aboutsummaryrefslogtreecommitdiff
path: root/gdb/infrun.c
blob: e674d4d156dc716b83ed69d1e4592b40678bdf0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
/* Start (run) and stop the inferior process, for GDB.
   Copyright (C) 1986, 1987, 1988, 1989, 1991 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* Notes on the algorithm used in wait_for_inferior to determine if we
   just did a subroutine call when stepping.  We have the following
   information at that point:

                  Current and previous (just before this step) pc.
		  Current and previous sp.
		  Current and previous start of current function.

   If the start's of the functions don't match, then

   	a) We did a subroutine call.

   In this case, the pc will be at the beginning of a function.

	b) We did a subroutine return.

   Otherwise.

	c) We did a longjmp.

   If we did a longjump, we were doing "nexti", since a next would
   have attempted to skip over the assembly language routine in which
   the longjmp is coded and would have simply been the equivalent of a
   continue.  I consider this ok behaivior.  We'd like one of two
   things to happen if we are doing a nexti through the longjmp()
   routine: 1) It behaves as a stepi, or 2) It acts like a continue as
   above.  Given that this is a special case, and that anybody who
   thinks that the concept of sub calls is meaningful in the context
   of a longjmp, I'll take either one.  Let's see what happens.  

   Acts like a subroutine return.  I can handle that with no problem
   at all.

   -->So: If the current and previous beginnings of the current
   function don't match, *and* the pc is at the start of a function,
   we've done a subroutine call.  If the pc is not at the start of a
   function, we *didn't* do a subroutine call.  

   -->If the beginnings of the current and previous function do match,
   either: 

   	a) We just did a recursive call.

	   In this case, we would be at the very beginning of a
	   function and 1) it will have a prologue (don't jump to
	   before prologue, or 2) (we assume here that it doesn't have
	   a prologue) there will have been a change in the stack
	   pointer over the last instruction.  (Ie. it's got to put
	   the saved pc somewhere.  The stack is the usual place.  In
	   a recursive call a register is only an option if there's a
	   prologue to do something with it.  This is even true on
	   register window machines; the prologue sets up the new
	   window.  It might not be true on a register window machine
	   where the call instruction moved the register window
	   itself.  Hmmm.  One would hope that the stack pointer would
	   also change.  If it doesn't, somebody send me a note, and
	   I'll work out a more general theory.
	   bug-gdb@prep.ai.mit.edu).  This is true (albeit slipperly
	   so) on all machines I'm aware of:

	      m68k:	Call changes stack pointer.  Regular jumps don't.

	      sparc:	Recursive calls must have frames and therefor,
	                prologues.

	      vax:	All calls have frames and hence change the
	                stack pointer.

	b) We did a return from a recursive call.  I don't see that we
	   have either the ability or the need to distinguish this
	   from an ordinary jump.  The stack frame will be printed
	   when and if the frame pointer changes; if we are in a
	   function without a frame pointer, it's the users own
	   lookout.

	c) We did a jump within a function.  We assume that this is
	   true if we didn't do a recursive call.

	d) We are in no-man's land ("I see no symbols here").  We
	   don't worry about this; it will make calls look like simple
	   jumps (and the stack frames will be printed when the frame
	   pointer moves), which is a reasonably non-violent response.

#if 0
    We skip this; it causes more problems than it's worth.
#ifdef SUN4_COMPILER_FEATURE
    We do a special ifdef for the sun 4, forcing it to single step
  into calls which don't have prologues.  This means that we can't
  nexti over leaf nodes, we can probably next over them (since they
  won't have debugging symbols, usually), and we can next out of
  functions returning structures (with a "call .stret4" at the end).
#endif
#endif
*/
   

   
   

#include <stdio.h>
#include <string.h>
#include "defs.h"
#include "param.h"
#include "symtab.h"
#include "frame.h"
#include "inferior.h"
#include "breakpoint.h"
#include "wait.h"
#include "gdbcore.h"
#include "signame.h"
#include "command.h"
#include "terminal.h"		/* For #ifdef TIOCGPGRP and new_tty */
#include "target.h"

#include <signal.h>

/* unistd.h is needed to #define X_OK */
#ifdef USG
#include <unistd.h>
#else
#include <sys/file.h>
#endif

#ifdef SET_STACK_LIMIT_HUGE
#include <sys/time.h>
#include <sys/resource.h>

extern int original_stack_limit;
#endif /* SET_STACK_LIMIT_HUGE */

extern char *getenv ();
extern char **environ;

extern struct target_ops child_ops;	/* In inftarg.c */


/* Sigtramp is a routine that the kernel calls (which then calls the
   signal handler).  On most machines it is a library routine that
   is linked into the executable.

   This macro, given a program counter value and the name of the
   function in which that PC resides (which can be null if the
   name is not known), returns nonzero if the PC and name show
   that we are in sigtramp.

   On most machines just see if the name is sigtramp (and if we have
   no name, assume we are not in sigtramp).  */
#if !defined (IN_SIGTRAMP)
#define IN_SIGTRAMP(pc, name) \
  (name && !strcmp ("_sigtramp", name))
#endif

#ifdef TDESC
#include "tdesc.h"
int safe_to_init_tdesc_context = 0;
extern dc_dcontext_t current_context;
#endif

/* Tables of how to react to signals; the user sets them.  */

static char signal_stop[NSIG];
static char signal_print[NSIG];
static char signal_program[NSIG];

/* Nonzero if breakpoints are now inserted in the inferior.  */
/* Nonstatic for initialization during xxx_create_inferior. FIXME. */

/*static*/ int breakpoints_inserted;

/* Function inferior was in as of last step command.  */

static struct symbol *step_start_function;

/* Nonzero => address for special breakpoint for resuming stepping.  */

static CORE_ADDR step_resume_break_address;

/* Pointer to orig contents of the byte where the special breakpoint is.  */

static char step_resume_break_shadow[BREAKPOINT_MAX];

/* Nonzero means the special breakpoint is a duplicate
   so it has not itself been inserted.  */

static int step_resume_break_duplicate;

/* Nonzero if we are expecting a trace trap and should proceed from it.  */

static int trap_expected;

/* Nonzero if the next time we try to continue the inferior, it will
   step one instruction and generate a spurious trace trap.
   This is used to compensate for a bug in HP-UX.  */

static int trap_expected_after_continue;

/* Nonzero means expecting a trace trap
   and should stop the inferior and return silently when it happens.  */

int stop_after_trap;

/* Nonzero means expecting a trap and caller will handle it themselves.
   It is used after attach, due to attaching to a process;
   when running in the shell before the child program has been exec'd;
   and when running some kinds of remote stuff (FIXME?).  */

int stop_soon_quietly;

/* Nonzero if pc has been changed by the debugger
   since the inferior stopped.  */

int pc_changed;

/* Nonzero if proceed is being used for a "finish" command or a similar
   situation when stop_registers should be saved.  */

int proceed_to_finish;

/* Save register contents here when about to pop a stack dummy frame,
   if-and-only-if proceed_to_finish is set.
   Thus this contains the return value from the called function (assuming
   values are returned in a register).  */

char stop_registers[REGISTER_BYTES];

/* Nonzero if program stopped due to error trying to insert breakpoints.  */

static int breakpoints_failed;

/* Nonzero after stop if current stack frame should be printed.  */

static int stop_print_frame;

#ifdef NO_SINGLE_STEP
extern int one_stepped;		/* From machine dependent code */
extern void single_step ();	/* Same. */
#endif /* NO_SINGLE_STEP */

static void insert_step_breakpoint ();
static void remove_step_breakpoint ();
/*static*/ void wait_for_inferior ();
void init_wait_for_inferior ();
void normal_stop ();


/* Things to clean up if we QUIT out of resume ().  */
/* ARGSUSED */
static void
resume_cleanups (arg)
     int arg;
{
  normal_stop ();
}

/* Resume the inferior, but allow a QUIT.  This is useful if the user
   wants to interrupt some lengthy single-stepping operation
   (for child processes, the SIGINT goes to the inferior, and so
   we get a SIGINT random_signal, but for remote debugging and perhaps
   other targets, that's not true).

   STEP nonzero if we should step (zero to continue instead).
   SIG is the signal to give the inferior (zero for none).  */
static void
resume (step, sig)
     int step;
     int sig;
{
  struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
  QUIT;

#ifdef NO_SINGLE_STEP
  if (step) {
    single_step();	/* Do it the hard way, w/temp breakpoints */
    step = 0;		/* ...and don't ask hardware to do it.  */
  }
#endif

  /* Handle any optimized stores to the inferior NOW...  */
#ifdef DO_DEFERRED_STORES
  DO_DEFERRED_STORES;
#endif

  target_resume (step, sig);
  discard_cleanups (old_cleanups);
}


/* Clear out all variables saying what to do when inferior is continued.
   First do this, then set the ones you want, then call `proceed'.  */

void
clear_proceed_status ()
{
  trap_expected = 0;
  step_range_start = 0;
  step_range_end = 0;
  step_frame_address = 0;
  step_over_calls = -1;
  step_resume_break_address = 0;
  stop_after_trap = 0;
  stop_soon_quietly = 0;
  proceed_to_finish = 0;
  breakpoint_proceeded = 1;	/* We're about to proceed... */

  /* Discard any remaining commands or status from previous stop.  */
  bpstat_clear (&stop_bpstat);
}

/* Basic routine for continuing the program in various fashions.

   ADDR is the address to resume at, or -1 for resume where stopped.
   SIGGNAL is the signal to give it, or 0 for none,
     or -1 for act according to how it stopped.
   STEP is nonzero if should trap after one instruction.
     -1 means return after that and print nothing.
     You should probably set various step_... variables
     before calling here, if you are stepping.

   You should call clear_proceed_status before calling proceed.  */

void
proceed (addr, siggnal, step)
     CORE_ADDR addr;
     int siggnal;
     int step;
{
  int oneproc = 0;

  if (step > 0)
    step_start_function = find_pc_function (read_pc ());
  if (step < 0)
    stop_after_trap = 1;

  if (addr == (CORE_ADDR)-1)
    {
      /* If there is a breakpoint at the address we will resume at,
	 step one instruction before inserting breakpoints
	 so that we do not stop right away.  */

      if (!pc_changed && breakpoint_here_p (read_pc ()))
	oneproc = 1;
    }
  else
    {
      write_register (PC_REGNUM, addr);
#ifdef NPC_REGNUM
      write_register (NPC_REGNUM, addr + 4);
#ifdef NNPC_REGNUM
      write_register (NNPC_REGNUM, addr + 8);
#endif
#endif
    }

  if (trap_expected_after_continue)
    {
      /* If (step == 0), a trap will be automatically generated after
	 the first instruction is executed.  Force step one
	 instruction to clear this condition.  This should not occur
	 if step is nonzero, but it is harmless in that case.  */
      oneproc = 1;
      trap_expected_after_continue = 0;
    }

  if (oneproc)
    /* We will get a trace trap after one instruction.
       Continue it automatically and insert breakpoints then.  */
    trap_expected = 1;
  else
    {
      int temp = insert_breakpoints ();
      if (temp)
	{
	  print_sys_errmsg ("ptrace", temp);
	  error ("Cannot insert breakpoints.\n\
The same program may be running in another process.");
	}
      breakpoints_inserted = 1;
    }

  /* Install inferior's terminal modes.  */
  target_terminal_inferior ();

  if (siggnal >= 0)
    stop_signal = siggnal;
  /* If this signal should not be seen by program,
     give it zero.  Used for debugging signals.  */
  else if (stop_signal < NSIG && !signal_program[stop_signal])
    stop_signal= 0;

  /* Resume inferior.  */
  resume (oneproc || step || bpstat_should_step (), stop_signal);

  /* Wait for it to stop (if not standalone)
     and in any case decode why it stopped, and act accordingly.  */

  wait_for_inferior ();
  normal_stop ();
}

#if 0
/* This might be useful (not sure), but isn't currently used.  See also
   write_pc().  */
/* Writing the inferior pc as a register calls this function
   to inform infrun that the pc has been set in the debugger.  */

void
writing_pc (val)
     CORE_ADDR val;
{
  stop_pc = val;
  pc_changed = 1;
}
#endif

/* Record the pc and sp of the program the last time it stopped.
   These are just used internally by wait_for_inferior, but need
   to be preserved over calls to it and cleared when the inferior
   is started.  */
static CORE_ADDR prev_pc;
static CORE_ADDR prev_sp;
static CORE_ADDR prev_func_start;
static char *prev_func_name;


/* Start an inferior Unix child process and sets inferior_pid to its pid.
   EXEC_FILE is the file to run.
   ALLARGS is a string containing the arguments to the program.
   ENV is the environment vector to pass.  Errors reported with error().  */

#ifndef SHELL_FILE
#define SHELL_FILE "/bin/sh"
#endif

void
child_create_inferior (exec_file, allargs, env)
     char *exec_file;
     char *allargs;
     char **env;
{
  int pid;
  char *shell_command;
  extern int sys_nerr;
  extern char *sys_errlist[];
  char *shell_file;
  static char default_shell_file[] = SHELL_FILE;
  int len;
  int pending_execs;
  /* Set debug_fork then attach to the child while it sleeps, to debug. */
  static int debug_fork = 0;
  /* This is set to the result of setpgrp, which if vforked, will be visible
     to you in the parent process.  It's only used by humans for debugging.  */
  static int debug_setpgrp = 657473;
  char **save_our_env;

  /* The user might want tilde-expansion, and in general probably wants
     the program to behave the same way as if run from
     his/her favorite shell.  So we let the shell run it for us.
     FIXME, this should probably search the local environment (as
     modified by the setenv command), not the env gdb inherited.  */
  shell_file = getenv ("SHELL");
  if (shell_file == NULL)
    shell_file = default_shell_file;
  
  len = 5 + strlen (exec_file) + 1 + strlen (allargs) + 1 + /*slop*/ 10;
  /* If desired, concat something onto the front of ALLARGS.
     SHELL_COMMAND is the result.  */
#ifdef SHELL_COMMAND_CONCAT
  shell_command = (char *) alloca (strlen (SHELL_COMMAND_CONCAT) + len);
  strcpy (shell_command, SHELL_COMMAND_CONCAT);
#else
  shell_command = (char *) alloca (len);
  shell_command[0] = '\0';
#endif
  strcat (shell_command, "exec ");
  strcat (shell_command, exec_file);
  strcat (shell_command, " ");
  strcat (shell_command, allargs);

  /* exec is said to fail if the executable is open.  */
  close_exec_file ();

  /* Retain a copy of our environment variables, since the child will
     replace the value of  environ  and if we're vforked, we have to 
     restore it.  */
  save_our_env = environ;

  /* Tell the terminal handling subsystem what tty we plan to run on;
     it will just record the information for later.  */

  new_tty_prefork (inferior_io_terminal);

  /* It is generally good practice to flush any possible pending stdio
     output prior to doing a fork, to avoid the possibility of both the
     parent and child flushing the same data after the fork. */

  fflush (stdout);
  fflush (stderr);

#if defined(USG) && !defined(HAVE_VFORK)
  pid = fork ();
#else
  if (debug_fork)
    pid = fork ();
  else
    pid = vfork ();
#endif

  if (pid < 0)
    perror_with_name ("vfork");

  if (pid == 0)
    {
      if (debug_fork) 
	sleep (debug_fork);

#ifdef TIOCGPGRP
      /* Run inferior in a separate process group.  */
#ifdef USG
      debug_setpgrp = setpgrp ();
#else
      debug_setpgrp = setpgrp (getpid (), getpid ());
#endif
      if (debug_setpgrp == -1)
	 perror("setpgrp failed in child");
#endif /* TIOCGPGRP */

#ifdef SET_STACK_LIMIT_HUGE
      /* Reset the stack limit back to what it was.  */
      {
	struct rlimit rlim;

	getrlimit (RLIMIT_STACK, &rlim);
	rlim.rlim_cur = original_stack_limit;
	setrlimit (RLIMIT_STACK, &rlim);
      }
#endif /* SET_STACK_LIMIT_HUGE */

      /* Ask the tty subsystem to switch to the one we specified earlier
	 (or to share the current terminal, if none was specified).  */

      new_tty ();

      /* Changing the signal handlers for the inferior after
	 a vfork can also change them for the superior, so we don't mess
	 with signals here.  See comments in
	 initialize_signals for how we get the right signal handlers
	 for the inferior.  */

#ifdef USE_PROC_FS
      proc_set_exec_trap ();		/* Use SVR4 /proc interface */
#else
      call_ptrace (0, 0, 0, 0);		/* "Trace me, Dr. Memory!" */
#endif

      /* There is no execlpe call, so we have to set the environment
	 for our child in the global variable.  If we've vforked, this
	 clobbers the parent, but environ is restored a few lines down
	 in the parent.  By the way, yes we do need to look down the
	 path to find $SHELL.  Rich Pixley says so, and I agree.  */
      environ = env;
      execlp (shell_file, shell_file, "-c", shell_command, (char *)0);

      fprintf (stderr, "Cannot exec %s: %s.\n", shell_file,
	       errno < sys_nerr ? sys_errlist[errno] : "unknown error");
      fflush (stderr);
      _exit (0177);
    }

  /* Restore our environment in case a vforked child clob'd it.  */
  environ = save_our_env;

  /* Now that we have a child process, make it our target.  */
  push_target (&child_ops);

#ifdef CREATE_INFERIOR_HOOK
  CREATE_INFERIOR_HOOK (pid);
#endif  

/* The process was started by the fork that created it,
   but it will have stopped one instruction after execing the shell.
   Here we must get it up to actual execution of the real program.  */

  inferior_pid = pid;		/* Needed for wait_for_inferior stuff below */

  clear_proceed_status ();

#if defined (START_INFERIOR_HOOK)
  START_INFERIOR_HOOK ();
#endif

  /* We will get a trace trap after one instruction.
     Continue it automatically.  Eventually (after shell does an exec)
     it will get another trace trap.  Then insert breakpoints and continue.  */

#ifdef START_INFERIOR_TRAPS_EXPECTED
  pending_execs = START_INFERIOR_TRAPS_EXPECTED;
#else
  pending_execs = 2;
#endif

  init_wait_for_inferior ();

  /* Set up the "saved terminal modes" of the inferior
     based on what modes we are starting it with.  */
  target_terminal_init ();

  /* Install inferior's terminal modes.  */
  target_terminal_inferior ();

  while (1)
    {
      stop_soon_quietly = 1;	/* Make wait_for_inferior be quiet */
      wait_for_inferior ();
      if (stop_signal != SIGTRAP)
	{
	  /* Let shell child handle its own signals in its own way */
	  /* FIXME, what if child has exit()ed?  Must exit loop somehow */
	  resume (0, stop_signal);
	}
      else
	{
	  /* We handle SIGTRAP, however; it means child did an exec.  */
	  if (0 == --pending_execs)
	    break;
	  resume (0, 0);		/* Just make it go on */
	}
    }
  stop_soon_quietly = 0;

  /* We are now in the child process of interest, having exec'd the
     correct program, and are poised at the first instruction of the
     new program.  */
#ifdef SOLIB_CREATE_INFERIOR_HOOK
  SOLIB_CREATE_INFERIOR_HOOK ();
#endif

  /* Should this perhaps just be a "proceed" call?  FIXME */
  insert_step_breakpoint ();
  breakpoints_failed = insert_breakpoints ();
  if (!breakpoints_failed)
    {
      breakpoints_inserted = 1;
      target_terminal_inferior();
      /* Start the child program going on its first instruction, single-
	 stepping if we need to.  */
      resume (bpstat_should_step (), 0);
      wait_for_inferior ();
      normal_stop ();
    }
}

/* Start remote-debugging of a machine over a serial link.  */

void
start_remote ()
{
  init_wait_for_inferior ();
  clear_proceed_status ();
  stop_soon_quietly = 1;
  trap_expected = 0;
  wait_for_inferior ();
  normal_stop ();
}

/* Initialize static vars when a new inferior begins.  */

void
init_wait_for_inferior ()
{
  /* These are meaningless until the first time through wait_for_inferior.  */
  prev_pc = 0;
  prev_sp = 0;
  prev_func_start = 0;
  prev_func_name = NULL;

  trap_expected_after_continue = 0;
  breakpoints_inserted = 0;
  mark_breakpoints_out ();
  stop_signal = 0;		/* Don't confuse first call to proceed(). */
}


/* Attach to process PID, then initialize for debugging it
   and wait for the trace-trap that results from attaching.  */

void
child_attach (args, from_tty)
     char *args;
     int from_tty;
{
  char *exec_file;
  int pid;

  dont_repeat();

  if (!args)
    error_no_arg ("process-id to attach");

#ifndef ATTACH_DETACH
  error ("Can't attach to a process on this machine.");
#else
  pid = atoi (args);

  if (target_has_execution)
    {
      if (query ("A program is being debugged already.  Kill it? "))
	target_kill ((char *)0, from_tty);
      else
	error ("Inferior not killed.");
    }

  exec_file = (char *) get_exec_file (1);

  if (from_tty)
    {
      printf ("Attaching program: %s pid %d\n",
	      exec_file, pid);
      fflush (stdout);
    }

  attach (pid);
  inferior_pid = pid;
  push_target (&child_ops);

  mark_breakpoints_out ();
  target_terminal_init ();
  clear_proceed_status ();
  stop_soon_quietly = 1;
  /*proceed (-1, 0, -2);*/
  target_terminal_inferior ();
  wait_for_inferior ();
#ifdef SOLIB_ADD
  SOLIB_ADD ((char *)0, from_tty, (struct target_ops *)0);
#endif
  normal_stop ();
#endif  /* ATTACH_DETACH */
}

/* Wait for control to return from inferior to debugger.
   If inferior gets a signal, we may decide to start it up again
   instead of returning.  That is why there is a loop in this function.
   When this function actually returns it means the inferior
   should be left stopped and GDB should read more commands.  */

void
wait_for_inferior ()
{
  WAITTYPE w;
  int another_trap;
  int random_signal;
  CORE_ADDR stop_sp;
  CORE_ADDR stop_func_start;
  char *stop_func_name;
  CORE_ADDR prologue_pc;
  int stop_step_resume_break;
  struct symtab_and_line sal;
  int remove_breakpoints_on_following_step = 0;
#ifdef TDESC
  extern dc_handle_t tdesc_handle;
#endif
  int current_line;

#if 0
  /* This no longer works now that read_register is lazy;
     it might try to ptrace when the process is not stopped.  */
  prev_pc = read_pc ();
  (void) find_pc_partial_function (prev_pc, &prev_func_name,
				   &prev_func_start);
  prev_func_start += FUNCTION_START_OFFSET;
  prev_sp = read_register (SP_REGNUM);
#endif /* 0 */

  sal = find_pc_line(prev_pc, 0);
  current_line = sal.line;

  while (1)
    {
      /* Clean up saved state that will become invalid.  */
      pc_changed = 0;
      flush_cached_frames ();
      registers_changed ();

      target_wait (&w);

      /* See if the process still exists; clean up if it doesn't.  */
      if (WIFEXITED (w))
	{
	  target_terminal_ours ();	/* Must do this before mourn anyway */
#ifdef TDESC 
          safe_to_init_tdesc_context = 0;
#endif
	  if (WEXITSTATUS (w))
	    printf ("\nProgram exited with code 0%o.\n", 
		     (unsigned int)WEXITSTATUS (w));
	  else
	    if (!batch_mode())
	      printf ("\nProgram exited normally.\n");
	  fflush (stdout);
	  target_mourn_inferior ();
#ifdef NO_SINGLE_STEP
	  one_stepped = 0;
#endif
	  stop_print_frame = 0;
	  break;
	}
      else if (!WIFSTOPPED (w))
	{
	  stop_print_frame = 0;
	  stop_signal = WTERMSIG (w);
	  target_terminal_ours ();	/* Must do this before mourn anyway */
	  target_kill ((char *)0, 0);	/* kill mourns as well */
#ifdef TDESC
          safe_to_init_tdesc_context = 0;
#endif
#ifdef PRINT_RANDOM_SIGNAL
	  printf ("\nProgram terminated: ");
	  PRINT_RANDOM_SIGNAL (stop_signal);
#else
	  printf ("\nProgram terminated with signal %d, %s\n",
		  stop_signal,
		  stop_signal < NSIG
		  ? sys_siglist[stop_signal]
		  : "(undocumented)");
#endif
	  printf ("The inferior process no longer exists.\n");
	  fflush (stdout);
#ifdef NO_SINGLE_STEP
	  one_stepped = 0;
#endif
	  break;
	}
      
#ifdef NO_SINGLE_STEP
      if (one_stepped)
	single_step (0);	/* This actually cleans up the ss */
#endif /* NO_SINGLE_STEP */
      
      stop_pc = read_pc ();
#ifdef TDESC
      if (safe_to_init_tdesc_context)   
        {
	  current_context = init_dcontext();
          set_current_frame ( create_new_frame (get_frame_base (read_pc()),read_pc()));
        }
      else
#endif /* TDESC */
      set_current_frame ( create_new_frame (read_register (FP_REGNUM),
					    read_pc ()));
      
      stop_frame_address = FRAME_FP (get_current_frame ());
      stop_sp = read_register (SP_REGNUM);
      stop_func_start = 0;
      stop_func_name = 0;
      /* Don't care about return value; stop_func_start and stop_func_name
	 will both be 0 if it doesn't work.  */
      (void) find_pc_partial_function (stop_pc, &stop_func_name,
				       &stop_func_start);
      stop_func_start += FUNCTION_START_OFFSET;
      another_trap = 0;
      bpstat_clear (&stop_bpstat);
      stop_step = 0;
      stop_stack_dummy = 0;
      stop_print_frame = 1;
      stop_step_resume_break = 0;
      random_signal = 0;
      stopped_by_random_signal = 0;
      breakpoints_failed = 0;
      
      /* Look at the cause of the stop, and decide what to do.
	 The alternatives are:
	 1) break; to really stop and return to the debugger,
	 2) drop through to start up again
	 (set another_trap to 1 to single step once)
	 3) set random_signal to 1, and the decision between 1 and 2
	 will be made according to the signal handling tables.  */
      
      stop_signal = WSTOPSIG (w);
      
      /* First, distinguish signals caused by the debugger from signals
	 that have to do with the program's own actions.
	 Note that breakpoint insns may cause SIGTRAP or SIGILL
	 or SIGEMT, depending on the operating system version.
	 Here we detect when a SIGILL or SIGEMT is really a breakpoint
	 and change it to SIGTRAP.  */
      
      if (stop_signal == SIGTRAP
	  || (breakpoints_inserted &&
	      (stop_signal == SIGILL
	       || stop_signal == SIGEMT))
	  || stop_soon_quietly)
	{
	  if (stop_signal == SIGTRAP && stop_after_trap)
	    {
	      stop_print_frame = 0;
	      break;
	    }
	  if (stop_soon_quietly)
	    break;

	  /* Don't even think about breakpoints
	     if just proceeded over a breakpoint.

	     However, if we are trying to proceed over a breakpoint
	     and end up in sigtramp, then step_resume_break_address
	     will be set and we should check whether we've hit the
	     step breakpoint.  */
	  if (stop_signal == SIGTRAP && trap_expected
	      && step_resume_break_address == NULL)
	    bpstat_clear (&stop_bpstat);
	  else
	    {
	      /* See if there is a breakpoint at the current PC.  */
#if DECR_PC_AFTER_BREAK
	      /* Notice the case of stepping through a jump
		 that leads just after a breakpoint.
		 Don't confuse that with hitting the breakpoint.
		 What we check for is that 1) stepping is going on
		 and 2) the pc before the last insn does not match
		 the address of the breakpoint before the current pc.  */
	      if (!(prev_pc != stop_pc - DECR_PC_AFTER_BREAK
		    && step_range_end && !step_resume_break_address))
#endif /* DECR_PC_AFTER_BREAK not zero */
		{
		  /* See if we stopped at the special breakpoint for
		     stepping over a subroutine call.  If both are zero,
		     this wasn't the reason for the stop.  */
		  if (stop_pc - DECR_PC_AFTER_BREAK
		      		  == step_resume_break_address
		      && step_resume_break_address)
		    {
		      stop_step_resume_break = 1;
		      if (DECR_PC_AFTER_BREAK)
			{
			  stop_pc -= DECR_PC_AFTER_BREAK;
			  write_register (PC_REGNUM, stop_pc);
			  pc_changed = 0;
			}
		    }
		  else
		    {
		      stop_bpstat =
			bpstat_stop_status (&stop_pc, stop_frame_address);
		      /* Following in case break condition called a
			 function.  */
		      stop_print_frame = 1;
		    }
		}
	    }
	  
	  if (stop_signal == SIGTRAP)
	    random_signal
	      = !(bpstat_explains_signal (stop_bpstat)
		  || trap_expected
		  || stop_step_resume_break
		  || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
		  || (step_range_end && !step_resume_break_address));
	  else
	    {
	      random_signal
		= !(bpstat_explains_signal (stop_bpstat)
		    || stop_step_resume_break
		    /* End of a stack dummy.  Some systems (e.g. Sony
		       news) give another signal besides SIGTRAP,
		       so check here as well as above.  */
		    || (stop_sp INNER_THAN stop_pc
			&& stop_pc INNER_THAN stop_frame_address)
		    );
	      if (!random_signal)
		stop_signal = SIGTRAP;
	    }
	}
      else
	random_signal = 1;
      
      /* For the program's own signals, act according to
	 the signal handling tables.  */
      
      if (random_signal)
	{
	  /* Signal not for debugging purposes.  */
	  int printed = 0;
	  
	  stopped_by_random_signal = 1;
	  
	  if (stop_signal >= NSIG
	      || signal_print[stop_signal])
	    {
	      printed = 1;
	      target_terminal_ours_for_output ();
#ifdef PRINT_RANDOM_SIGNAL
	      PRINT_RANDOM_SIGNAL (stop_signal);
#else
	      printf ("\nProgram received signal %d, %s\n",
		      stop_signal,
		      stop_signal < NSIG
		      ? sys_siglist[stop_signal]
		      : "(undocumented)");
#endif /* PRINT_RANDOM_SIGNAL */
	      fflush (stdout);
	    }
	  if (stop_signal >= NSIG
	      || signal_stop[stop_signal])
	    break;
	  /* If not going to stop, give terminal back
	     if we took it away.  */
	  else if (printed)
	    target_terminal_inferior ();

	  /* Note that virtually all the code below does `if !random_signal'.
	     Perhaps this code should end with a goto or continue.  At least
	     one (now fixed) bug was caused by this -- a !random_signal was
	     missing in one of the tests below.  */
	}
      
      /* Handle cases caused by hitting a breakpoint.  */
      
      if (!random_signal
	  && (bpstat_explains_signal (stop_bpstat) || stop_step_resume_break))
	{
	  /* Does a breakpoint want us to stop?  */
	  if (bpstat_stop (stop_bpstat))
	    {
	      stop_print_frame = bpstat_should_print (stop_bpstat);
	      break;
	    }
	  /* But if we have hit the step-resumption breakpoint,
	     remove it.  It has done its job getting us here.
	     The sp test is to make sure that we don't get hung
	     up in recursive calls in functions without frame
	     pointers.  If the stack pointer isn't outside of
	     where the breakpoint was set (within a routine to be
	     stepped over), we're in the middle of a recursive
	     call. Not true for reg window machines (sparc)
	     because the must change frames to call things and
	     the stack pointer doesn't have to change if it
	     the bp was set in a routine without a frame (pc can
	     be stored in some other window).
	     
	     The removal of the sp test is to allow calls to
	     alloca.  Nasty things were happening.  Oh, well,
	     gdb can only handle one level deep of lack of
	     frame pointer. */
	  if (stop_step_resume_break
	      && (step_frame_address == 0
		  || (stop_frame_address == step_frame_address)))
	    {
	      remove_step_breakpoint ();
	      step_resume_break_address = 0;

	      /* If were waiting for a trap, hitting the step_resume_break
		 doesn't count as getting it.  */
	      if (trap_expected)
		another_trap = 1;
	    }
	  /* Otherwise, must remove breakpoints and single-step
	     to get us past the one we hit.  */
	  else
	    {
	      remove_breakpoints ();
	      remove_step_breakpoint ();
	      breakpoints_inserted = 0;
	      another_trap = 1;
	    }
	  
	  /* We come here if we hit a breakpoint but should not
	     stop for it.  Possibly we also were stepping
	     and should stop for that.  So fall through and
	     test for stepping.  But, if not stepping,
	     do not stop.  */
	}
      
      /* If this is the breakpoint at the end of a stack dummy,
	 just stop silently.  */
      if (!random_signal 
	 && PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address))
	  {
	    stop_print_frame = 0;
	    stop_stack_dummy = 1;
#ifdef HP_OS_BUG
	    trap_expected_after_continue = 1;
#endif
	    break;
	  }
      
      if (step_resume_break_address)
	/* Having a step-resume breakpoint overrides anything
	   else having to do with stepping commands until
	   that breakpoint is reached.  */
	;
      /* If stepping through a line, keep going if still within it.  */
      else if (!random_signal
	       && step_range_end
	       && stop_pc >= step_range_start
	       && stop_pc < step_range_end
	       /* The step range might include the start of the
		  function, so if we are at the start of the
		  step range and either the stack or frame pointers
		  just changed, we've stepped outside */
	       && !(stop_pc == step_range_start
		    && stop_frame_address
		    && (stop_sp INNER_THAN prev_sp
			|| stop_frame_address != step_frame_address)))
	{
#if 0
	  /* When "next"ing through a function,
	     This causes an extra stop at the end.
	     Is there any reason for this?
	     It's confusing to the user.  */
	  /* Don't step through the return from a function
	     unless that is the first instruction stepped through.  */
	  if (ABOUT_TO_RETURN (stop_pc))
	    {
	      stop_step = 1;
	      break;
	    }
#endif
	}
      
      /* We stepped out of the stepping range.  See if that was due
	 to a subroutine call that we should proceed to the end of.  */
      else if (!random_signal && step_range_end)
	{
	  if (stop_func_start)
	    {
	      prologue_pc = stop_func_start;
	      SKIP_PROLOGUE (prologue_pc);
	    }

	  /* Did we just take a signal?  */
	  if (IN_SIGTRAMP (stop_pc, stop_func_name)
	      && !IN_SIGTRAMP (prev_pc, prev_func_name))
	    {
	      /* This code is needed at least in the following case:
		 The user types "next" and then a signal arrives (before
		 the "next" is done).  */
	      /* We've just taken a signal; go until we are back to
		 the point where we took it and one more.  */
	      step_resume_break_address = prev_pc;
	      step_resume_break_duplicate =
		breakpoint_here_p (step_resume_break_address);
	      if (breakpoints_inserted)
		insert_step_breakpoint ();
	      /* Make sure that the stepping range gets us past
		 that instruction.  */
	      if (step_range_end == 1)
		step_range_end = (step_range_start = prev_pc) + 1;
	      remove_breakpoints_on_following_step = 1;
	    }

	  /* ==> See comments at top of file on this algorithm.  <==*/
	  
	  else if (stop_pc == stop_func_start
	      && (stop_func_start != prev_func_start
		  || prologue_pc != stop_func_start
		  || stop_sp != prev_sp))
	    {
	      /* It's a subroutine call */
	      if (step_over_calls > 0 
		  || (step_over_calls &&  find_pc_function (stop_pc) == 0))
		{
		  /* A subroutine call has happened.  */
		  /* Set a special breakpoint after the return */
		  step_resume_break_address =
		    ADDR_BITS_REMOVE
		      (SAVED_PC_AFTER_CALL (get_current_frame ()));
		  step_resume_break_duplicate
		    = breakpoint_here_p (step_resume_break_address);
		  if (breakpoints_inserted)
		    insert_step_breakpoint ();
		}
	      /* Subroutine call with source code we should not step over.
		 Do step to the first line of code in it.  */
	      else if (step_over_calls)
		{
		  SKIP_PROLOGUE (stop_func_start);
		  sal = find_pc_line (stop_func_start, 0);
		  /* Use the step_resume_break to step until
		     the end of the prologue, even if that involves jumps
		     (as it seems to on the vax under 4.2).  */
		  /* If the prologue ends in the middle of a source line,
		     continue to the end of that source line.
		     Otherwise, just go to end of prologue.  */
#ifdef PROLOGUE_FIRSTLINE_OVERLAP
		  /* no, don't either.  It skips any code that's
		     legitimately on the first line.  */
#else
		  if (sal.end && sal.pc != stop_func_start)
		    stop_func_start = sal.end;
#endif
		  
		  if (stop_func_start == stop_pc)
		    {
		      /* We are already there: stop now.  */
		      stop_step = 1;
		      break;
		    }
		  else
		    /* Put the step-breakpoint there and go until there. */
		    {
		      step_resume_break_address = stop_func_start;
		      
		      step_resume_break_duplicate
			= breakpoint_here_p (step_resume_break_address);
		      if (breakpoints_inserted)
			insert_step_breakpoint ();
		      /* Do not specify what the fp should be when we stop
			 since on some machines the prologue
			 is where the new fp value is established.  */
		      step_frame_address = 0;
		      /* And make sure stepping stops right away then.  */
		      step_range_end = step_range_start;
		    }
		}
	      else
		{
		  /* We get here only if step_over_calls is 0 and we
		     just stepped into a subroutine.  I presume
		     that step_over_calls is only 0 when we're
		     supposed to be stepping at the assembly
		     language level.*/
		  stop_step = 1;
		  break;
		}
	    }
	  /* No subroutine call; stop now.  */
	  else
	    {
	      if (step_range_end == 1) break; /* Don't do this for stepi/nexti */

	      /* We've wandered out of the step range (but we haven't done a
		 subroutine call or return (that's handled elsewhere)).  We
		 don't really want to stop until we encounter the start of a
		 new statement.  If so, we stop.  Otherwise, we reset
		 step_range_start and step_range_end, and just continue. */
	      sal = find_pc_line(stop_pc, 0);
	      
	      if (sal.line == 0 || /* Stop now if no line # info */
		  (current_line != sal.line
		   && stop_pc == sal.pc)) {
		stop_step = 1;
		break;
	      } else {
		/* This is probably not necessary, but it probably makes
		   stepping more efficient, as we avoid calling find_pc_line()
		   for each instruction we step over. */
		step_range_start = sal.pc;
		step_range_end = sal.end;
	      }
	    }
	}

      else if (trap_expected
	       && IN_SIGTRAMP (stop_pc, stop_func_name)
	       && !IN_SIGTRAMP (prev_pc, prev_func_name))
	{
	  /* What has happened here is that we have just stepped the inferior
	     with a signal (because it is a signal which shouldn't make
	     us stop), thus stepping into sigtramp.

	     So we need to set a step_resume_break_address breakpoint
	     and continue until we hit it, and then step.  */
	  step_resume_break_address = prev_pc;
	  /* Always 1, I think, but it's probably easier to have
	     the step_resume_break as usual rather than trying to
	     re-use the breakpoint which is already there.  */
	  step_resume_break_duplicate =
	    breakpoint_here_p (step_resume_break_address);
	  if (breakpoints_inserted)
	    insert_step_breakpoint ();
	  remove_breakpoints_on_following_step = 1;
	  another_trap = 1;
	}

      /* Save the pc before execution, to compare with pc after stop.  */
      prev_pc = read_pc ();	/* Might have been DECR_AFTER_BREAK */
      prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
					  BREAK is defined, the
					  original pc would not have
					  been at the start of a
					  function. */
      prev_func_name = stop_func_name;
      prev_sp = stop_sp;

      /* If we did not do break;, it means we should keep
	 running the inferior and not return to debugger.  */

      if (trap_expected && stop_signal != SIGTRAP)
	{
	  /* We took a signal (which we are supposed to pass through to
	     the inferior, else we'd have done a break above) and we
	     haven't yet gotten our trap.  Simply continue.  */
	  resume ((step_range_end && !step_resume_break_address)
		  || (trap_expected && !step_resume_break_address)
		  || bpstat_should_step (),
		  stop_signal);
	}
      else
	{
	  /* Either the trap was not expected, but we are continuing
	     anyway (the user asked that this signal be passed to the
	     child)
	       -- or --
	     The signal was SIGTRAP, e.g. it was our signal, but we
	     decided we should resume from it.

	     We're going to run this baby now!

	     Insert breakpoints now, unless we are trying
	     to one-proceed past a breakpoint.  */
	  /* If we've just finished a special step resume and we don't
	     want to hit a breakpoint, pull em out.  */
#ifdef TDESC
          if (!tdesc_handle)
            {
	      init_tdesc();
              safe_to_init_tdesc_context = 1;
            }
#endif

	  if (!step_resume_break_address &&
	      remove_breakpoints_on_following_step)
	    {
	      remove_breakpoints_on_following_step = 0;
	      remove_breakpoints ();
	      breakpoints_inserted = 0;
	    }
	  else if (!breakpoints_inserted &&
		   (step_resume_break_address != NULL || !another_trap))
	    {
	      insert_step_breakpoint ();
	      breakpoints_failed = insert_breakpoints ();
	      if (breakpoints_failed)
		break;
	      breakpoints_inserted = 1;
	    }

	  trap_expected = another_trap;

	  if (stop_signal == SIGTRAP)
	    stop_signal = 0;

#ifdef SHIFT_INST_REGS
	  /* I'm not sure when this following segment applies.  I do know, now,
	     that we shouldn't rewrite the regs when we were stopped by a
	     random signal from the inferior process.  */

          if (!bpstat_explains_signal (stop_bpstat)
	      && (stop_signal != SIGCLD) 
              && !stopped_by_random_signal)
            {
            CORE_ADDR pc_contents = read_register (PC_REGNUM);
            CORE_ADDR npc_contents = read_register (NPC_REGNUM);
            if (pc_contents != npc_contents)
              {
              write_register (NNPC_REGNUM, npc_contents);
              write_register (NPC_REGNUM, pc_contents);
	      }
            }
#endif /* SHIFT_INST_REGS */

	  resume ((step_range_end && !step_resume_break_address)
		  || (trap_expected && !step_resume_break_address)
		  || bpstat_should_step (),
		  stop_signal);
	}
    }
  if (target_has_execution)
    {
      /* Assuming the inferior still exists, set these up for next
	 time, just like we did above if we didn't break out of the
	 loop.  */
      prev_pc = read_pc ();
      prev_func_start = stop_func_start;
      prev_func_name = stop_func_name;
      prev_sp = stop_sp;
    }
}

/* Here to return control to GDB when the inferior stops for real.
   Print appropriate messages, remove breakpoints, give terminal our modes.

   STOP_PRINT_FRAME nonzero means print the executing frame
   (pc, function, args, file, line number and line text).
   BREAKPOINTS_FAILED nonzero means stop was due to error
   attempting to insert breakpoints.  */

void
normal_stop ()
{
  /* Make sure that the current_frame's pc is correct.  This
     is a correction for setting up the frame info before doing
     DECR_PC_AFTER_BREAK */
  if (target_has_execution)
    (get_current_frame ())->pc = read_pc ();
  
  if (breakpoints_failed)
    {
      target_terminal_ours_for_output ();
      print_sys_errmsg ("ptrace", breakpoints_failed);
      printf ("Stopped; cannot insert breakpoints.\n\
The same program may be running in another process.\n");
    }

  if (target_has_execution)
    remove_step_breakpoint ();

  if (target_has_execution && breakpoints_inserted)
    if (remove_breakpoints ())
      {
	target_terminal_ours_for_output ();
	printf ("Cannot remove breakpoints because program is no longer writable.\n\
It might be running in another process.\n\
Further execution is probably impossible.\n");
      }

  breakpoints_inserted = 0;

  /* Delete the breakpoint we stopped at, if it wants to be deleted.
     Delete any breakpoint that is to be deleted at the next stop.  */

  breakpoint_auto_delete (stop_bpstat);

  /* If an auto-display called a function and that got a signal,
     delete that auto-display to avoid an infinite recursion.  */

  if (stopped_by_random_signal)
    disable_current_display ();

  if (step_multi && stop_step)
    return;

  target_terminal_ours ();

  if (!target_has_stack)
    return;

  /* Select innermost stack frame except on return from a stack dummy routine,
     or if the program has exited.  Print it without a level number if
     we have changed functions or hit a breakpoint.  Print source line
     if we have one.  */
  if (!stop_stack_dummy)
    {
      select_frame (get_current_frame (), 0);

      if (stop_print_frame)
	{
	  int source_only;

	  source_only = bpstat_print (stop_bpstat);
	  source_only = source_only ||
	        (   stop_step
		 && step_frame_address == stop_frame_address
		 && step_start_function == find_pc_function (stop_pc));

          print_stack_frame (selected_frame, -1, source_only? -1: 1);

	  /* Display the auto-display expressions.  */
	  do_displays ();
	}
    }

  /* Save the function value return registers, if we care.
     We might be about to restore their previous contents.  */
  if (proceed_to_finish)
    read_register_bytes (0, stop_registers, REGISTER_BYTES);

  if (stop_stack_dummy)
    {
      /* Pop the empty frame that contains the stack dummy.
         POP_FRAME ends with a setting of the current frame, so we
	 can use that next. */
      POP_FRAME;
      select_frame (get_current_frame (), 0);
    }
}

static void
insert_step_breakpoint ()
{
  if (step_resume_break_address && !step_resume_break_duplicate)
    target_insert_breakpoint (step_resume_break_address,
			      step_resume_break_shadow);
}

static void
remove_step_breakpoint ()
{
  if (step_resume_break_address && !step_resume_break_duplicate)
    target_remove_breakpoint (step_resume_break_address,
			      step_resume_break_shadow);
}

static void
sig_print_header ()
{
  printf_filtered ("Signal\t\tStop\tPrint\tPass to program\tDescription\n");
}

static void
sig_print_info (number)
     int number;
{
  char *abbrev = sig_abbrev(number);
  if (abbrev == NULL)
    printf_filtered ("%d\t\t", number);
  else
    printf_filtered ("SIG%s (%d)\t", abbrev, number);
  printf_filtered ("%s\t", signal_stop[number] ? "Yes" : "No");
  printf_filtered ("%s\t", signal_print[number] ? "Yes" : "No");
  printf_filtered ("%s\t\t", signal_program[number] ? "Yes" : "No");
  printf_filtered ("%s\n", sys_siglist[number]);
}

/* Specify how various signals in the inferior should be handled.  */

static void
handle_command (args, from_tty)
     char *args;
     int from_tty;
{
  register char *p = args;
  int signum = 0;
  register int digits, wordlen;
  char *nextarg;

  if (!args)
    error_no_arg ("signal to handle");

  while (*p)
    {
      /* Find the end of the next word in the args.  */
      for (wordlen = 0;
	   p[wordlen] && p[wordlen] != ' ' && p[wordlen] != '\t';
	   wordlen++);
      /* Set nextarg to the start of the word after the one we just
	 found, and null-terminate this one.  */
      if (p[wordlen] == '\0')
	nextarg = p + wordlen;
      else
	{
	  p[wordlen] = '\0';
	  nextarg = p + wordlen + 1;
	}
      

      for (digits = 0; p[digits] >= '0' && p[digits] <= '9'; digits++);

      if (signum == 0)
	{
	  /* It is the first argument--must be the signal to operate on.  */
	  if (digits == wordlen)
	    {
	      /* Numeric.  */
	      signum = atoi (p);
	      if (signum <= 0 || signum >= NSIG)
		{
		  p[wordlen] = '\0';
		  error ("Invalid signal %s given as argument to \"handle\".", p);
		}
	    }
	  else
	    {
	      /* Symbolic.  */
	      signum = sig_number (p);
	      if (signum == -1)
		error ("No such signal \"%s\"", p);
	    }

	  if (signum == SIGTRAP || signum == SIGINT)
	    {
	      if (!query ("SIG%s is used by the debugger.\nAre you sure you want to change it? ", sig_abbrev (signum)))
		error ("Not confirmed.");
	    }
	}
      /* Else, if already got a signal number, look for flag words
	 saying what to do for it.  */
      else if (!strncmp (p, "stop", wordlen))
	{
	  signal_stop[signum] = 1;
	  signal_print[signum] = 1;
	}
      else if (wordlen >= 2 && !strncmp (p, "print", wordlen))
	signal_print[signum] = 1;
      else if (wordlen >= 2 && !strncmp (p, "pass", wordlen))
	signal_program[signum] = 1;
      else if (!strncmp (p, "ignore", wordlen))
	signal_program[signum] = 0;
      else if (wordlen >= 3 && !strncmp (p, "nostop", wordlen))
	signal_stop[signum] = 0;
      else if (wordlen >= 4 && !strncmp (p, "noprint", wordlen))
	{
	  signal_print[signum] = 0;
	  signal_stop[signum] = 0;
	}
      else if (wordlen >= 4 && !strncmp (p, "nopass", wordlen))
	signal_program[signum] = 0;
      else if (wordlen >= 3 && !strncmp (p, "noignore", wordlen))
	signal_program[signum] = 1;
      /* Not a number and not a recognized flag word => complain.  */
      else
	{
	  error ("Unrecognized flag word: \"%s\".", p);
	}

      /* Find start of next word.  */
      p = nextarg;
      while (*p == ' ' || *p == '\t') p++;
    }

  if (from_tty)
    {
      /* Show the results.  */
      sig_print_header ();
      sig_print_info (signum);
    }
}

/* Print current contents of the tables set by the handle command.  */

static void
signals_info (signum_exp)
     char *signum_exp;
{
  register int i;
  sig_print_header ();

  if (signum_exp)
    {
      /* First see if this is a symbol name.  */
      i = sig_number (signum_exp);
      if (i == -1)
	{
	  /* Nope, maybe it's an address which evaluates to a signal
	     number.  */
	  i = parse_and_eval_address (signum_exp);
	  if (i >= NSIG || i < 0)
	    error ("Signal number out of bounds.");
	}
      sig_print_info (i);
      return;
    }

  printf_filtered ("\n");
  for (i = 0; i < NSIG; i++)
    {
      QUIT;

      sig_print_info (i);
    }

  printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
}

/* Save all of the information associated with the inferior<==>gdb
   connection.  INF_STATUS is a pointer to a "struct inferior_status"
   (defined in inferior.h).  */

void
save_inferior_status (inf_status, restore_stack_info)
     struct inferior_status *inf_status;
     int restore_stack_info;
{
  inf_status->pc_changed = pc_changed;
  inf_status->stop_signal = stop_signal;
  inf_status->stop_pc = stop_pc;
  inf_status->stop_frame_address = stop_frame_address;
  inf_status->stop_step = stop_step;
  inf_status->stop_stack_dummy = stop_stack_dummy;
  inf_status->stopped_by_random_signal = stopped_by_random_signal;
  inf_status->trap_expected = trap_expected;
  inf_status->step_range_start = step_range_start;
  inf_status->step_range_end = step_range_end;
  inf_status->step_frame_address = step_frame_address;
  inf_status->step_over_calls = step_over_calls;
  inf_status->step_resume_break_address = step_resume_break_address;
  inf_status->stop_after_trap = stop_after_trap;
  inf_status->stop_soon_quietly = stop_soon_quietly;
  /* Save original bpstat chain here; replace it with copy of chain. 
     If caller's caller is walking the chain, they'll be happier if we
     hand them back the original chain when restore_i_s is called.  */
  inf_status->stop_bpstat = stop_bpstat;
  stop_bpstat = bpstat_copy (stop_bpstat);
  inf_status->breakpoint_proceeded = breakpoint_proceeded;
  inf_status->restore_stack_info = restore_stack_info;
  inf_status->proceed_to_finish = proceed_to_finish;
  
  bcopy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
  
  record_selected_frame (&(inf_status->selected_frame_address),
			 &(inf_status->selected_level));
  return;
}

void
restore_inferior_status (inf_status)
     struct inferior_status *inf_status;
{
  FRAME fid;
  int level = inf_status->selected_level;

  pc_changed = inf_status->pc_changed;
  stop_signal = inf_status->stop_signal;
  stop_pc = inf_status->stop_pc;
  stop_frame_address = inf_status->stop_frame_address;
  stop_step = inf_status->stop_step;
  stop_stack_dummy = inf_status->stop_stack_dummy;
  stopped_by_random_signal = inf_status->stopped_by_random_signal;
  trap_expected = inf_status->trap_expected;
  step_range_start = inf_status->step_range_start;
  step_range_end = inf_status->step_range_end;
  step_frame_address = inf_status->step_frame_address;
  step_over_calls = inf_status->step_over_calls;
  step_resume_break_address = inf_status->step_resume_break_address;
  stop_after_trap = inf_status->stop_after_trap;
  stop_soon_quietly = inf_status->stop_soon_quietly;
  bpstat_clear (&stop_bpstat);
  stop_bpstat = inf_status->stop_bpstat;
  breakpoint_proceeded = inf_status->breakpoint_proceeded;
  proceed_to_finish = inf_status->proceed_to_finish;

  bcopy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);

  /* The inferior can be gone if the user types "print exit(0)"
     (and perhaps other times).  */
  if (target_has_stack && inf_status->restore_stack_info)
    {
      fid = find_relative_frame (get_current_frame (),
				 &level);

      /* If inf_status->selected_frame_address is NULL, there was no
	 previously selected frame.  */
      if (fid == 0 ||
	  FRAME_FP (fid) != inf_status->selected_frame_address ||
	  level != 0)
	{
#if 0
	  /* I'm not sure this error message is a good idea.  I have
	     only seen it occur after "Can't continue previously
	     requested operation" (we get called from do_cleanups), in
	     which case it just adds insult to injury (one confusing
	     error message after another.  Besides which, does the
	     user really care if we can't restore the previously
	     selected frame?  */
	  fprintf (stderr, "Unable to restore previously selected frame.\n");
#endif
	  select_frame (get_current_frame (), 0);
	  return;
	}
      
      select_frame (fid, inf_status->selected_level);
    }
}


void
_initialize_infrun ()
{
  register int i;

  add_info ("signals", signals_info,
	    "What debugger does when program gets various signals.\n\
Specify a signal number as argument to print info on that signal only.");

  add_com ("handle", class_run, handle_command,
	   "Specify how to handle a signal.\n\
Args are signal number followed by flags.\n\
Flags allowed are \"stop\", \"print\", \"pass\",\n\
 \"nostop\", \"noprint\" or \"nopass\".\n\
Print means print a message if this signal happens.\n\
Stop means reenter debugger if this signal happens (implies print).\n\
Pass means let program see this signal; otherwise program doesn't know.\n\
Pass and Stop may be combined.");

  for (i = 0; i < NSIG; i++)
    {
      signal_stop[i] = 1;
      signal_print[i] = 1;
      signal_program[i] = 1;
    }

  /* Signals caused by debugger's own actions
     should not be given to the program afterwards.  */
  signal_program[SIGTRAP] = 0;
  signal_program[SIGINT] = 0;

  /* Signals that are not errors should not normally enter the debugger.  */
#ifdef SIGALRM
  signal_stop[SIGALRM] = 0;
  signal_print[SIGALRM] = 0;
#endif /* SIGALRM */
#ifdef SIGVTALRM
  signal_stop[SIGVTALRM] = 0;
  signal_print[SIGVTALRM] = 0;
#endif /* SIGVTALRM */
#ifdef SIGPROF
  signal_stop[SIGPROF] = 0;
  signal_print[SIGPROF] = 0;
#endif /* SIGPROF */
#ifdef SIGCHLD
  signal_stop[SIGCHLD] = 0;
  signal_print[SIGCHLD] = 0;
#endif /* SIGCHLD */
#ifdef SIGCLD
  signal_stop[SIGCLD] = 0;
  signal_print[SIGCLD] = 0;
#endif /* SIGCLD */
#ifdef SIGIO
  signal_stop[SIGIO] = 0;
  signal_print[SIGIO] = 0;
#endif /* SIGIO */
#ifdef SIGURG
  signal_stop[SIGURG] = 0;
  signal_print[SIGURG] = 0;
#endif /* SIGURG */
}