aboutsummaryrefslogtreecommitdiff
path: root/gdb/i860-tdep.c
blob: 3c5f940af3906e09048cd771e0eb847af36839e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
/* Machine-dependent code which would otherwise be in inflow.c and core.c,
   for GDB, the GNU debugger.
   Copyright (C) 1986, 1987 Free Software Foundation, Inc.
   This code is for the i860 cpu.
   
   GDB is distributed in the hope that it will be useful, but WITHOUT ANY
   WARRANTY.  No author or distributor accepts responsibility to anyone
   for the consequences of using it or for whether it serves any
   particular purpose or works at all, unless he says so in writing.
   Refer to the GDB General Public License for full details.
   
   Everyone is granted permission to copy, modify and redistribute GDB,
   but only under the conditions described in the GDB General Public
   License.  A copy of this license is supposed to have been given to you
   along with GDB so you can know your rights and responsibilities.  It
   should be in a file named COPYING.  Among other things, the copyright
   notice and this notice must be preserved on all copies.
   
   In other words, go ahead and share GDB, but don't try to stop
   anyone else from sharing it farther.  Help stamp out software hoarding!
   */
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>


#include "defs.h"
#include "tm-i860.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "symtab.h"
#include "value.h"

#include "i860-opcode.h"

#include "breakpoint.h"
#include "i860-break.h"
#include "command.h"
#include "target.h"

#ifdef notdef
#include <sys/types.h>
#include <sys/param.h>
#include <sys/dir.h>
#endif

#include <signal.h>
#include <sys/ioctl.h>
#include <fcntl.h>

/* #include <sys/reg.h> */
#include "i860_reg.h"

#include <a.out.h>
#include <sys/file.h>
#include <core.h>

#include <sys/user.h>
#include <elf.h>
#include <sys/elftypes.h>
#include <sys/elf_860.h>
#include <libelf.h>


extern int read_memory();
extern int write_memory();
extern int read_memory_integer();
extern int print_insn();
extern void bzero();
extern void bcopy();

int btdebug = 0;    /* change value to 1 to enable debugging code */
int ansi_conformant;

#define  BTDEBUG  if (btdebug) btdebug_message

extern int errno;
extern int attach_flag;
extern char registers[];
static CORE_ADDR get_saved_basereg();

#define INSTRUCTION_LENGTH 4
#define REGISTER_LENGTH 4
#define ALIGN_ARG(size,len)  ((size + (len-1))&(-len)) 
#define NUM_FLOAT_ARG_REGS 8
#define NUM_INT_ARG_REGS 12

/* routine to print debugging messages */
void btdebug_message(char *format, ...)
{	
   va_list	arglist;
   va_start( arglist, format );
   
   if( btdebug )
      vfprintf (stderr,  format, arglist );
   va_end  ( arglist 	  );
}


/* Peggy Fieland. Routine that attempts to find the start of the entry sequence
   for a routine. */
/* maximum number of instrutions to search back */
#define MAX_ROUTINE_SIZE 4096
CORE_ADDR find_entry_start(pc)
CORE_ADDR pc;
{
   CORE_ADDR instr, top_pc;
   int i;
   
   top_pc = pc;
   for (i = 0; i <  MAX_ROUTINE_SIZE; ++i)

      {
         instr = (unsigned)( adj_read_memory_integer (top_pc));
         /* Recognize "addu|adds -X,sp,sp" insn. */

         if ((instr & 0xEFFF0000) == 0x84420000) 
            {
	      return (top_pc);
            } 
         top_pc -= INSTRUCTION_LENGTH;
      }
   return (0);
}



/* Written by Peggy Fieland (Margaret_Fieland@vos.stratus.com) */
/* get the contents of a base register.  Used for dwarf OP_BASEREG */
/* At present, only OP_BASEREG generated is for R28.  NOTE that for stuff based on R28,
   the value we want is the VALUE AT PROCEDURE INVOKATION, and thus is the frame we
   use to get the value is the caller's frame. */
CORE_ADDR get_saved_basereg (frame, basereg)
FRAME frame;
int basereg;
{
   CORE_ADDR addr;
   if (basereg == R28)   /* Unconditionally ??? */
      {
         frame = get_prev_frame (frame);
         get_saved_register((char *) &addr, (int *) NULL,  (CORE_ADDR *) NULL, frame,
                            basereg, (enum lval_type *)NULL);

      }
   else
      get_saved_register((char *) &addr, (int *) NULL,  (CORE_ADDR *) NULL, frame,
                         basereg, (enum lval_type *)NULL);

   return (addr);
}
  


/* return nonzero if the routine containing pc has been 
 * compiled with -g. We assume -g if the first instruction is 
 * an  addu|adds -X,sp and the second is st.l fp,XX(sp) 
 *
 *	based on  skip_prologue();
 */

static int g_routine(pc)

     CORE_ADDR pc;
{
   CORE_ADDR instr;
   CORE_ADDR top_pc;
   
   top_pc = get_pc_function_start(pc);
   if (top_pc == NULL)
     top_pc = find_entry_start (pc);

   if (top_pc != NULL)
      {
         instr = (unsigned)( adj_read_memory_integer (top_pc));
         /* Recognize "addu|adds -X,sp,sp" insn. */
   
         if ((instr & 0xEFFF0000) == 0x84420000) 
            {
               top_pc += INSTRUCTION_LENGTH;
               instr =  (unsigned)(adj_read_memory_integer (top_pc));
      
               if( (instr & 0xFFE0F801) == 0x1C401801 )    /* st.l fp,X(sp) */
                  return(1);
            } 
      }
   return(0);
}


/* return the stack offset where the fp register is stored */
static int find_fp_offset(pc)
CORE_ADDR pc;
{
   int fp_off,i;
   CORE_ADDR	instr;
   
   /* look for the instruction and examine the offset */
   
   for (i=INSTRUCTION_LENGTH*1; i< INSTRUCTION_LENGTH*4; i+=INSTRUCTION_LENGTH){
      instr =   (unsigned)(adj_read_memory_integer(pc+i));
      if( (instr & 0xFFE0F801) == 0x1C401801) {    /* st.l fp,X(sp) */
         
         fp_off = SIGN_EXT16(((instr&0x001F0000) >> 5) | 
                             (instr&0x000007FE));
         return(fp_off);
      }
   }
   return(0);
}


/* return the stack offset where r1 (return linkage ) register is stored */
static CORE_ADDR find_r1(pc,sp,fp)
CORE_ADDR pc,sp, fp;
{
   int r1_off,i;
   CORE_ADDR	instr, ret_pc;
   
   /* look for the instruction and examine the offset */
   
   for (i=INSTRUCTION_LENGTH*1; i< INSTRUCTION_LENGTH*4; i+=INSTRUCTION_LENGTH)
      {
         instr = (unsigned)( adj_read_memory_integer(pc+i));
         if ((instr & 0xFFE0F801) == 0x1C400801) 
            { 
               /* st.l r1,X(sp) */
         
               r1_off = SIGN_EXT16(((instr&0x001F0000) >> 5) | 
                                   (instr&0x000007FE));
               ret_pc = read_memory_integer(sp+r1_off,sizeof(long));
               return(ret_pc);
            }
         else if ((instr & 0xFFE0F801) == 0x1C600801) 
         { 
            /* st.l r1,X(fp) */
            r1_off = SIGN_EXT16(((instr&0x001F0000) >> 5) | 
                                (instr&0x000007FE));
            ret_pc = read_memory_integer(fp+r1_off,sizeof(long));
            return(ret_pc);
         }
      }
   return(0);
}

CORE_ADDR skip_prologue(CORE_ADDR);

/* does routine starting at pc build a stack frame of any kind?? */
static int has_a_frame(pc)
CORE_ADDR pc;
{
   if( skip_prologue(pc) != pc )return(1);
   else return(0);
}


/* written by Peggy Fieland Margaret_Fieland@vos.stratus.com
   Routine to validate the return register and the frame pointer
   This routine is called when the routine we are in doesn't have a frame
   In that case, we assume that the return address and frame pointer have 
   not been touched.  In the following routine, we try to range check them 
  to see if they are valid. */

static int valid_regs (rp, fp)
CORE_ADDR rp, fp;
{
   if ( ( (rp % 4) != 0) | ( (fp % 16) != 0) )
      return (0);
   else 
      return (1);
}
/* get the pc and frame pointer (or sp )
 * for the routine that called us
 * when we (this_pc) is not within a  -g routine
 * if caller is non g we return sp for fp
 */

/* note this is written for Metaware version R2.1d compiler */
/* Modified by Peggy Fieland Margaret_Fieland@vos.stratus.com */
static int caller_pc(this_pc,this_sp,this_fp,to_pc,to_fp, called_from_frame_chain)
     CORE_ADDR this_pc,this_sp, this_fp;
     CORE_ADDR *to_pc, *to_fp;
     int called_from_frame_chain;
{
   CORE_ADDR func_start;
   int sp_offset,offset;
   CORE_ADDR sp,pc,fp,instr;
   
   BTDEBUG("caller_pc %x sp = %x\n",this_pc,this_sp);
   
   func_start = get_pc_function_start(this_pc);

   if (func_start == NULL)
      func_start = find_entry_start (this_pc);

   BTDEBUG("caller_pc func_start %x\n", func_start);

   if ((func_start == NULL))
      {
               /* error in traceback */
               fprintf(stderr, "error, unable to find start of function\n");
               return(0);
               
      }

   if (func_start!= NULL)
      {
         if( has_a_frame(func_start) ){
      
            BTDEBUG("has_a_frame\n");
      
            /* if our caller has a preamble and 
             * declares space for a stack frame
             * then we must work to find our return address
             */
            instr = (unsigned)( adj_read_memory_integer (func_start));
            /* Recognize "addu|adds -X,sp,sp" insn. */
      
            if ((instr & 0xEFFF0000) == 0x84420000)
               sp_offset=SIGN_EXT16(instr&0x0000FFFF);
         }
         else 	
            { 
               /* if we get here, procedure doesn't have a frame.  If we
                  do anything weird, the frame pointer and return register have
                  the values we want.  Check them to see if they are valid. */
                  
               CORE_ADDR temp_rp, temp_fp;

               /* temporary warning, since at the moment we don't have support for
                  the shared library */
               
               temp_rp = read_register(RP_REGNUM);
               temp_fp = read_register(FP_REGNUM);

               if (!valid_regs(temp_rp, temp_fp))
                  {           
                     fprintf(stderr, 
                             "error - unable to find return address, traceback terminating\n");
                     return(0);
                  }
               BTDEBUG("caller_pc no frame, using r1 %x and fp %x\n",
                       temp_rp, temp_fp);
               *to_pc = temp_rp;
               *to_fp = temp_fp;
               return (1);
            }
      
      BTDEBUG("sp_offset = %d %x\n",sp_offset,sp_offset);
      
         pc = find_r1(func_start, this_sp, this_fp);
      
      if(pc == NULL)
         {

            /* r1 wasn't stored between pc and function start */
            pc = read_register (RP_REGNUM);
         }

      sp= this_sp - sp_offset;
      
      BTDEBUG("callers pc = %x sp = %x\n",pc,sp);
      
      /* our caller a -g routine  ?
       * if he is we have to find his real fp
       * else provide the sp as his fp
       */
      
      if( g_routine(pc) ){
         
         BTDEBUG("caller_a_g\n");
         
         if( ! (offset = find_fp_offset(func_start)) ) {
            fprintf(stderr, "error - unable to find caller frame for routine at 0x%x, "
                    "traceback terminating\n", func_start);
            return(0);
         }
         BTDEBUG("offset = %x %d\n",offset,offset);
         
         fp = read_memory_integer(this_sp+offset,sizeof(long));
         *to_pc = CLEAN_PC(pc);
         *to_fp = fp;
         return(1);
      }else  
         *to_pc = CLEAN_PC(pc);
      *to_fp = sp;
      return(1);
   } else {
/*      pc = read_register(RP_REGNUM); */
/*       pc = 0;  */
      /* if we get here, procedure doesn't have a frame.  If we didn't
         do anything weird, the frame pointer and return register have
         the values we want.  Check them to see if they are valid. */
                  
      CORE_ADDR temp_rp, temp_fp;
      
      temp_rp = read_register(RP_REGNUM);
      temp_fp = read_register(FP_REGNUM);
      
      if (!valid_regs(temp_rp, temp_fp))
         {           
            fprintf(stderr, 
                    "error - unable to find return address, traceback terminating\n");

            return(0);
         }
      BTDEBUG("caller_pc no frame, using r1 %x and fp %x\n",
              temp_rp, temp_fp);
      *to_pc = temp_rp;
      *to_fp = temp_fp;
      return (1);
   }
}

/*
 ** Figure out address to place next breakpoint. Avoid tricky spots, 
 **	ie. delayed instruction slots etc.
 ** Need to upgrade this later to allow delayed instruction breakpoints
 **	with fix-up work done AFTER breakpoint.
 ** Note that this routine DOES deal with dual instruction mode
 */
#define BIM 0x8008

static branch_type
   place_brk (addr, mode, brk)
CORE_ADDR addr; 
int mode;
struct breakpoint *brk;
{
   CORE_ADDR  instr;
   CORE_ADDR nextadr, prevadr;
   int val = not_branch;
   long offset; /* Must be signed for sign-extend */
   prevadr = nextadr = 0;
   
   brk->address1 = 0;
   
   if (mode == SINGLE_STEP_MODE)
      {
         if (INDIM || ENDIM)
            {
			nextadr = brk->address	 = (addr +  INSTRUCTION_LENGTH*2);
  			instr	=  (unsigned)(adj_read_memory_integer ((addr + INSTRUCTION_LENGTH)));
			brk->mode	= DIM;
            }
         else
            {
			nextadr = brk->address	 = (addr + INSTRUCTION_LENGTH);
  			instr	=  (unsigned)(adj_read_memory_integer (addr));
			if (STDIM) 
                  brk->mode = DIM;
			else
                  brk->mode = SIM;
            }
         
         
         /*
          ** For br/call one more sequential instruction gets executed and  then we
          **	continue at the current addr + offset. We are definitely going to
          **	the dest. We are NOT allowed to place a breakpoint in the "delay"
          **	slot - (the next sequential instruction) so we only place 1 breakpoint
          **	at the destination.
          ** For the bc/bnc the next instruction executed is EITHER the next sequential
          **	or the destination of the branch, we therefore place 2 breakpoints one
          **	at each location.
          ** For the bc.t/bnc.t either 1 more sequential instruction is performed
          **	followed by a branch (like br/call) OR we skip the sequential 
          **	instruction and keep going. We therefore place a breakpoint at the
          **	destination of the branch AND the second sequential instruction after
          **	the branch. Again a breakpoint is NOT allowed in the "delay slot"
          */
         if ((instr & 0xE0000000) == 0x60000000 &&	/* CTRL format */
             (instr & 0xF8000000) != 0x60000000)		/* not pfld.y  */
            {
               if      ((instr & 0xF8000000) == 0x68000000)	/* br or call */
                  val = uncond_d;
               else if ((instr & 0xF4000000) == 0x74000000)	/* bc.t/bnc.t */
                  val = cond_d;
               else if ((instr & 0xF4000000) == 0x70000000)	/* bc or bnc  */
                  val = cond;
               offset = (instr & 0x03ffffff);
               if (offset & 0x02000000)			/*?sign extend*/
                  offset |= 0xFC000000;
               if (val == uncond_d)			/* br/call*/
                  prevadr = 0;
               else if (val == cond_d)			/* bc.t/bnc.t */
                  {
                     if ((INDIM) && !(ENDIM))
                        prevadr = nextadr + (2*INSTRUCTION_LENGTH);
                     else
                        prevadr = nextadr + INSTRUCTION_LENGTH;
                  } else {				/* bc  /bnc   */
                     if ((INDIM) && !(ENDIM))
                        prevadr = nextadr;
                     else
                        prevadr = nextadr;
                  }
               nextadr += (offset << 2);
            }
         /*
          ** We treat the bri/calli the same way as the br/call case.
          */
         else if ((instr & 0xFC00003F) == 0x4C000002 ||		/* calli    */
                  (instr & 0xFC000000) == 0x40000000)		/* bri      */
            {
               val	= uncond_d;
               offset	= ((instr & 0x0000F800) >> 11);
               nextadr	= (read_register(offset + R0) & 0xFFFFFFFC);
               prevadr = 0;
            }
         /*
          ** We treat the bte/btne the same way as the bc/bnc case.
          */
         else if ((instr & 0xF0000000) == 0x50000000) 		/* bte/btne */
            {
               val = cond;
               offset = SIGN_EXT16(((instr & 0x001F0000) >> 5)  | 
                                   (instr & 0x000007FF));
               if ((INDIM) && !(ENDIM))
                  prevadr = nextadr;
               else
                  prevadr = nextadr;
               
               nextadr += (offset << 2);
            }
         /*
          ** We treat the bte/btne the same way as the bc/bnc case.
          **	With the caveat that the 2 breakpoints may turn out to be at the same
          **	address in which case we ignore one of them.
          */
         else if ((instr & 0xFC000000) == 0xB4000000)		/* bla */
            {
               val	= cond_d;
               offset	= SIGN_EXT16(((instr & 0x001F0000) >> 5)  | 
                                      (instr & 0x000007FF));
               if ((INDIM) && !(ENDIM))
                  {
                     prevadr = nextadr + 2*INSTRUCTION_LENGTH;
                  } else	{
                     prevadr = nextadr + INSTRUCTION_LENGTH;
                  }
               nextadr += (offset << 2);
               if (prevadr == nextadr) prevadr = 0;
            }
      } else	{
         int adjust = 0;
         
         nextadr = addr;
         
         if (ISDIM(FOPADR(addr)))
            {
               if (ISDIM(FOPADR(nextadr- INSTRUCTION_LENGTH*2)))
                  {
                     instr	=  (unsigned)(adj_read_memory_integer(CORADR(addr
                                                       -(INSTRUCTION_LENGTH*2))));
                     brk->mode	= DIM;
                  } else	{
                     instr	=  (unsigned)(adj_read_memory_integer(addr-INSTRUCTION_LENGTH));
                     brk->mode	= RIM;
                  }
            } else {
               if (ISDIM(addr-INSTRUCTION_LENGTH))
                  {
                     instr	=  (unsigned)(adj_read_memory_integer(addr-INSTRUCTION_LENGTH));
                     brk->mode	= BIM;
                  } else	{
                     instr	=  (unsigned)(adj_read_memory_integer (addr-INSTRUCTION_LENGTH));
                     brk->mode	= SIM;
                  }
            }
         
         /* examine the PREVIOUS instruction to determine if we are in a branch delay
            slot.  If we are, dont set a break here -- set it on the previous instruction.
            This code also accounts for dual instruction mode */
         if ((instr & 0xE0000000) == 0x60000000 &&
             (instr & 0xF8000000) != 0x60000000)		/* not pfld.y  */
            {
               adjust++;
               /* br    /call */
               /* bc	 /bnc  */
               /* bc.t	 /bnc.t*/
               if ((instr & 0xF8000000) == 0x68000000) /* br or call */
                  BTDEBUG(" Breakpoint adjusted to avoid br/call delay slot and multiple breakpoints\n");
               
               if ((instr & 0xF4000000) == 0x74000000) /* bc.t or bnc.t */
                  BTDEBUG(" Breakpoint adjusted to avoid bc.t/bnc.t delay slot and"
                          "multiple breakpoints\n");

               /* it IS really OK to set a break on the instruction AFTER the conditional branch
                  -- it DOESN't have a delay slot */
               if ((instr & 0xF4000000) == 0x70000000) /* bc / bnc */
                  adjust = 0; 
            } else if
               ((instr & 0xFC00003F) == 0x4C000002 ||	/* bri/  calli */
                (instr & 0xFC000000) == 0x40000000)	
                  {
                     adjust++;
                     BTDEBUG(" Breakpoint adjusted to avoid calli/bri delay slot and"
                             " multiple breakpoints\n");
                  } else if
                     ((instr & 0xF0000000) == 0x50000000) /* bte - btne */
                        {
                           /* it's OK to set a break here -- we are NOT in aa branch delay slot */
                           /*
                           adjust++;
                           printf(" Breakpoint adjusted to avoid bte/btne multiple breakpoints\n");
                           */
                           adjust = 0;
                        } else if
                           ((instr & 0xFC000000) == 0xB4000000)
                              {
                                 adjust++;
                                 BTDEBUG(" Breakpoint adjusted to avoid bla delay slot and"
                                         " multiple breakpoints\n");
                              }
         if (adjust != 0)
            {
               if (brk->mode == DIM)
                  {
                     nextadr -= INSTRUCTION_LENGTH*2;
                     nextadr = CORADR(nextadr); 
                  }
               else
                  nextadr -= INSTRUCTION_LENGTH;
            }
         
      }
   
   if (brk->mode == RIM) 
      brk->mode = DIM;
   if (brk->mode == BIM) 
      brk->mode = SIM;
   
   if (nextadr != NULL)
      {
         if (brk->mode == DIM)
            {
               brk->act_addr[0] = CORADR(nextadr);
               brk->act_addr[1] = FOPADR(nextadr);
            } else	{
               brk->act_addr[0] = nextadr;
               brk->act_addr[1] = 0;
            }
      }
   
   if (prevadr != NULL)
      {
         brk->address1 = prevadr;
         if (brk->mode == DIM)
            {
               brk->act_addr[2] = CORADR(prevadr);
               brk->act_addr[3] = FOPADR(prevadr);
            } else	{
               brk->act_addr[2] = prevadr;
               brk->act_addr[3] = 0;
            }
      } else	{
         brk->act_addr[2] = brk->act_addr[3] = 0;
      }
   return val;
}

/* This routine checks to see if r1 has been stored into the frame between
   the addresses prologue_start and prologue_end. Recognize stores of r1 
   relative to both the sp and fp registers. */
static int has_stored_r1(CORE_ADDR prologue_start, CORE_ADDR prologue_end)
{
   CORE_ADDR instr;
   CORE_ADDR addr;
   
   BTDEBUG("has_stored_r1, prologue_start %x, prologue_end %x\n",
           prologue_start, prologue_end);

   for (addr = prologue_start; addr <= prologue_end;  addr += INSTRUCTION_LENGTH)
      {
   
         instr =  (unsigned)(adj_read_memory_integer (addr));
         if   ((instr & 0xFFE0F801) == 0x1C400801 /* st.l r1,X(sp) */
            || (instr & 0xFFE0F801) == 0x1C600801) /* st.l r1,X(fp) */
            return (1);
      }
   return 0;
}
/* This is used when GDB is exiting.  It gives less chance of error.*/


/* Simulate single-step ptrace call for sun4.  Code written by Gary
   Beihl (beihl@mcc.com).  */
/* Modified for i860 by Jim Hanko (hanko@orc.olivetti.com) */


static struct breakpoint brk;
typedef char binsn_quantum[sizeof break_insn];

/* Non-zero if we just simulated a single-step ptrace call.  This is
   needed because we cannot remove the breakpoints in the inferior
   process until after the `wait' in `wait_for_inferior'.  Used for
   i860. */

int one_stepped;

/* single_step() is called just before we want to resume the inferior,
   if we want to single-step it but there is no hardware or kernel single-step
   support.  We find all the possible targets of the coming instruction and 
   breakpoint them.

   single_step is also called just after the inferior stops.  If we had
   set up a simulated single-step, we undo our damage.  */
/* Note that we don't need the parameter, but it's dictated as part of the interface. */
void
   single_step (signal)
int signal;
{
   CORE_ADDR pc;
   branch_type place_brk();
   int *shadow0, *shadow1, *shadow2, *shadow3;

   shadow0 = (int *) &brk.shadow_contents[0];
   shadow1 = (int *) &brk.shadow_contents[4];
   shadow2 = (int *) &brk.shadow_contents[8];
   shadow3 = (int *) &brk.shadow_contents[12];
   pc = read_register (PC_REGNUM);
   
   if (!one_stepped)
      {
         brk.address = pc;
         place_brk (pc, SINGLE_STEP_MODE, &brk);
	 *shadow0 = *shadow1 = *shadow2 = *shadow3 = 0;
         
         if (brk.mode == DIM)
            {
               if (btdebug != 0)
                  {
                     btdebug_message(" DIM1 -> %x : ", brk.act_addr[3]);
                     print_insn( brk.act_addr[3], stderr);
                     btdebug_message("\t -|-  %x : ", brk.act_addr[2]);
                     print_insn( brk.act_addr[2], stderr);
                     btdebug_message("\n");
                  }
               if (( brk.address1 != NULL))
                  { 
                     adj_read_memory  (brk.act_addr[2], shadow2,
                                       INSTRUCTION_LENGTH);
                     adj_write_memory (brk.act_addr[2], break_insn, INSTRUCTION_LENGTH);
                     adj_read_memory  (brk.act_addr[3], shadow3,
                                       INSTRUCTION_LENGTH);
                     /*		adj_write_memory (brk.act_addr[3], float_insn,
                              INSTRUCTION_LENGTH); */
                     
                  }
               if (btdebug != 0)
                  {
                     if ( brk.address1 != 0)
                        btdebug_message(" DIM2 ->");
                     else
                        btdebug_message(" DIM1 ->");
               
                     btdebug_message(" %x : ", brk.act_addr[1]);
                     print_insn( brk.act_addr[1], stderr);
                     btdebug_message("\t -|-  %x : ", brk.act_addr[0]);
                     print_insn( brk.act_addr[0], stderr);
                     btdebug_message("\n");
                  }
               
               adj_read_memory  (brk.act_addr[0], shadow0,
                                 INSTRUCTION_LENGTH);
               adj_write_memory (brk.act_addr[0], break_insn,
                                 INSTRUCTION_LENGTH);
               adj_read_memory  (brk.act_addr[1], shadow1,
                                 INSTRUCTION_LENGTH);
               /*		adj_write_memory (brk.act_addr[1], float_insn,
                                 INSTRUCTION_LENGTH); */
               
            } 
         else	{
            if (brk.address1 != NULL)
               {
                  if (btdebug)
                     {
                        btdebug_message(" SIM1 ->");
                        btdebug_message(" %x : ", brk.act_addr[2]);
                        print_insn( brk.act_addr[2], stderr);
                        btdebug_message("\n");
                     }
                  adj_read_memory  (brk.act_addr[2], shadow2,
                                    INSTRUCTION_LENGTH);
                  adj_write_memory (brk.act_addr[2], break_insn, INSTRUCTION_LENGTH);
               }
            if (btdebug)
               {
                  if ( brk.address1 != NULL)
                     btdebug_message(" SIM2 ->");
                  else
                     btdebug_message(" SIM1 ->");
                  
                  btdebug_message(" %x : ", brk.act_addr[0]);
                  print_insn( brk.act_addr[0], stderr);
                  btdebug_message("\n");
               }
            adj_read_memory  (brk.act_addr[0], shadow0,
                              INSTRUCTION_LENGTH);
            adj_write_memory (brk.act_addr[0], break_insn,INSTRUCTION_LENGTH);
         }
         
         /* Let it go */
         one_stepped = 1;
         return;
      }
   else
      {
         /* Remove breakpoints */
         if (brk.mode == DIM)
            {
               adj_write_memory (brk.act_addr[0], shadow0,
                                 INSTRUCTION_LENGTH);
               adj_write_memory (brk.act_addr[1], shadow1,
                                 INSTRUCTION_LENGTH);
            } else	{
               adj_write_memory (brk.act_addr[0], shadow0,
                                 INSTRUCTION_LENGTH);
            }
         
         if (brk.address1 != NULL)
            {
               if (brk.mode == DIM)
                  {
                     adj_write_memory (brk.act_addr[2], shadow2,
                                 INSTRUCTION_LENGTH);
                     adj_write_memory (brk.act_addr[3], shadow3,
                                 INSTRUCTION_LENGTH);
                  } else	{
                     adj_write_memory (brk.act_addr[2], shadow2,
                                 INSTRUCTION_LENGTH);
                  }
            }
         one_stepped = 0;
      }
}



/* Written for i860 by Jim Hanko (hanko@orc.olivetti.com) */
/* This code was based on SPARC code written by Gary Beihl (beihl@mcc.com),
   by Michael Tiemann (tiemann@corto.inria.fr).  */
/* This routine returns the first memory address following the prologue code,
   if there is a prologue. */

struct command_line *get_breakpoint_commands ();

CORE_ADDR 
   skip_prologue (pc)
CORE_ADDR pc;
{
   CORE_ADDR instr;
   int regno;
   
   instr =  (unsigned)(adj_read_memory_integer (pc));
   
   /* Recognize "addu|adds -X,sp,sp" insn. */
   if ((instr & 0xEFFF0000) == 0x84420000)
      {
         pc += INSTRUCTION_LENGTH;
         instr =  (unsigned)(adj_read_memory_integer (pc));
      }
   else
      return(pc);					/* No frame! */
   
   /* Recognize store of return addr and frame pointer into frame */
   for (; ;)
      {
         if ((instr & 0xFFE0F801) == 0x1C400801 ||  /* st.l r1,X(sp) */
             (instr & 0xFFE0F801) == 0x1C401801)    /* st.l fp,X(sp) */
            {
               pc += INSTRUCTION_LENGTH;
               instr =  (unsigned)(adj_read_memory_integer (pc));
            }
         else
            break;
      }
   
   /* Recognize "addu|adds X,sp,fp" insn. */
   if ((instr & 0xEFFF0000) == 0x84430000)
      {
         pc += INSTRUCTION_LENGTH;
         instr =  (unsigned)(adj_read_memory_integer (pc));
      }
   
   /* Now recognize stores into the frame from the registers. */
   
   for (; ;)
      {
         if ((instr & 0xFFA00003) == 0x1C200001 ||	/* st.l rn,X(fp|sp) */
             (instr & 0xFFA00001) == 0x4C200000)	/* fst.y fn,X(fp|sp) */
            {
               regno = (instr >> 11) & 0x1f;
               if (regno == 0)			/* source reg == 0? quit */
                  break;
               pc += INSTRUCTION_LENGTH;
               instr =  (unsigned)(adj_read_memory_integer (pc));
            }
         else
            break;
      }
   
   return(pc);
}

#if 0
/* This routine is uncalled.  Remove it sometime. */
/* Set *nextpc to branch target if we find a branch.  If it is not a branch, 
   set it to the next instruction (addr + 4) */


branch_type
   isabranch (addr,  nextpc)
CORE_ADDR addr, *nextpc;
{
   CORE_ADDR instr;
   branch_type val = not_branch;
   long offset; /* Must be signed for sign-extend */
   
   BTDEBUG(" isabranch\n");
   *nextpc = addr;
   instr =  (unsigned)(adj_read_memory_integer (addr));
   
   if ((instr & 0xE0000000) == 0x60000000 &&		/* CTRL format */
       (instr & 0xF8000000) != 0x60000000)		/* not pfld.y  */
      {
         if ((instr & 0xF8000000) == 0x68000000)		/* br or call */
            val = uncond_d;
         else if ((instr & 0xF4000000) == 0x74000000)	/* bc.t or bnc.t */
            val = cond_d;
         else if ((instr & 0xF4000000) == 0x70000000)	/* bc or bnc */
            val = cond;
         
         offset = (instr & 0x03ffffff);
         if (offset & 0x02000000)	/* sign extend? */
            offset |= 0xFC000000;
         *nextpc = addr + 4 + (offset << 2);
      }
   else if ((instr & 0xFC00003F) == 0x4C000002 ||	/* calli */
            (instr & 0xFC000000) == 0x40000000)		/* bri */
      {
         val = uncond_d;
         offset = ((instr & 0x0000F800) >> 11);
         *nextpc = (read_register(offset) & 0xFFFFFFFC);
      }
   else if ((instr & 0xF0000000) == 0x50000000)		/* bte or btne */
      {
         val = cond;
         
         offset = SIGN_EXT16(((instr & 0x001F0000) >> 5)  | (instr & 0x000007FF));
         *nextpc = addr + 4 + (offset << 2);
      }
   else if ((instr & 0xFC000000) == 0xB4000000)         /* bla */
      {
         val = cond_d;
         
         offset = SIGN_EXT16(((instr & 0x001F0000) >> 5)  | (instr & 0x000007FF));
         *nextpc = addr + 4 + (offset << 2);
      }
   
   BTDEBUG(" Final addr - %x\n", *nextpc);
   /*BTDEBUG("isabranch ret: %d\n",val); */
   return val;
}
#endif

/* set in call_function() [valops.c] to the address of the "call dummy" code
   so dummy frames can be easily recognized; also used in wait_for_inferior() 
   [infrun.c]. When not used, it points into the ABI's 'reserved area' */

CORE_ADDR call_dummy_set = 0;	/* true if dummy call being done */
CORE_ADDR call_dummy_start;	/* address of call dummy code */

/* this routine routine gets the values of the registers stored in the frame
   and stores their values into the frame_saved_regs structure. */

void 
frame_find_saved_regs(frame_info, frame_saved_regs)
     struct frame_info *frame_info;
     struct frame_saved_regs *frame_saved_regs;
{
   register CORE_ADDR pc;
   CORE_ADDR instr;
   long offset, spdelta = 0;
   int i, size, reg;
   int r1_off = -1, fp_off = -1;
   int framesize;
   
   bzero (frame_saved_regs, sizeof(*frame_saved_regs));
   
   if (call_dummy_set && frame_info->pc >= call_dummy_start && 
       frame_info->pc <= call_dummy_start + CALL_DUMMY_LENGTH)
      {
         /* DUMMY frame - all registers stored in order at fp; old sp is
            at fp + NUM_REGS*4 */
         
         for (i = 1; i < NUM_REGS; i++) /* skip reg 0 */
            /* the register numbers used in the instruction and the ones used to index
            the regs array are not the same -- compensate */
            frame_saved_regs->regs[i+R0] = frame_info->frame + i*REGISTER_LENGTH;
         
         call_dummy_set = 0;
         return;
      }
   
   pc = get_pc_function_start (frame_info->pc); 
   if (pc == NULL)
     pc = find_entry_start (frame_info->pc);

   if (pc != NULL)
      {
         instr =  (unsigned)(adj_read_memory_integer (pc));
         /* Recognize "addu|adds -X,sp,sp" insn. */
         if ((instr & 0xEFFF0000) == 0x84420000)
            {
               framesize = -SIGN_EXT16(instr & 0x0000FFFF);
               pc += INSTRUCTION_LENGTH;
               instr =  (unsigned)(adj_read_memory_integer (pc));
            }
      }
   else
      goto punt;					/* No frame! */
   
   /* Recognize store of return addr and frame pointer into frame */
   for (; ;)
      {
         if ((instr & 0xFFE0F801) == 0x1C400801)  /* st.l r1,X(sp) */
            {
               r1_off = SIGN_EXT16(((instr&0x001F0000) >> 5) | (instr&0x000007FE));
               pc += INSTRUCTION_LENGTH;
               instr =  (unsigned)(adj_read_memory_integer (pc));
            }
         else if ((instr & 0xFFE0F801) == 0x1C401801)    /* st.l fp,X(sp) */
            {
               fp_off = SIGN_EXT16(((instr&0x001F0000) >> 5) | (instr&0x000007FE));
               pc += INSTRUCTION_LENGTH;
               instr =  (unsigned)(adj_read_memory_integer (pc));
            }
         else
            break;
      }
   
   /* Recognize "addu|adds X,sp,fp" insn. */
   if ((instr & 0xEFFF0000) == 0x84430000)
      {
         spdelta = SIGN_EXT16(instr & 0x0000FFFF);
         pc += INSTRUCTION_LENGTH;
         instr =  (unsigned)(adj_read_memory_integer (pc));
      }
   
   /* Now recognize stores into the frame from the registers. */
   
   for (; ;)
      {
         if ((instr & 0xFFC00003) == 0x1C400001)	/* st.l rn,X(fp|sp) */
            {
               offset = SIGN_EXT16(((instr&0x001F0000) >> 5) | (instr&0x000007FE));
               reg = (instr >> 11) & 0x1F;
               if (reg == 0)
                  break;
               if ((instr & 0x00200000) == 0)	/* was this using sp? */
                  if (spdelta != 0)			/* and we know sp-fp delta */
                     offset -= spdelta;		/* if so, adjust the offset */
                  else
                     break;				/* if not, give up */
               
               
               /* Handle the case where the return address is stored after the fp 
                  is adjusted */
               
               if (reg == 1)
                  frame_saved_regs->regs[PC_REGNUM] = frame_info->frame + offset;
               else
                  frame_saved_regs->regs[reg+R0] = frame_info->frame + offset;
               
               pc +=  INSTRUCTION_LENGTH;
               instr =  (unsigned)(adj_read_memory_integer (pc));
            }
         else if ((instr & 0xFFC00001) == 0x2C400000) /* fst.y fn,X(fp|sp) */
            {
               /*
                * The number of words in a floating store based on 3 LSB of instr
                */
               static int fst_sizes[] = {2, 0, 1, 0, 4, 0, 1, 0};
               
               size = fst_sizes[instr & 7];
               reg = ((instr >> 16) & 0x1F) + FP0_REGNUM;
               if (reg == 0)
                  break;
               
               if (size > 1)					/* align the offset */
                  offset = SIGN_EXT16(instr & 0x0000FFF8);	/* drop 3 bits */
               else
                  offset = SIGN_EXT16(instr & 0x0000FFFC);	/* drop 2 bits */
               
               if ((instr & 0x00200000) == 0)	/* was this using sp? */
                  if (spdelta != 0)			/* and we know sp-fp delta */
                     offset -= spdelta;		/* if so, adjust the offset */
                  else
                     break;				/* if not, give up */
               
               for (i = 0; i < size; i++)
                  {
                     frame_saved_regs->regs[reg] = frame_info->frame + offset;
                     
                     offset +=  REGISTER_LENGTH;
                     reg++;
                  }
               
               pc +=  INSTRUCTION_LENGTH;
               instr =  (unsigned)(adj_read_memory_integer (pc));
            }
         else
            break;
      }
   
   punt: ;
   if (framesize != 0 && spdelta != 0)
      frame_saved_regs->regs[SP_REGNUM] = frame_info->frame+(framesize-spdelta);
   else
      frame_saved_regs->regs[SP_REGNUM] = frame_info->frame + 8;
   
   if ((spdelta != 0) && fp_off != -1)
      frame_saved_regs->regs[FP_REGNUM] = frame_info->frame - spdelta + fp_off;
   else
      frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
   
   if ((spdelta != 0) && r1_off != -1)
      frame_saved_regs->regs[PC_REGNUM] = frame_info->frame - spdelta + r1_off;
   else
      frame_saved_regs->regs[PC_REGNUM] = frame_info->frame + 4;
}


/* get the frame pointer of the caller.
 * note that only routines that have been compiled with
 * -g have full (XX)fp style stack frames
 * if we are not returning to a non -g caller then we
 * return the sp at entry to us as it is the caller's
 * frame reference.
 */

frame_chain(thisframe)
     FRAME thisframe;
{
   CORE_ADDR fp, pc;
   CORE_ADDR func_start;
   CORE_ADDR instr;
   int offset;
   CORE_ADDR thisfp = thisframe->frame;
   struct frame_saved_regs fsr;   
   CORE_ADDR thissp;
           
      /* get the frame pointer actually sp for  a non -g
    * for the routine that called us routine 
    */
   
   BTDEBUG("FRAME_CHAIN(%x)\n",thisframe);
   
   if ( !read_memory_integer (thisframe->frame,sizeof(long)) )
      {
         return (0);
      }
   
   if( ! g_routine(thisframe->pc) ){
      thissp = get_saved_basereg (thisframe, SP_REGNUM);

      BTDEBUG( "non g at %x\n",thisframe->pc);
      caller_pc(thisframe->pc, thissp, thisfp,&pc,&fp, 1);
      BTDEBUG("caller_pc returned %x %x \n",pc,fp);
      return(fp);
      
   }/* else a -g routine */
   
   
   fp = read_memory_integer (thisfp, sizeof(long));
   
   if (fp < thisfp || fp > (unsigned) STACK_END_ADDR)
      {
         /* handle the Metaware-type pseudo-frame */
         
         func_start = get_pc_function_start(thisframe->pc);
	 if (func_start == NULL)
	   func_start = find_entry_start (thisframe->pc);

         if (func_start != NULL)
            {
               
               instr =  (unsigned)(adj_read_memory_integer (func_start));
               /* Recognize "addu|adds -X,sp,sp" insn. */
               if ((instr & 0xEFFF0000) == 0x84420000)
                  offset = SIGN_EXT16(instr & 0x0000FFFF);
               
            }
         
         fp = 0;
         if (offset < 0)
            fp = thisfp - offset;
      }
   BTDEBUG("frame_chain returned %d\n",fp);
   return(fp);
}

/* This function returns 1 if there is no stored r1, 0 otherwise.
   The function returns 1 if the pc is in a function prologue,
   or the function prologue didn't save the return pointer in
   the stack frame,  0 otherwise */

int no_stored_rp(CORE_ADDR pc)
{
   CORE_ADDR func_start, prologue_end;
   
   func_start = get_pc_function_start(pc);
   if (func_start == NULL)
     func_start = find_entry_start (pc);

   if (func_start != NULL)
      {
         prologue_end = func_start;
         SKIP_PROLOGUE(prologue_end);
         if ( (pc >= func_start) && (pc <= prologue_end))
            {
               BTDEBUG("no_stored_rp: pc %x is in prologue \n",pc);
               return 1;
            }
         /* otherwise, see if the entry sequence stored the return pointer.
            If it didn't, return 1 */
         /* Some procedures , at least, store the return pointer AFTER 
            the prologue sequence, so check for stores from function start to
            present pc value. */
         if (!has_stored_r1(func_start, pc))
            {  
               BTDEBUG("no_stored_rp, for pc %x, prologue didn't store r1\n",pc);
               return 1;
            }
      }
   BTDEBUG("no_stored_rp for pc %x return pointer was stored \n", pc);

   return 0; 
}

/* get the PC of the caller */
CORE_ADDR frame_saved_pc(frame_struct)
FRAME frame_struct;
{
     CORE_ADDR frame;
     CORE_ADDR pc;
     CORE_ADDR pc1;
     CORE_ADDR sp ;
     CORE_ADDR fp;
     struct frame_saved_regs fsr;                                                 
     
     frame = frame_struct->frame;
     pc = frame_struct->pc;
     
     
     BTDEBUG("frame_saved_pc input: frame %x, pc %x",
           frame, pc);

     /* First see if this is the current frame. If it is, return the value in r1,
        as it may not have been stored */

     fp = read_register(FP_REGNUM);

     /* check to see if we are in an entry sequence, where the return pointer has not yet been stored */
     if (fp == frame &&  no_stored_rp(pc))
        {
           pc = read_register(RP_REGNUM);
           frame_struct->rp = pc;
        }
     else if( ! g_routine(pc) )
        {
           sp = get_saved_basereg (frame_struct, SP_REGNUM);

           caller_pc(pc,sp,frame_struct->frame, &pc,&frame, 0);
        }
     else 
        {
           
           pc = read_memory_integer (frame + 4, sizeof(long)); 
   
           if (inside_entry_file(pc))
              {
                 
                 BTDEBUG("pc %x outside entry file \n",pc);

                 pc1 = read_memory_integer (frame, sizeof(long));
               
                 if (!inside_entry_file(pc1))
                    pc = pc1;
                 else
                    pc = 0;
              }
        } 
     BTDEBUG(" returning pc %x\n", CLEAN_PC(pc));
     return(CLEAN_PC(pc));

  }

/* Pass arguments to a function in the inferior process - ABI compliant
   Modified by Peggy Fieland (Margaret_Fieland@vos.stratus.com) to account
   for newer ABI conventions. Note that now, unfortunately, we MUST KNOW
   if we expect a float or a double.  For now, we will assume that the
   caller of this routine has the types of these arguments correct.... 
   NOTE THAT THIS ROUTINE DOES NO ARGUMENT COERCION -- it's all in the
   caller.
   Modified by Peggy Fieland to handle memory argument lists.
   */

#define IS_EVEN_REG(fl) (((fl - FP0_REGNUM)%2) == 0)
CORE_ADDR 
pass_function_arguments(args, nargs, struct_return, struct_addr, sp)
     value *args;
     int nargs;
     int struct_return;
     CORE_ADDR struct_addr;
     CORE_ADDR sp;
{
   int ireg = (struct_return) ? R17 : R16;
   int freg = F8;
   int i;
   struct type *type;
   value arg;
   signed long tmp;
   unsigned long ul_tmp;
   signed short s_tmp;
   unsigned short us_tmp;
   signed char c_tmp;
   unsigned char uc_tmp;
   CORE_ADDR arg_ptr;
   int len;

   if (struct_return)
      {
         write_register(R16, struct_addr);
      }

   arg_ptr = sp; /* Space was allocated for memory argument list in i860_arg_coerce */

   /* Loop through the arguments, putting the values in a register or memory as appropriate. */
   
   for (i = 0; i < nargs; i++) 
      {
         arg = args[i];
         type = VALUE_TYPE(arg);
         len = TYPE_LENGTH(type);
         if (type == builtin_type_double) 
            {
               /* see ABI . Note freg MUST BE INCREMENTED even if arg goes into the
                  memory argument list for this code to work correctly for subsequent
                  arguments. */
               if (!IS_EVEN_REG(freg))
                  freg += 1;
               /* see if argument can be put in a register, or whether it must go
                  into the memory argument list */
               if (freg < F8 + NUM_FLOAT_ARG_REGS)
                  {
                     /* It can go in a register */
                     bcopy(VALUE_CONTENTS(arg), &tmp, sizeof(double));
                     write_register_bytes(REGISTER_BYTE(freg), (char *) &tmp, TYPE_LENGTH(type));
                     freg += 2;
                  }
               else
                  {
                     /* It goes into memory argument list */
                     arg_ptr = ALIGN_ARG( arg_ptr, sizeof(double));
                     write_memory (arg_ptr, VALUE_CONTENTS (arg), len);
                     arg_ptr += len;
                  }
                  
            }
         else if (type == builtin_type_float)
            {
               if (freg < F8 + NUM_FLOAT_ARG_REGS)
                  {
                     /* It can go in a register */
                     bcopy(VALUE_CONTENTS(arg), &tmp, sizeof(long));
                     write_register_bytes (REGISTER_BYTE(freg), (char *) &tmp, TYPE_LENGTH(type));
                     freg++;
                  }
               else
                  { 
                     /* It goes into the memory argument list */
                     arg_ptr = ALIGN_ARG(arg_ptr, sizeof(float));
                     write_memory (arg_ptr, VALUE_CONTENTS (arg), len);
                     arg_ptr += len;
                  }
            }
         else
            {
               /* All structs are passed by value, and hence they all go into the memory
                  argument list (see ABI); otherwise, as above, see if we have run
                  out of registers */
               
               /* Cast value correctly so we can load it into a register or into the
                  memory argument list  -- see ABI */
               if (TYPE_LENGTH(type)    < sizeof(long))
                  {
                     if (TYPE_FLAGS(type) & TYPE_FLAG_UNSIGNED)
                        arg = value_cast(builtin_type_unsigned_int, arg);
                     else 
                        arg = value_cast (builtin_type_int, arg);
                     type = VALUE_TYPE(arg);
                     len = TYPE_LENGTH(type);
                  }
               
               if ((TYPE_CODE(type) == TYPE_CODE_STRUCT) || (ireg >= R16 + NUM_INT_ARG_REGS))
                  {
                     /* It goes into the memory argument list. Minimum alignment requirements
                        are on a 4-byte boundary */
                     
                     if  ((TYPE_CODE(type) == TYPE_CODE_INT) ||
                          (TYPE_CODE(type) == TYPE_CODE_ENUM) ||
                          (TYPE_CODE(type) == TYPE_CODE_CHAR) ||
                          (TYPE_CODE(type) == TYPE_CODE_BOOL))
                        arg_ptr = ALIGN_ARG(arg_ptr, len);
                     else
                        arg_ptr = ALIGN_ARG (arg_ptr, sizeof(long)); /* align on 4-byte boundary */
                     write_memory (arg_ptr, VALUE_CONTENTS (arg), len);
                     arg_ptr += len;
                  }
               else
                  {

                     bcopy(VALUE_CONTENTS(arg), &tmp, sizeof(long));
                     write_register(ireg, tmp);
                     ireg++;
                  }
                  
            }
      }
   
   
   return (sp);

}


#define SPACES		"       "
#define P_SPACES	"   "
#define BYTE 0xff

int screen_lines=24;

char *spec_reg[] = {
   "fsr", "db", "dirbase", "fir", "psr", "epsr",
};

char *doro_reg[] = {
   "scp", "cbsp", "pt_cs", "intmsk", "intack",
};
#define NREGS 32


get_reg(regno)
{
   char raw_buffer[32];
   int addr;
   int virtual_buffer;

   /* NOTE that only  integer and floating point registers can be relative to a frame */

   if ((regno >= R0) && (regno <= F31)) /* user register */
      read_relative_register_raw_bytes (regno, raw_buffer);
   else
      bcopy (&registers[regno << 2], raw_buffer, sizeof (long));

   REGISTER_CONVERT_TO_VIRTUAL (addr, raw_buffer, &virtual_buffer);
   return(virtual_buffer);
}


#if 0
/* This routine is uncalled.  Remove it sometime. */

/*
 ** Figure out whether we are in a delayed slot and if so then take necessary
 **	action to resume properly - remember trap pre-empts instruction
 */
int
   wasabranch (addr, nextpc, ss)
CORE_ADDR addr, *nextpc;
int ss;
{
   CORE_ADDR nextadr, instr;
   int val = not_branch;
   long offset; /* Must be signed for sign-extend */
   
   if (ss)
      {
         if (INDIM)
            {
			nextadr = CORADR((int)(addr +  INSTRUCTION_LENGTH*2));
  			instr	=  (unsigned)(adj_read_memory_integer (CORADR(addr)));
            }
         else
            {
			nextadr = addr +  INSTRUCTION_LENGTH;
  			instr	=  (unsigned)(adj_read_memory_integer (addr));
            }
      } else	{
         if (ISDIM(addr))
            {
			nextadr = CORADR(addr);
  			instr	=  (unsigned)(adj_read_memory_integer (nextadr));
            }
         else
            {
			nextadr = addr;
  			instr	=  (unsigned)(adj_read_memory_integer (addr));
            }
      }
   
   
   if ((instr & 0xE0000000) == 0x60000000 &&		/* CTRL format */
       (instr & 0xF8000000) != 0x60000000)		/* not pfld.y  */
      {
         if ((instr & 0xF8000000) == 0x68000000)		/* br or call */
            val = uncond_d;
         else if ((instr & 0xF4000000) == 0x74000000)	/* bc.t or bnc.t */
            val = cond_d;
         else if ((instr & 0xF4000000) == 0x70000000)	/* bc or bnc */
            val = cond;
         
         offset = (instr & 0x03ffffff);
         if (offset & 0x02000000)	/* sign extend? */
            offset |= 0xFC000000;
         nextadr += (offset << 2);
      }
   else if ((instr & 0xFC00003F) == 0x4C000002 ||	/* calli */
            (instr & 0xFC000000) == 0x40000000)		/* bri */
      {
         if (ss)
            {
               val	= uncond_d;
      		offset	= ((instr & 0x0000F800) >> 11);
      		nextadr	= (read_register(offset) & 0xFFFFFFFC);
            } else	{
               val	= uncond_d;
            }
      }
   else if ((instr & 0xF0000000) == 0x50000000)		/* bte or btne */
      {
         val = cond;
         
         offset = SIGN_EXT16(((instr & 0x001F0000) >> 5)  | (instr & 0x000007FF));
         nextadr += (offset << 2);
      }
   else if ((instr & 0xFC000000) == 0xB4000000)         /* bla */
      {
         val = cond_d;
         
         offset = SIGN_EXT16(((instr & 0x001F0000) >> 5)  | (instr & 0x000007FF));
         nextadr += (offset << 2);
      }
   
   *nextpc = nextadr;
   return val;
}
#endif


/* i860-specific routine to print the register set. Note that we ALWAYS print information
   on the floating point registers, so we ignore the parameter fpregs. 
   NOTE also  that only  integer and floating point registers can be relative to a frame --
   see subroutine get_reg (above ) */

void i860_do_registers_info(regnum,fpregs)
     int regnum;
     int fpregs;
{
   register int i;
   unsigned int val;
   unsigned int j,k;
   
   
   if (regnum == -1)
      printf_filtered (
                       "Register       Contents (relative to selected stack frame)\n\n");
   
   if (regnum != -1) /* print one register */
      {
         val = get_reg(regnum);
         printf("%-4s 0x%08x\t", reg_names[regnum], val);
         printf("\n\t"); fflush(stdout);
      }
   else	/* print all registers */
      {
         
         printf("\n Control/Status Registers :- \n\t");
         for (j=0; j<=DB; j++)
            {
               val = get_reg(j);
               printf("%-4s 0x%08x\t", reg_names[j], val);
            }
         printf("\n\t"); fflush(stdout);
         
         /* EPSR */
         val = get_reg(EPSR);
         printf("%-4s 0x%08x\t", reg_names[EPSR], val);
         
         /* FSR */
         val = get_reg(FSR);
         printf("%-4s 0x%08x\t", reg_names[FSR], val);
         
         /* CCR */
         val = get_reg(CCR);
         printf("%-4s 0x%08x\t", reg_names[CCR], val);
         /* BEAR*/
         val = get_reg(BEAR);
         printf("%-4s 0x%08x\t", reg_names[BEAR], val);
         
         
#ifdef JIM_ADD_PRIV
         for (j=P0; j<=P3; j++)
            {
               val = get_reg(j);
               printf("%-4s 0x%08x\t", reg_names[j], val);
            }
#endif
         
         printf("\n Integer Registers :- \n\t");
         for (j=R0; j<=R31; j++)
            {
               if (j != IREGS  && (j % REGISTER_LENGTH == 0)) 
                  {
                     printf("\n\t");  fflush(stdout);
                  }
               val = get_reg(j);
               printf("%-4s 0x%08x\t", reg_names[j], val);
            }
         
         printf("\n Floating Registers :- \n\t");
         for (j=F0; j<=F31; j++)
            {
               if (j != FREGS && (j % REGISTER_LENGTH == 0)) 
                  {
                     printf("\n\t");  fflush(stdout);
                  }
               val = get_reg(j);
               printf("%-4s 0x%08x\t", reg_names[j], val);
            }
         
         printf("\n Special Registers :- \n\t");
         for (j=SPC_KI; j<=SPC_MERGE; j+=2)
            {
               unsigned int valh;
               if (j == SPC_T)
                  {
                     printf("\n\t");  fflush(stdout);
                  }
               val = get_reg(j);
               valh = get_reg(j+1);
               printf("%-6s 0x%08x %08x\t", reg_names[j], val,valh);
            }
         
         printf("\n Graphics Pipeline :- \n");
         {
            unsigned int valh;
            j = PSV_I1;
            val = get_reg(j);
            valh = get_reg(j+1);
            printf("\t\t\t%-8s 0x%08x %08x \n", reg_names[j], val,valh);
         }
         
         printf(" Memory Load Pipeline :- \n");
         for (j=PSV_L1; j<=PSV_L3; j+=REGISTER_LENGTH)
            {
               unsigned int valh, val2,val3;
               
               val = get_reg(j);
               valh = get_reg(j+1);
               val2 = get_reg(j+2);
               val3 = get_reg(j+3);

               printf("\t\t%-8s 0x%08x %08x %08x %08x\n", reg_names[j], 
                      val,valh,val2,val3);
            }
         
         printf("\n Adder Pipeline :-\t\tMultiplier Pipeline :-\t\tFSR results :-\n");
         for (i=PSV_FSR1,j=PSV_A1,k=PSV_M1; j<=PSV_A3; i++,j+=2,k+=2)
            {
               unsigned int valh,val2,val3,val4;

               val4 = get_reg(i);
               val = get_reg(j);
               valh = get_reg(j+1);
               val2 = get_reg(k);
               val3 = get_reg(k+1);

               printf("  %-4s 0x%08x %08x\t", reg_names[j], val,valh);
               printf("%-4s 0x%08x %08x\t", reg_names[k], val2,val3);
               printf("%-4s 0x%08x\n", reg_names[i], val4);
            }
         
      }
   
   
}



/* The following set of routines was adapted from existing code previously
   in an i860-specific version of breakpoint.c by Peggy Fieland
   (Margaret_Fieland@vos.stratus.com) */
/* routines to set a data breakpoint by setting the value in the DB register. 
   Note that "hitting" the breakpoint will generate a data access trap. We
   do not have a special trap handler. */
unsigned int dbrkval, dbrkmod;
void i860_dbrk_breakpoint()
{
   BTDEBUG("i860_dbrk_breakpoint was called , dbrkval %x\n", dbrkval);
   
   if (dbrkval != 0)
      {
         *(int *)&registers[DB<<2] = dbrkval;
      }
   else
      {
         *(int *)&registers[DB<<2] = 0;
      }

   *(int *)&registers[PSR<<2] &= ~3;
   *(int *)&registers[PSR<<2] |= dbrkmod;

   store_inferior_registers(DB);
   store_inferior_registers(PSR);

}

/* set a "read" data breakpoint. */
void
d_ro_break_command(char *arg, int num)
{
	dbrkval = strtoul(arg, NULL, 0);
	dbrkmod = 0x01;
     BTDEBUG(" ro_dbreak - %x %x\n", dbrkval, dbrkmod);
}

/* set a "write" data breakpoint. */
void
d_wo_break_command(char *arg, int num)
{
	dbrkval = strtoul(arg, NULL, 0);
	dbrkmod = 0x02;
     BTDEBUG(" wo_dbreak - %x %x\n", dbrkval, dbrkmod);
}

/* set a "read/write" data breakpoint. */
void
d_rw_break_command(char *arg, int num)
{  	
  dbrkval  =  strtoul(arg, NULL,   0);
  dbrkmod =  0x03;
  BTDEBUG(" rw_dbreak - %x %x\n", dbrkval, dbrkmod);
 }

/* clear data breakpoint. */
 void clear_dbreak(char *arg, int num)
 { 
   dbrkval  = 0;
   dbrkmod = 0;
 }

/*   i860-specific  breakpoint initialization.    Includes  adding the
i860-specific     data          breakpoint       commands.   */   
void i860_init_breakpoints() 
{ 
  dbrkval = dbrkmod = 0;
  add_com ("dbro", class_breakpoint, d_ro_break_command,
	   "Set a data breakpoint READ ONLY, 32-bit data element.");
  add_com ("dbwo", class_breakpoint, d_wo_break_command,
	   "Set a data breakpoint WRITE ONLY, 32-bit data element.");
  add_com ("dbrw", class_breakpoint, d_rw_break_command,
	   "Set a data breakpoint READ/WRITE, 32-bit data element.");
  add_com ("dclear", class_breakpoint, clear_dbreak,
	   "clear the current data breakpoint.");
  add_com_alias ("dc", "dclear", class_breakpoint, 1);

}

/* i860-specific code to insert a breakpoint. */
int i860_insert_breakpoint(b)
struct breakpoint *b;
{
   int val;
   int *shadow0, *shadow1, *shadow2, *shadow3;

   shadow0 = (int *)&b->shadow_contents[0];
   shadow1 = (int *)&b->shadow_contents[4];
   shadow2 = (int *)&b->shadow_contents[8];
   shadow3 = (int *)&b->shadow_contents[12];

   place_brk( b->address, BREAK_MODE, b );

   if (b->mode == DIM)
      {
         
         adj_read_memory (b->act_addr[0], shadow0,  INSTRUCTION_LENGTH);
         val =  adj_write_memory (b->act_addr[0], break_insn,  INSTRUCTION_LENGTH);
         if (val != 0 ) return val;
         adj_read_memory (b->act_addr[1], shadow1,  INSTRUCTION_LENGTH);
         /*	val = adj_write_memory (b->act_addr[1], float_insn,  INSTRUCTION_LENGTH); */
         if (val != 0) return val;
      } 
   else	
      {
         adj_read_memory (b->act_addr[0], shadow0,  INSTRUCTION_LENGTH);
         val = adj_write_memory (b->act_addr[0], break_insn,  INSTRUCTION_LENGTH);
      }
   if (b->address1 != 0)
      {
         if (b->mode == DIM)
            {

               adj_read_memory (b->act_addr[2], shadow2,  INSTRUCTION_LENGTH);
               val = adj_write_memory (b->act_addr[2], break_insn,  INSTRUCTION_LENGTH);
               if (val) return val;
               adj_read_memory (b->act_addr[3], shadow3,  INSTRUCTION_LENGTH);
               /*	val = adj_write_memory (b->act_addr[3], float_insn,  INSTRUCTION_LENGTH); */
               if (val != 0) return val;
            }
         else	
            {
               adj_read_memory (b->act_addr[2], shadow0,  INSTRUCTION_LENGTH);
               val = adj_write_memory (b->act_addr[2], break_insn,  INSTRUCTION_LENGTH);
            }
      }
   if (val != 0)
      return val;

   b->inserted = 1;
   return 0;
}

int i860_remove_breakpoint(b)
struct breakpoint *b;
{
   int val;
   int *shadow0, *shadow1, *shadow2, *shadow3;

   shadow0 = (int *)&b->shadow_contents[0];
   shadow1 = (int *)&b->shadow_contents[4];
   shadow2 = (int *)&b->shadow_contents[8];
   shadow3 = (int *)&b->shadow_contents[12];


   if (b->inserted)
      {
         if (b->mode == DIM)
            {
               val =adj_write_memory (b->act_addr[0], shadow0,
                                      INSTRUCTION_LENGTH);
               val =adj_write_memory (b->act_addr[1],shadow1,
                                       INSTRUCTION_LENGTH);
               if (b->address1 != NULL)
                  {
                     val =adj_write_memory (b->act_addr[2],shadow2,
                                             INSTRUCTION_LENGTH);
                     val =adj_write_memory (b->act_addr[3], shadow3,
                                             INSTRUCTION_LENGTH);
                  }
            } 
         else	
            {
               val =adj_write_memory (b->act_addr[0], shadow0,
                                       INSTRUCTION_LENGTH);
               if (b->address1 != NULL)
                  {
                     val =adj_write_memory (b->act_addr[2],shadow0,
                                            INSTRUCTION_LENGTH);
                  }
            }
         if (val != 0)
            return val;
         b->inserted = 0;
      }

   return 0;


}


#ifdef USE_PROC_FS	/* Target dependent support for /proc */

#include <sys/procfs.h>

/* The following routines were added by Peggy Fieland (Margaret_Fieland@vos.stratus.com)
They were adapted from the m-68k versions of the routines .*/

/*  Given a pointer to a floating point register set in /proc format
    (fpregset_t *), unpack the register contents and supply them as gdb's
    idea of the current floating point register values. */

void 
supply_fpregset (fpregsetp)
fpregset_t *fpregsetp;
{
  register int regno;
  
  BTDEBUG("supply_fregset called \n");
  
  for (regno = F0 ; regno <= F31 ; regno++)
    {
      supply_register (regno, (char *) &(fpregsetp -> fpu.r_freg[regno-F0]));
    }
}

/*  Given a pointer to a floating point register set in /proc format
    (fpregset_t *), update the register specified by REGNO from gdb's idea
    of the current floating point register set.  If REGNO is -1, update
    them all. */

void
fill_fpregset (fpregsetp, regno)
fpregset_t *fpregsetp;
int regno;
{
  int regi;
  char *to;
  char *from;
  extern char registers[];
  BTDEBUG("fill_fregset  regno %d\n",regno);

  for (regi = F0 ; regi <= F31 ; regi++)
    {
      if ((regno == -1) || (regno == regi))
	{
	  from = (char *) &registers[REGISTER_BYTE (regi)];
       to = (char *) &(fpregsetp -> fpu.r_freg[regi-F0]);
	  bcopy (from, to, REGISTER_RAW_SIZE (regno));
	}
    }
}


/*  Given a pointer to a general register set in /proc format (gregset_t *),
    unpack the register contents and supply them as gdb's idea of the current
    register values. */

void
supply_gregset (gregsetp)
gregset_t *gregsetp;
{
  register int regno;
  register greg_t *regp = (greg_t *) gregsetp;

  BTDEBUG("supply_gregset called \n");

  for (regno = 0 ; regno <= R31 ; regno++)
    {
      supply_register (regno, (char *) (regp + regno));
    }
}

/*  Given a pointer to a general register set in /proc format (gregset_t *),
    update the register specified by REGNO from gdb's idea
    of the current general register set.  If REGNO is -1, update
    them all. */

void
fill_gregset (gregsetp, regno)
gregset_t *gregsetp;
int regno;
{
  int regi;
  extern char registers[];
  register greg_t *regp = (greg_t *) gregsetp;
  BTDEBUG("fill_gregset regno %d \n",regno);

  for (regi = 0 ; regi <= R31 ; regi++)
    {
      if ((regno == -1) || (regno == regi))
	{
        *(regp + regi) = *(int *) &registers[REGISTER_BYTE (regi)];
	}

   }
}
#endif


/* Push an empty stack frame, to record the current PC, etc.  */
/* We have this frame with fp pointing to a block where all GDB-visible
   registers are stored in the order GDB knows them, and sp at the next
   alignment point below fp.  Note: fp + NUM_REGS*4 was the old sp
   */
extern CORE_ADDR text_end;
CORE_ADDR dummy_start_addr;
void i860_push_frame()
{    
   register CORE_ADDR old_fp = read_register(FP_REGNUM);
   register CORE_ADDR old_sp = read_register(SP_REGNUM);
   register CORE_ADDR fp ;
   extern char registers[];	
					 
   fp = old_sp - REGISTER_BYTES;							 
   write_memory(fp, registers, REGISTER_BYTES);  /* write out old register values */
   /* reset FP and SP */
   write_register(FP_REGNUM, fp);
   write_register(SP_REGNUM, (fp &~ 15));	/* re-align */		 
   call_dummy_set = 1;
}
/* Discard from the stack the innermost frame, 
   restoring all saved registers.  */

void i860_pop_frame()
{ register FRAME frame = get_current_frame ();			 	       
  register CORE_ADDR fp;					 	       
  struct frame_info *fi;						       
  int i;
  
  fi = get_frame_info (frame);                                                 
  fp = fi->frame;                                                              

  if (call_dummy_set && fi -> pc >= call_dummy_start && 
       fi -> pc <= call_dummy_start + CALL_DUMMY_LENGTH)
     {
  
        read_memory(fp, registers, REGISTER_BYTES);

        target_store_registers(-1);

        {
           /* since we stomped on code that will be executed when we exit the program,
              restore it. */
           extern REGISTER_TYPE call_save_code[4];
     
           write_memory     (call_dummy_start, (char *) call_save_code, 16);
     
        }
        call_dummy_set = 0;
     }
  else
     {
        register int regnum;                                                         
        struct frame_saved_regs fsr;                                                 
        char raw_buffer[12];                                                         

        get_frame_saved_regs (fi, &fsr);                                             
        for (regnum = FP0_REGNUM + 31; regnum >= FP0_REGNUM; regnum--)               
           if (fsr.regs[regnum])                                                      
              write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));      
        for (regnum = R31; regnum >= 1; regnum--)                                     
           if (fsr.regs[regnum])                                                      
              if (regnum != SP_REGNUM)                                                 
                 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));    
              else                                                                     
                 write_register (SP_REGNUM, fsr.regs[SP_REGNUM]);                       
        if (fsr.regs[PS_REGNUM])                                                     
           write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));  
        if (fsr.regs[FPS_REGNUM])                                                    
           write_register (FPS_REGNUM, read_memory_integer (fsr.regs[FPS_REGNUM],4)); 
        if (fsr.regs[PC_REGNUM])                                                     
           write_register (PC_REGNUM,CLEAN_PC( read_memory_integer (fsr.regs[PC_REGNUM], 4)));  
          }    
  
  flush_cached_frames ();					 	       
  
  set_current_frame (create_new_frame (read_register (FP_REGNUM),              
                                        read_pc ()));

}

CORE_ADDR  i860_arg_coerce(nargs, args, struct_return, sp)
     int nargs;
     value *args;
     int struct_return;
     CORE_ADDR sp;
{

  register int scalar;
  register enum type_code code2;
  register struct type *type;
  int i;
  value arg;
  int num_int_args = 0;
  int num_float_args = 0;
  int size = 0;
  CORE_ADDR arg_ptr;
  
  /* if we return a structure, it's address is in R16, and thus it uses up one of the integer
     argument registers. See the ABI. */
  if (struct_return)     
     num_int_args += 1;

  /* loop to do the right thing with all the arguments and calculate the size of the memory
     argument list. We keep count of the number of integer and the number of float parameters,
     as well as the size of the memory argument list. */

  for (i = 0; i < nargs; i++)
     {    

        /* NOTE that this is all hunky dory in spite of the fact that we don't actually
           have the signature of the called procedure EXCEPT if we are passing in floats!
           This is true, since registers are 4 bytes, and the minimum alignment in the
           memory argument list is 4 bytes. See the ABI for more gory details. The switch
           "ansi-conformant" is an attempt to get around this problem. */
           
        code2 = TYPE_CODE (VALUE_TYPE(args[i]));

        /* Only coerce if we've got switch "ansi-conformant" off.
           Actually, it's OK ( and probably helpful) to coerce ALL integer arguments
           (see comment above), but never mind, we make them the right size in
           pass_function_arguments. */

        if ((!ansi_conformant) && (code2 != TYPE_CODE_STRUCT))
           value_arg_coerce(args[i]);

        arg = args[i];
        type = VALUE_TYPE(args[i]);

        /* All structures are passed by value in the memory argument list. */
        if (code2 == TYPE_CODE_STRUCT)
           {
              size = ALIGN_ARG(size, sizeof(long));
              size += TYPE_LENGTH(type);   
           }
        else if (type == builtin_type_float)
           {
              num_float_args += 1;
              if (num_float_args > NUM_FLOAT_ARG_REGS)
                 {
                    size = ALIGN_ARG(size, TYPE_LENGTH(type)) ;
                    size += TYPE_LENGTH(type);
                 }
           }
        else if (type == builtin_type_double)
           {
              /* floating register alignment  -- see ABI */
              if ((num_float_args%2) != 0)
                 num_float_args += 1;

              num_float_args += 2; /* use up two registers */

              if (num_float_args > NUM_FLOAT_ARG_REGS)
                 {
                    size = ALIGN_ARG(size, TYPE_LENGTH(type)) ;
                    size += TYPE_LENGTH(type);
                 }
           }
        else
           {
              int len = max (sizeof(long), TYPE_LENGTH(type));
              
              num_int_args += 1;

              if (num_int_args > NUM_INT_ARG_REGS)
                 {
                    /* see ABI -- in-memory arguments have AT LEAST word alignment */
                    if  ((TYPE_CODE(type) == TYPE_CODE_INT) ||
                         (TYPE_CODE(type) == TYPE_CODE_ENUM) ||
                         (TYPE_CODE(type) == TYPE_CODE_CHAR) ||
                         (TYPE_CODE(type) == TYPE_CODE_BOOL))
                       size  = ALIGN_ARG(size, len);
                    else
                       size = ALIGN_ARG(size, sizeof(long));
                    size += len;
                 }
           }
                         
     }
  

  /* recalculate the stack pointer, leaving enough space for the memory argument list and
     realigning the stack pointer. */
  if (size != 0)
     {
        arg_ptr = sp -  size;

        arg_ptr = arg_ptr & (-16); /* realign stack */
        write_register (R28,arg_ptr);
        sp = arg_ptr;
     }

return (sp);

}
void i860_extract_return_value(type,regbuf,valbuf)
struct type *type;
char regbuf[REGISTER_BYTES];
char *valbuf;
{
  register int len = TYPE_LENGTH (type);
  double tmp_db;
  float tmp_flt;

   if ((TYPE_CODE(type) == TYPE_CODE_FLT))
      {
         if (len == sizeof (float))
            {
               /* FIXME 
                  NOTE that this assumes that the function declaration was ANSI_CONFORMANT --
                  at the present time I can't think of ANY WAY to disambiguate the two following
                  cases:
                  float really_does_return_a_float(float ff) 
                  { ...}             
                  and
                  float actually_returns_a_double(ff)
                  float ff;
                  {...}
                  */
               bcopy ((char *) (regbuf) + REGISTER_BYTE(ADJ_FREG(F8)), (valbuf), TYPE_LENGTH (type)) ; 
            }
         else
            bcopy ((char *) (regbuf) + REGISTER_BYTE(F8), (valbuf), TYPE_LENGTH (type)) ;
      }
   else 
      bcopy ((char *) (regbuf) + REGISTER_BYTE(R16), (valbuf), TYPE_LENGTH (type));

}
void i860_store_return_value(type,valbuf)
struct type *type;
char *valbuf;
{
  register int len = TYPE_LENGTH (type);
  double tmp_db;

   if ((TYPE_CODE(type) == TYPE_CODE_FLT) )
      {
         write_register_bytes (REGISTER_BYTE (F8), valbuf, len);
      }
   else 
      write_register_bytes (REGISTER_BYTE (R16), valbuf, TYPE_LENGTH (type));
 
}