (struct target_ops *) 0);
}

void
_initialize_solib ()
{
  add_com ("sharedlibrary", class_files, sharedlibrary_command,
	   "Load shared object library symbols for files matching REGEXP.");
  add_info ("sharedlibrary", info_sharedlibrary_command,
	    "Status of loaded shared object libraries.");

  add_show_from_set
    (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
		  (char *) &auto_solib_add,
		  "Set autoloading of shared library symbols.\n\
If nonzero, symbols from all shared object libraries will be loaded\n\
automatically when the inferior begins execution or when the dynamic linker\n\
informs gdb that a new library has been loaded.  Otherwise, symbols\n\
must be loaded manually, using `sharedlibrary'.",
		  &setlist),
     &showlist);
}


/* Register that we are able to handle irix5 core file formats.
   This really is bfd_target_unknown_flavour */

static struct core_fns irix5_core_fns =
{
  bfd_target_unknown_flavour,		/* core_flavour */
  default_check_format,			/* check_format */
  default_core_sniffer,			/* core_sniffer */
  fetch_core_registers,			/* core_read_registers */
  NULL					/* next */
};

void
_initialize_core_irix5 ()
{
  add_core_fns (&irix5_core_fns);
}