aboutsummaryrefslogtreecommitdiff
path: root/gdb/i387-nat.c
blob: 44a5e8a91357a19927b84a94a491ccf1936e08b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/* Native-dependent code for the i387.
   Copyright 2000, 2001 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "inferior.h"
#include "value.h"
#include "regcache.h"

#include "i387-nat.h"

#if GDB_MULTI_ARCH > 0
#include "i386-tdep.h"
#endif

/* FIXME: kettenis/2000-05-21: Right now more than a few i386 targets
   define their own routines to manage the floating-point registers in
   GDB's register array.  Most (if not all) of these targets use the
   format used by the "fsave" instruction in their communication with
   the OS.  They should all be converted to use the routines below.  */

/* At fsave_offset[REGNUM] you'll find the offset to the location in
   the data structure used by the "fsave" instruction where GDB
   register REGNUM is stored.  */

static int fsave_offset[] =
{
  28 + 0 * FPU_REG_RAW_SIZE,	/* FP0_REGNUM through ...  */
  28 + 1 * FPU_REG_RAW_SIZE,  
  28 + 2 * FPU_REG_RAW_SIZE,  
  28 + 3 * FPU_REG_RAW_SIZE,  
  28 + 4 * FPU_REG_RAW_SIZE,  
  28 + 5 * FPU_REG_RAW_SIZE,  
  28 + 6 * FPU_REG_RAW_SIZE,  
  28 + 7 * FPU_REG_RAW_SIZE,	/* ... FP7_REGNUM.  */
  0,				/* FCTRL_REGNUM (16 bits).  */
  4,				/* FSTAT_REGNUM (16 bits).  */
  8,				/* FTAG_REGNUM (16 bits).  */
  16,				/* FCS_REGNUM (16 bits).  */
  12,				/* FCOFF_REGNUM.  */
  24,				/* FDS_REGNUM.  */
  20,				/* FDOFF_REGNUM.  */
  18				/* FOP_REGNUM (bottom 11 bits).  */
};

#define FSAVE_ADDR(fsave, regnum) (fsave + fsave_offset[regnum - FP0_REGNUM])


/* Fill register REGNUM in GDB's register array with the appropriate
   value from *FSAVE.  This function masks off any of the reserved
   bits in *FSAVE.  */

void
i387_supply_register (int regnum, char *fsave)
{
  /* Most of the FPU control registers occupy only 16 bits in
     the fsave area.  Give those a special treatment.  */
  if (regnum >= FIRST_FPU_CTRL_REGNUM
      && regnum != FCOFF_REGNUM && regnum != FDOFF_REGNUM)
    {
      unsigned int val = *(unsigned short *) (FSAVE_ADDR (fsave, regnum));

      if (regnum == FOP_REGNUM)
	{
	  val &= ((1 << 11) - 1);
	  supply_register (regnum, (char *) &val);
	}
      else
	supply_register (regnum, (char *) &val);
    }
  else
    supply_register (regnum, FSAVE_ADDR (fsave, regnum));
}

/* Fill GDB's register array with the floating-point register values
   in *FSAVE.  This function masks off any of the reserved
   bits in *FSAVE.  */

void
i387_supply_fsave (char *fsave)
{
  int i;

  for (i = FP0_REGNUM; i <= LAST_FPU_CTRL_REGNUM; i++)
    i387_supply_register (i, fsave);
}

/* Fill register REGNUM (if it is a floating-point register) in *FSAVE
   with the value in GDB's register array.  If REGNUM is -1, do this
   for all registers.  This function doesn't touch any of the reserved
   bits in *FSAVE.  */

void
i387_fill_fsave (char *fsave, int regnum)
{
  int i;

  for (i = FP0_REGNUM; i <= LAST_FPU_CTRL_REGNUM; i++)
    if (regnum == -1 || regnum == i)
      {
	/* Most of the FPU control registers occupy only 16 bits in
           the fsave area.  Give those a special treatment.  */
	if (i >= FIRST_FPU_CTRL_REGNUM
	    && i != FCOFF_REGNUM && i != FDOFF_REGNUM)
	  {
	    if (i == FOP_REGNUM)
	      {
		unsigned short oldval, newval;

		/* The opcode occupies only 11 bits.  */
		oldval = (*(unsigned short *) (FSAVE_ADDR (fsave, i)));
		newval = *(unsigned short *) &registers[REGISTER_BYTE (i)];
		newval &= ((1 << 11) - 1);
		newval |= oldval & ~((1 << 11) - 1);
		memcpy (FSAVE_ADDR (fsave, i), &newval, 2);
	      }
	    else
	      memcpy (FSAVE_ADDR (fsave, i), &registers[REGISTER_BYTE (i)], 2);
	  }
	else
	  memcpy (FSAVE_ADDR (fsave, i), &registers[REGISTER_BYTE (i)],
		  REGISTER_RAW_SIZE (i));
      }
}


/* At fxsave_offset[REGNUM] you'll find the offset to the location in
   the data structure used by the "fxsave" instruction where GDB
   register REGNUM is stored.  */

static int fxsave_offset[] =
{
  32,				/* FP0_REGNUM through ...  */
  48,
  64,
  80,
  96,
  112,
  128,
  144,				/* ... FP7_REGNUM (80 bits each).  */
  0,				/* FCTRL_REGNUM (16 bits).  */
  2,				/* FSTAT_REGNUM (16 bits).  */
  4,				/* FTAG_REGNUM (16 bits).  */
  12,				/* FCS_REGNUM (16 bits).  */
  8,				/* FCOFF_REGNUM.  */
  20,				/* FDS_REGNUM (16 bits).  */
  16,				/* FDOFF_REGNUM.  */
  6,				/* FOP_REGNUM (bottom 11 bits).  */
  160,				/* XMM0_REGNUM through ...  */
  176,
  192,
  208,
  224,
  240,
  256,
  272,				/* ... XMM7_REGNUM (128 bits each).  */
  24,				/* MXCSR_REGNUM.  */
};

#define FXSAVE_ADDR(fxsave, regnum) \
  (fxsave + fxsave_offset[regnum - FP0_REGNUM])

static int i387_tag (unsigned char *raw);


/* Fill GDB's register array with the floating-point and SSE register
   values in *FXSAVE.  This function masks off any of the reserved
   bits in *FXSAVE.  */

void
i387_supply_fxsave (char *fxsave)
{
  int i;

  for (i = FP0_REGNUM; i <= MXCSR_REGNUM; i++)
    {
      /* Most of the FPU control registers occupy only 16 bits in
	 the fxsave area.  Give those a special treatment.  */
      if (i >= FIRST_FPU_CTRL_REGNUM && i < XMM0_REGNUM
	  && i != FCOFF_REGNUM && i != FDOFF_REGNUM)
	{
	  unsigned long val = *(unsigned short *) (FXSAVE_ADDR (fxsave, i));

	  if (i == FOP_REGNUM)
	    {
	      val &= ((1 << 11) - 1);
	      supply_register (i, (char *) &val);
	    }
	  else if (i== FTAG_REGNUM)
	    {
	      /* The fxsave area contains a simplified version of the
                 tag word.  We have to look at the actual 80-bit FP
                 data to recreate the traditional i387 tag word.  */

	      unsigned long ftag = 0;
	      unsigned long fstat;
	      int fpreg;
	      int top;

	      fstat = *(unsigned short *) (FXSAVE_ADDR (fxsave, FSTAT_REGNUM));
	      top = ((fstat >> 11) & 0x7);

	      for (fpreg = 7; fpreg >= 0; fpreg--)
		{
		  int tag;

		  if (val & (1 << fpreg))
		    {
		      int regnum = (fpreg + 8 - top) % 8 + FP0_REGNUM;
		      tag = i387_tag (FXSAVE_ADDR (fxsave, regnum));
		    }
		  else
		    tag = 3;		/* Empty */

		  ftag |= tag << (2 * fpreg);
		}
	      supply_register (i, (char *) &ftag);
	    }
	  else
	    supply_register (i, (char *) &val);
	}
      else
	supply_register (i, FXSAVE_ADDR (fxsave, i));
    }
}

/* Fill register REGNUM (if it is a floating-point or SSE register) in
   *FXSAVE with the value in GDB's register array.  If REGNUM is -1, do
   this for all registers.  This function doesn't touch any of the
   reserved bits in *FXSAVE.  */

void
i387_fill_fxsave (char *fxsave, int regnum)
{
  int i;

  for (i = FP0_REGNUM; i <= MXCSR_REGNUM; i++)
    if (regnum == -1 || regnum == i)
      {
	/* Most of the FPU control registers occupy only 16 bits in
           the fxsave area.  Give those a special treatment.  */
	if (i >= FIRST_FPU_CTRL_REGNUM && i < XMM0_REGNUM
	    && i != FCOFF_REGNUM && i != FDOFF_REGNUM)
	  {
	    if (i == FOP_REGNUM)
	      {
		unsigned short oldval, newval;

		/* The opcode occupies only 11 bits.  */
		oldval = (*(unsigned short *) (FXSAVE_ADDR (fxsave, i)));
		newval = *(unsigned short *) &registers[REGISTER_BYTE (i)];
		newval &= ((1 << 11) - 1);
		newval |= oldval & ~((1 << 11) - 1);
		memcpy (FXSAVE_ADDR (fxsave, i), &newval, 2);
	      }
	    else if (i == FTAG_REGNUM)
	      {
		/* Converting back is much easier.  */

		unsigned char val = 0;
		unsigned short ftag;
		int fpreg;

		ftag = *(unsigned short *) &registers[REGISTER_BYTE (i)];

		for (fpreg = 7; fpreg >= 0; fpreg--)
		  {
		    int tag = (ftag >> (fpreg * 2)) & 3;

		    if (tag != 3)
		      val |= (1 << (fpreg * 2));
		  }

		memcpy (FXSAVE_ADDR (fxsave, i), &val, 2);
	      }
	    else
	      memcpy (FXSAVE_ADDR (fxsave, i),
		      &registers[REGISTER_BYTE (i)], 2);
	  }
	else
	  memcpy (FXSAVE_ADDR (fxsave, i), &registers[REGISTER_BYTE (i)],
		  REGISTER_RAW_SIZE (i));
      }
}

/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
   *RAW.  */

static int
i387_tag (unsigned char *raw)
{
  int integer;
  unsigned int exponent;
  unsigned long fraction[2];

  integer = raw[7] & 0x80;
  exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
  fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
  fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
		 | (raw[5] << 8) | raw[4]);

  if (exponent == 0x7fff)
    {
      /* Special.  */
      return (2);
    }
  else if (exponent == 0x0000)
    {
      if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
	{
	  /* Zero.  */
	  return (1);
	}
      else
	{
	  /* Special.  */
	  return (2);
	}
    }
  else
    {
      if (integer)
	{
	  /* Valid.  */
	  return (0);
	}
      else
	{
	  /* Special.  */
	  return (2);
	}
    }
}