1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
|
/* Intel 387 floating point stuff.
Copyright 1988, 1989, 1991, 1992, 1993, 1994, 1998, 1999, 2000,
2001, 2002 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "language.h"
#include "value.h"
#include "gdbcore.h"
#include "floatformat.h"
#include "regcache.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "doublest.h"
#include "i386-tdep.h"
/* FIXME: Eliminate the next two functions when we have the time to
change all the callers. */
void i387_to_double (char *from, char *to);
void double_to_i387 (char *from, char *to);
void
i387_to_double (char *from, char *to)
{
floatformat_to_double (&floatformat_i387_ext, from, (double *) to);
}
void
double_to_i387 (char *from, char *to)
{
floatformat_from_double (&floatformat_i387_ext, (double *) from, to);
}
/* FIXME: The functions on this page are used by the old `info float'
implementations that a few of the i386 targets provide. These
functions should be removed if all of these have been converted to
use the generic implementation based on the new register file
layout. */
static void print_387_control_bits (unsigned int control);
static void print_387_status_bits (unsigned int status);
static void
print_387_control_bits (unsigned int control)
{
switch ((control >> 8) & 3)
{
case 0:
puts_unfiltered (" 24 bit; ");
break;
case 1:
puts_unfiltered (" (bad); ");
break;
case 2:
puts_unfiltered (" 53 bit; ");
break;
case 3:
puts_unfiltered (" 64 bit; ");
break;
}
switch ((control >> 10) & 3)
{
case 0:
puts_unfiltered ("NEAR; ");
break;
case 1:
puts_unfiltered ("DOWN; ");
break;
case 2:
puts_unfiltered ("UP; ");
break;
case 3:
puts_unfiltered ("CHOP; ");
break;
}
if (control & 0x3f)
{
puts_unfiltered ("mask");
if (control & 0x0001)
puts_unfiltered (" INVAL");
if (control & 0x0002)
puts_unfiltered (" DENOR");
if (control & 0x0004)
puts_unfiltered (" DIVZ");
if (control & 0x0008)
puts_unfiltered (" OVERF");
if (control & 0x0010)
puts_unfiltered (" UNDER");
if (control & 0x0020)
puts_unfiltered (" LOS");
puts_unfiltered (";");
}
if (control & 0xe080)
warning ("\nreserved bits on: %s",
local_hex_string (control & 0xe080));
}
void
print_387_control_word (unsigned int control)
{
printf_filtered ("control %s:", local_hex_string(control & 0xffff));
print_387_control_bits (control);
puts_unfiltered ("\n");
}
static void
print_387_status_bits (unsigned int status)
{
printf_unfiltered (" flags %d%d%d%d; ",
(status & 0x4000) != 0,
(status & 0x0400) != 0,
(status & 0x0200) != 0,
(status & 0x0100) != 0);
printf_unfiltered ("top %d; ", (status >> 11) & 7);
if (status & 0xff)
{
puts_unfiltered ("excep");
if (status & 0x0001) puts_unfiltered (" INVAL");
if (status & 0x0002) puts_unfiltered (" DENOR");
if (status & 0x0004) puts_unfiltered (" DIVZ");
if (status & 0x0008) puts_unfiltered (" OVERF");
if (status & 0x0010) puts_unfiltered (" UNDER");
if (status & 0x0020) puts_unfiltered (" LOS");
if (status & 0x0040) puts_unfiltered (" STACK");
}
}
void
print_387_status_word (unsigned int status)
{
printf_filtered ("status %s:", local_hex_string (status & 0xffff));
print_387_status_bits (status);
puts_unfiltered ("\n");
}
/* Implement the `info float' layout based on the register definitions
in `tm-i386.h'. */
/* Print the floating point number specified by RAW. */
static void
print_i387_value (char *raw, struct ui_file *file)
{
DOUBLEST value;
/* Using extract_typed_floating here might affect the representation
of certain numbers such as NaNs, even if GDB is running natively.
This is fine since our caller already detects such special
numbers and we print the hexadecimal representation anyway. */
value = extract_typed_floating (raw, builtin_type_i387_ext);
/* We try to print 19 digits. The last digit may or may not contain
garbage, but we'd better print one too many. We need enough room
to print the value, 1 position for the sign, 1 for the decimal
point, 19 for the digits and 6 for the exponent adds up to 27. */
#ifdef PRINTF_HAS_LONG_DOUBLE
fprintf_filtered (file, " %-+27.19Lg", (long double) value);
#else
fprintf_filtered (file, " %-+27.19g", (double) value);
#endif
}
/* Print the classification for the register contents RAW. */
static void
print_i387_ext (unsigned char *raw, struct ui_file *file)
{
int sign;
int integer;
unsigned int exponent;
unsigned long fraction[2];
sign = raw[9] & 0x80;
integer = raw[7] & 0x80;
exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
| (raw[5] << 8) | raw[4]);
if (exponent == 0x7fff && integer)
{
if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
/* Infinity. */
fprintf_filtered (file, " %cInf", (sign ? '-' : '+'));
else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
/* Real Indefinite (QNaN). */
fputs_unfiltered (" Real Indefinite (QNaN)", file);
else if (fraction[1] & 0x40000000)
/* QNaN. */
fputs_filtered (" QNaN", file);
else
/* SNaN. */
fputs_filtered (" SNaN", file);
}
else if (exponent < 0x7fff && exponent > 0x0000 && integer)
/* Normal. */
print_i387_value (raw, file);
else if (exponent == 0x0000)
{
/* Denormal or zero. */
print_i387_value (raw, file);
if (integer)
/* Pseudo-denormal. */
fputs_filtered (" Pseudo-denormal", file);
else if (fraction[0] || fraction[1])
/* Denormal. */
fputs_filtered (" Denormal", file);
}
else
/* Unsupported. */
fputs_filtered (" Unsupported", file);
}
/* Print the status word STATUS. */
static void
print_i387_status_word (unsigned int status, struct ui_file *file)
{
fprintf_filtered (file, "Status Word: %s",
local_hex_string_custom (status, "04"));
fputs_filtered (" ", file);
fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " ");
fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " ");
fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " ");
fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " ");
fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " ");
fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " ");
fputs_filtered (" ", file);
fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " ");
fputs_filtered (" ", file);
fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " ");
fputs_filtered (" ", file);
fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " ");
fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " ");
fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " ");
fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " ");
fputs_filtered ("\n", file);
fprintf_filtered (file,
" TOP: %d\n", ((status >> 11) & 7));
}
/* Print the control word CONTROL. */
static void
print_i387_control_word (unsigned int control, struct ui_file *file)
{
fprintf_filtered (file, "Control Word: %s",
local_hex_string_custom (control, "04"));
fputs_filtered (" ", file);
fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " ");
fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " ");
fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " ");
fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " ");
fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " ");
fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " ");
fputs_filtered ("\n", file);
fputs_filtered (" PC: ", file);
switch ((control >> 8) & 3)
{
case 0:
fputs_filtered ("Single Precision (24-bits)\n", file);
break;
case 1:
fputs_filtered ("Reserved\n", file);
break;
case 2:
fputs_filtered ("Double Precision (53-bits)\n", file);
break;
case 3:
fputs_filtered ("Extended Precision (64-bits)\n", file);
break;
}
fputs_filtered (" RC: ", file);
switch ((control >> 10) & 3)
{
case 0:
fputs_filtered ("Round to nearest\n", file);
break;
case 1:
fputs_filtered ("Round down\n", file);
break;
case 2:
fputs_filtered ("Round up\n", file);
break;
case 3:
fputs_filtered ("Round toward zero\n", file);
break;
}
}
/* Print out the i387 floating point state. Note that we ignore FRAME
in the code below. That's OK since floating-point registers are
never saved on the stack. */
void
i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
struct frame_info *frame, const char *args)
{
unsigned int fctrl;
unsigned int fstat;
unsigned int ftag;
unsigned int fiseg;
unsigned int fioff;
unsigned int foseg;
unsigned int fooff;
unsigned int fop;
int fpreg;
int top;
fctrl = read_register (FCTRL_REGNUM);
fstat = read_register (FSTAT_REGNUM);
ftag = read_register (FTAG_REGNUM);
fiseg = read_register (FCS_REGNUM);
fioff = read_register (FCOFF_REGNUM);
foseg = read_register (FDS_REGNUM);
fooff = read_register (FDOFF_REGNUM);
fop = read_register (FOP_REGNUM);
top = ((fstat >> 11) & 7);
for (fpreg = 7; fpreg >= 0; fpreg--)
{
unsigned char raw[FPU_REG_RAW_SIZE];
int tag = (ftag >> (fpreg * 2)) & 3;
int i;
fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg);
switch (tag)
{
case 0:
fputs_filtered ("Valid ", file);
break;
case 1:
fputs_filtered ("Zero ", file);
break;
case 2:
fputs_filtered ("Special ", file);
break;
case 3:
fputs_filtered ("Empty ", file);
break;
}
read_register_gen ((fpreg + 8 - top) % 8 + FP0_REGNUM, raw);
fputs_filtered ("0x", file);
for (i = 9; i >= 0; i--)
fprintf_filtered (file, "%02x", raw[i]);
if (tag != 3)
print_i387_ext (raw, file);
fputs_filtered ("\n", file);
}
puts_filtered ("\n");
print_i387_status_word (fstat, file);
print_i387_control_word (fctrl, file);
fprintf_filtered (file, "Tag Word: %s\n",
local_hex_string_custom (ftag, "04"));
fprintf_filtered (file, "Instruction Pointer: %s:",
local_hex_string_custom (fiseg, "02"));
fprintf_filtered (file, "%s\n", local_hex_string_custom (fioff, "08"));
fprintf_filtered (file, "Operand Pointer: %s:",
local_hex_string_custom (foseg, "02"));
fprintf_filtered (file, "%s\n", local_hex_string_custom (fooff, "08"));
fprintf_filtered (file, "Opcode: %s\n",
local_hex_string_custom (fop ? (fop | 0xd800) : 0, "04"));
}
/* FIXME: kettenis/2000-05-21: Right now more than a few i386 targets
define their own routines to manage the floating-point registers in
GDB's register array. Most (if not all) of these targets use the
format used by the "fsave" instruction in their communication with
the OS. They should all be converted to use the routines below. */
/* At fsave_offset[REGNUM] you'll find the offset to the location in
the data structure used by the "fsave" instruction where GDB
register REGNUM is stored. */
static int fsave_offset[] =
{
28 + 0 * FPU_REG_RAW_SIZE, /* FP0_REGNUM through ... */
28 + 1 * FPU_REG_RAW_SIZE,
28 + 2 * FPU_REG_RAW_SIZE,
28 + 3 * FPU_REG_RAW_SIZE,
28 + 4 * FPU_REG_RAW_SIZE,
28 + 5 * FPU_REG_RAW_SIZE,
28 + 6 * FPU_REG_RAW_SIZE,
28 + 7 * FPU_REG_RAW_SIZE, /* ... FP7_REGNUM. */
0, /* FCTRL_REGNUM (16 bits). */
4, /* FSTAT_REGNUM (16 bits). */
8, /* FTAG_REGNUM (16 bits). */
16, /* FISEG_REGNUM (16 bits). */
12, /* FIOFF_REGNUM. */
24, /* FOSEG_REGNUM. */
20, /* FOOFF_REGNUM. */
18 /* FOP_REGNUM (bottom 11 bits). */
};
#define FSAVE_ADDR(fsave, regnum) (fsave + fsave_offset[regnum - FP0_REGNUM])
/* Fill register REGNUM in GDB's register array with the appropriate
value from *FSAVE. This function masks off any of the reserved
bits in *FSAVE. */
void
i387_supply_register (int regnum, char *fsave)
{
/* Most of the FPU control registers occupy only 16 bits in
the fsave area. Give those a special treatment. */
if (regnum >= FPC_REGNUM
&& regnum != FIOFF_REGNUM && regnum != FOOFF_REGNUM)
{
unsigned char val[4];
memcpy (val, FSAVE_ADDR (fsave, regnum), 2);
val[2] = val[3] = 0;
if (regnum == FOP_REGNUM)
val[1] &= ((1 << 3) - 1);
supply_register (regnum, val);
}
else
supply_register (regnum, FSAVE_ADDR (fsave, regnum));
}
/* Fill GDB's register array with the floating-point register values
in *FSAVE. This function masks off any of the reserved
bits in *FSAVE. */
void
i387_supply_fsave (char *fsave)
{
int i;
for (i = FP0_REGNUM; i < XMM0_REGNUM; i++)
i387_supply_register (i, fsave);
}
/* Fill register REGNUM (if it is a floating-point register) in *FSAVE
with the value in GDB's register array. If REGNUM is -1, do this
for all registers. This function doesn't touch any of the reserved
bits in *FSAVE. */
void
i387_fill_fsave (char *fsave, int regnum)
{
int i;
for (i = FP0_REGNUM; i < XMM0_REGNUM; i++)
if (regnum == -1 || regnum == i)
{
/* Most of the FPU control registers occupy only 16 bits in
the fsave area. Give those a special treatment. */
if (i >= FPC_REGNUM
&& i != FIOFF_REGNUM && i != FOOFF_REGNUM)
{
unsigned char buf[4];
regcache_collect (i, buf);
if (i == FOP_REGNUM)
{
/* The opcode occupies only 11 bits. Make sure we
don't touch the other bits. */
buf[1] &= ((1 << 3) - 1);
buf[1] |= ((FSAVE_ADDR (fsave, i))[1] & ~((1 << 3) - 1));
}
memcpy (FSAVE_ADDR (fsave, i), buf, 2);
}
else
regcache_collect (i, FSAVE_ADDR (fsave, i));
}
}
/* At fxsave_offset[REGNUM] you'll find the offset to the location in
the data structure used by the "fxsave" instruction where GDB
register REGNUM is stored. */
static int fxsave_offset[] =
{
32, /* FP0_REGNUM through ... */
48,
64,
80,
96,
112,
128,
144, /* ... FP7_REGNUM (80 bits each). */
0, /* FCTRL_REGNUM (16 bits). */
2, /* FSTAT_REGNUM (16 bits). */
4, /* FTAG_REGNUM (16 bits). */
12, /* FISEG_REGNUM (16 bits). */
8, /* FIOFF_REGNUM. */
20, /* FOSEG_REGNUM (16 bits). */
16, /* FOOFF_REGNUM. */
6, /* FOP_REGNUM (bottom 11 bits). */
160, /* XMM0_REGNUM through ... */
176,
192,
208,
224,
240,
256,
272, /* ... XMM7_REGNUM (128 bits each). */
24, /* MXCSR_REGNUM. */
};
#define FXSAVE_ADDR(fxsave, regnum) \
(fxsave + fxsave_offset[regnum - FP0_REGNUM])
static int i387_tag (unsigned char *raw);
/* Fill GDB's register array with the floating-point and SSE register
values in *FXSAVE. This function masks off any of the reserved
bits in *FXSAVE. */
void
i387_supply_fxsave (char *fxsave)
{
int i, last_regnum = MXCSR_REGNUM;
if (gdbarch_tdep (current_gdbarch)->num_xmm_regs == 0)
last_regnum = FOP_REGNUM;
for (i = FP0_REGNUM; i <= last_regnum; i++)
{
/* Most of the FPU control registers occupy only 16 bits in
the fxsave area. Give those a special treatment. */
if (i >= FPC_REGNUM && i < XMM0_REGNUM
&& i != FIOFF_REGNUM && i != FOOFF_REGNUM)
{
unsigned char val[4];
memcpy (val, FXSAVE_ADDR (fxsave, i), 2);
val[2] = val[3] = 0;
if (i == FOP_REGNUM)
val[1] &= ((1 << 3) - 1);
else if (i== FTAG_REGNUM)
{
/* The fxsave area contains a simplified version of the
tag word. We have to look at the actual 80-bit FP
data to recreate the traditional i387 tag word. */
unsigned long ftag = 0;
int fpreg;
int top;
top = (((FXSAVE_ADDR (fxsave, FSTAT_REGNUM))[1] >> 3) & 0x7);
for (fpreg = 7; fpreg >= 0; fpreg--)
{
int tag;
if (val[0] & (1 << fpreg))
{
int regnum = (fpreg + 8 - top) % 8 + FP0_REGNUM;
tag = i387_tag (FXSAVE_ADDR (fxsave, regnum));
}
else
tag = 3; /* Empty */
ftag |= tag << (2 * fpreg);
}
val[0] = ftag & 0xff;
val[1] = (ftag >> 8) & 0xff;
}
supply_register (i, val);
}
else
supply_register (i, FXSAVE_ADDR (fxsave, i));
}
}
/* Fill register REGNUM (if it is a floating-point or SSE register) in
*FXSAVE with the value in GDB's register array. If REGNUM is -1, do
this for all registers. This function doesn't touch any of the
reserved bits in *FXSAVE. */
void
i387_fill_fxsave (char *fxsave, int regnum)
{
int i, last_regnum = MXCSR_REGNUM;
if (gdbarch_tdep (current_gdbarch)->num_xmm_regs == 0)
last_regnum = FOP_REGNUM;
for (i = FP0_REGNUM; i <= last_regnum; i++)
if (regnum == -1 || regnum == i)
{
/* Most of the FPU control registers occupy only 16 bits in
the fxsave area. Give those a special treatment. */
if (i >= FPC_REGNUM && i < XMM0_REGNUM
&& i != FIOFF_REGNUM && i != FDOFF_REGNUM)
{
unsigned char buf[4];
regcache_collect (i, buf);
if (i == FOP_REGNUM)
{
/* The opcode occupies only 11 bits. Make sure we
don't touch the other bits. */
buf[1] &= ((1 << 3) - 1);
buf[1] |= ((FXSAVE_ADDR (fxsave, i))[1] & ~((1 << 3) - 1));
}
else if (i == FTAG_REGNUM)
{
/* Converting back is much easier. */
unsigned short ftag;
int fpreg;
ftag = (buf[1] << 8) | buf[0];
buf[0] = 0;
buf[1] = 0;
for (fpreg = 7; fpreg >= 0; fpreg--)
{
int tag = (ftag >> (fpreg * 2)) & 3;
if (tag != 3)
buf[0] |= (1 << fpreg);
}
}
memcpy (FXSAVE_ADDR (fxsave, i), buf, 2);
}
else
regcache_collect (i, FXSAVE_ADDR (fxsave, i));
}
}
/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
*RAW. */
static int
i387_tag (unsigned char *raw)
{
int integer;
unsigned int exponent;
unsigned long fraction[2];
integer = raw[7] & 0x80;
exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
| (raw[5] << 8) | raw[4]);
if (exponent == 0x7fff)
{
/* Special. */
return (2);
}
else if (exponent == 0x0000)
{
if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
{
/* Zero. */
return (1);
}
else
{
/* Special. */
return (2);
}
}
else
{
if (integer)
{
/* Valid. */
return (0);
}
else
{
/* Special. */
return (2);
}
}
}
|