aboutsummaryrefslogtreecommitdiff
path: root/gdb/i386-tdep.c
blob: 91e57142e42ffcf83760963bc33ddb64f27e5317 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
/* Intel 386 target-dependent stuff.

   Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
   1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "gdb_string.h"
#include "frame.h"
#include "inferior.h"
#include "gdbcore.h"
#include "objfiles.h"
#include "target.h"
#include "floatformat.h"
#include "symfile.h"
#include "symtab.h"
#include "gdbcmd.h"
#include "command.h"
#include "arch-utils.h"
#include "regcache.h"
#include "doublest.h"
#include "value.h"
#include "gdb_assert.h"

#include "i386-tdep.h"
#include "i387-tdep.h"

/* Names of the registers.  The first 10 registers match the register
   numbering scheme used by GCC for stabs and DWARF.  */
static char *i386_register_names[] =
{
  "eax",   "ecx",    "edx",   "ebx",
  "esp",   "ebp",    "esi",   "edi",
  "eip",   "eflags", "cs",    "ss",
  "ds",    "es",     "fs",    "gs",
  "st0",   "st1",    "st2",   "st3",
  "st4",   "st5",    "st6",   "st7",
  "fctrl", "fstat",  "ftag",  "fiseg",
  "fioff", "foseg",  "fooff", "fop",
  "xmm0",  "xmm1",   "xmm2",  "xmm3",
  "xmm4",  "xmm5",   "xmm6",  "xmm7",
  "mxcsr"
};

/* MMX registers.  */

static char *i386_mmx_names[] =
{
  "mm0", "mm1", "mm2", "mm3",
  "mm4", "mm5", "mm6", "mm7"
};
static const int mmx_num_regs = (sizeof (i386_mmx_names)
				 / sizeof (i386_mmx_names[0]));
#define MM0_REGNUM (NUM_REGS)

static int
mmx_regnum_p (int reg)
{
  return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
}

/* Return the name of register REG.  */

const char *
i386_register_name (int reg)
{
  if (reg < 0)
    return NULL;
  if (mmx_regnum_p (reg))
    return i386_mmx_names[reg - MM0_REGNUM];
  if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
    return NULL;

  return i386_register_names[reg];
}

/* Convert stabs register number REG to the appropriate register
   number used by GDB.  */

static int
i386_stab_reg_to_regnum (int reg)
{
  /* This implements what GCC calls the "default" register map.  */
  if (reg >= 0 && reg <= 7)
    {
      /* General registers.  */
      return reg;
    }
  else if (reg >= 12 && reg <= 19)
    {
      /* Floating-point registers.  */
      return reg - 12 + FP0_REGNUM;
    }
  else if (reg >= 21 && reg <= 28)
    {
      /* SSE registers.  */
      return reg - 21 + XMM0_REGNUM;
    }
  else if (reg >= 29 && reg <= 36)
    {
      /* MMX registers.  */
      return reg - 29 + MM0_REGNUM;
    }

  /* This will hopefully provoke a warning.  */
  return NUM_REGS + NUM_PSEUDO_REGS;
}

/* Convert DWARF register number REG to the appropriate register
   number used by GDB.  */

static int
i386_dwarf_reg_to_regnum (int reg)
{
  /* The DWARF register numbering includes %eip and %eflags, and
     numbers the floating point registers differently.  */
  if (reg >= 0 && reg <= 9)
    {
      /* General registers.  */
      return reg;
    }
  else if (reg >= 11 && reg <= 18)
    {
      /* Floating-point registers.  */
      return reg - 11 + FP0_REGNUM;
    }
  else if (reg >= 21)
    {
      /* The SSE and MMX registers have identical numbers as in stabs.  */
      return i386_stab_reg_to_regnum (reg);
    }

  /* This will hopefully provoke a warning.  */
  return NUM_REGS + NUM_PSEUDO_REGS;
}


/* This is the variable that is set with "set disassembly-flavor", and
   its legitimate values.  */
static const char att_flavor[] = "att";
static const char intel_flavor[] = "intel";
static const char *valid_flavors[] =
{
  att_flavor,
  intel_flavor,
  NULL
};
static const char *disassembly_flavor = att_flavor;

/* Stdio style buffering was used to minimize calls to ptrace, but
   this buffering did not take into account that the code section
   being accessed may not be an even number of buffers long (even if
   the buffer is only sizeof(int) long).  In cases where the code
   section size happened to be a non-integral number of buffers long,
   attempting to read the last buffer would fail.  Simply using
   target_read_memory and ignoring errors, rather than read_memory, is
   not the correct solution, since legitimate access errors would then
   be totally ignored.  To properly handle this situation and continue
   to use buffering would require that this code be able to determine
   the minimum code section size granularity (not the alignment of the
   section itself, since the actual failing case that pointed out this
   problem had a section alignment of 4 but was not a multiple of 4
   bytes long), on a target by target basis, and then adjust it's
   buffer size accordingly.  This is messy, but potentially feasible.
   It probably needs the bfd library's help and support.  For now, the
   buffer size is set to 1.  (FIXME -fnf) */

#define CODESTREAM_BUFSIZ 1	/* Was sizeof(int), see note above.  */
static CORE_ADDR codestream_next_addr;
static CORE_ADDR codestream_addr;
static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
static int codestream_off;
static int codestream_cnt;

#define codestream_tell() (codestream_addr + codestream_off)
#define codestream_peek() \
  (codestream_cnt == 0 ? \
   codestream_fill(1) : codestream_buf[codestream_off])
#define codestream_get() \
  (codestream_cnt-- == 0 ? \
   codestream_fill(0) : codestream_buf[codestream_off++])

static unsigned char
codestream_fill (int peek_flag)
{
  codestream_addr = codestream_next_addr;
  codestream_next_addr += CODESTREAM_BUFSIZ;
  codestream_off = 0;
  codestream_cnt = CODESTREAM_BUFSIZ;
  read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);

  if (peek_flag)
    return (codestream_peek ());
  else
    return (codestream_get ());
}

static void
codestream_seek (CORE_ADDR place)
{
  codestream_next_addr = place / CODESTREAM_BUFSIZ;
  codestream_next_addr *= CODESTREAM_BUFSIZ;
  codestream_cnt = 0;
  codestream_fill (1);
  while (codestream_tell () != place)
    codestream_get ();
}

static void
codestream_read (unsigned char *buf, int count)
{
  unsigned char *p;
  int i;
  p = buf;
  for (i = 0; i < count; i++)
    *p++ = codestream_get ();
}


/* If the next instruction is a jump, move to its target.  */

static void
i386_follow_jump (void)
{
  unsigned char buf[4];
  long delta;

  int data16;
  CORE_ADDR pos;

  pos = codestream_tell ();

  data16 = 0;
  if (codestream_peek () == 0x66)
    {
      codestream_get ();
      data16 = 1;
    }

  switch (codestream_get ())
    {
    case 0xe9:
      /* Relative jump: if data16 == 0, disp32, else disp16.  */
      if (data16)
	{
	  codestream_read (buf, 2);
	  delta = extract_signed_integer (buf, 2);

	  /* Include the size of the jmp instruction (including the
             0x66 prefix).  */
	  pos += delta + 4;
	}
      else
	{
	  codestream_read (buf, 4);
	  delta = extract_signed_integer (buf, 4);

	  pos += delta + 5;
	}
      break;
    case 0xeb:
      /* Relative jump, disp8 (ignore data16).  */
      codestream_read (buf, 1);
      /* Sign-extend it.  */
      delta = extract_signed_integer (buf, 1);

      pos += delta + 2;
      break;
    }
  codestream_seek (pos);
}

/* Find & return the amount a local space allocated, and advance the
   codestream to the first register push (if any).

   If the entry sequence doesn't make sense, return -1, and leave
   codestream pointer at a random spot.  */

static long
i386_get_frame_setup (CORE_ADDR pc)
{
  unsigned char op;

  codestream_seek (pc);

  i386_follow_jump ();

  op = codestream_get ();

  if (op == 0x58)		/* popl %eax */
    {
      /* This function must start with

	    popl %eax             0x58
            xchgl %eax, (%esp)    0x87 0x04 0x24
         or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00

	 (the System V compiler puts out the second `xchg'
	 instruction, and the assembler doesn't try to optimize it, so
	 the 'sib' form gets generated).  This sequence is used to get
	 the address of the return buffer for a function that returns
	 a structure.  */
      int pos;
      unsigned char buf[4];
      static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
      static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };

      pos = codestream_tell ();
      codestream_read (buf, 4);
      if (memcmp (buf, proto1, 3) == 0)
	pos += 3;
      else if (memcmp (buf, proto2, 4) == 0)
	pos += 4;

      codestream_seek (pos);
      op = codestream_get ();	/* Update next opcode.  */
    }

  if (op == 0x68 || op == 0x6a)
    {
      /* This function may start with

            pushl constant
            call _probe
	    addl $4, %esp
	   
	 followed by

            pushl %ebp

	 etc.  */
      int pos;
      unsigned char buf[8];

      /* Skip past the `pushl' instruction; it has either a one-byte 
         or a four-byte operand, depending on the opcode.  */
      pos = codestream_tell ();
      if (op == 0x68)
	pos += 4;
      else
	pos += 1;
      codestream_seek (pos);

      /* Read the following 8 bytes, which should be "call _probe" (6
         bytes) followed by "addl $4,%esp" (2 bytes).  */
      codestream_read (buf, sizeof (buf));
      if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
	pos += sizeof (buf);
      codestream_seek (pos);
      op = codestream_get ();	/* Update next opcode.  */
    }

  if (op == 0x55)		/* pushl %ebp */
    {
      /* Check for "movl %esp, %ebp" -- can be written in two ways.  */
      switch (codestream_get ())
	{
	case 0x8b:
	  if (codestream_get () != 0xec)
	    return -1;
	  break;
	case 0x89:
	  if (codestream_get () != 0xe5)
	    return -1;
	  break;
	default:
	  return -1;
	}
      /* Check for stack adjustment 

           subl $XXX, %esp

	 NOTE: You can't subtract a 16 bit immediate from a 32 bit
	 reg, so we don't have to worry about a data16 prefix.  */
      op = codestream_peek ();
      if (op == 0x83)
	{
	  /* `subl' with 8 bit immediate.  */
	  codestream_get ();
	  if (codestream_get () != 0xec)
	    /* Some instruction starting with 0x83 other than `subl'.  */
	    {
	      codestream_seek (codestream_tell () - 2);
	      return 0;
	    }
	  /* `subl' with signed byte immediate (though it wouldn't
	     make sense to be negative).  */
	  return (codestream_get ());
	}
      else if (op == 0x81)
	{
	  char buf[4];
	  /* Maybe it is `subl' with a 32 bit immedediate.  */
	  codestream_get ();
	  if (codestream_get () != 0xec)
	    /* Some instruction starting with 0x81 other than `subl'.  */
	    {
	      codestream_seek (codestream_tell () - 2);
	      return 0;
	    }
	  /* It is `subl' with a 32 bit immediate.  */
	  codestream_read ((unsigned char *) buf, 4);
	  return extract_signed_integer (buf, 4);
	}
      else
	{
	  return 0;
	}
    }
  else if (op == 0xc8)
    {
      char buf[2];
      /* `enter' with 16 bit unsigned immediate.  */
      codestream_read ((unsigned char *) buf, 2);
      codestream_get ();	/* Flush final byte of enter instruction.  */
      return extract_unsigned_integer (buf, 2);
    }
  return (-1);
}

/* Signal trampolines don't have a meaningful frame.  The frame
   pointer value we use is actually the frame pointer of the calling
   frame -- that is, the frame which was in progress when the signal
   trampoline was entered.  GDB mostly treats this frame pointer value
   as a magic cookie.  We detect the case of a signal trampoline by
   looking at the SIGNAL_HANDLER_CALLER field, which is set based on
   PC_IN_SIGTRAMP.

   When a signal trampoline is invoked from a frameless function, we
   essentially have two frameless functions in a row.  In this case,
   we use the same magic cookie for three frames in a row.  We detect
   this case by seeing whether the next frame has
   SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
   current frame is actually frameless.  In this case, we need to get
   the PC by looking at the SP register value stored in the signal
   context.

   This should work in most cases except in horrible situations where
   a signal occurs just as we enter a function but before the frame
   has been set up.  Incidentally, that's just what happens when we
   call a function from GDB with a signal pending (there's a test in
   the testsuite that makes this happen).  Therefore we pretend that
   we have a frameless function if we're stopped at the start of a
   function.  */

/* Return non-zero if we're dealing with a frameless signal, that is,
   a signal trampoline invoked from a frameless function.  */

static int
i386_frameless_signal_p (struct frame_info *frame)
{
  return (frame->next && frame->next->signal_handler_caller
	  && (frameless_look_for_prologue (frame)
	      || frame->pc == get_pc_function_start (frame->pc)));
}

/* Return the chain-pointer for FRAME.  In the case of the i386, the
   frame's nominal address is the address of a 4-byte word containing
   the calling frame's address.  */

static CORE_ADDR
i386_frame_chain (struct frame_info *frame)
{
  if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
    return frame->frame;

  if (frame->signal_handler_caller
      || i386_frameless_signal_p (frame))
    return frame->frame;

  if (! inside_entry_file (frame->pc))
    return read_memory_unsigned_integer (frame->frame, 4);

  return 0;
}

/* Determine whether the function invocation represented by FRAME does
   not have a from on the stack associated with it.  If it does not,
   return non-zero, otherwise return zero.  */

static int
i386_frameless_function_invocation (struct frame_info *frame)
{
  if (frame->signal_handler_caller)
    return 0;

  return frameless_look_for_prologue (frame);
}

/* Assuming FRAME is for a sigtramp routine, return the saved program
   counter.  */

static CORE_ADDR
i386_sigtramp_saved_pc (struct frame_info *frame)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  CORE_ADDR addr;

  addr = tdep->sigcontext_addr (frame);
  return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
}

/* Assuming FRAME is for a sigtramp routine, return the saved stack
   pointer.  */

static CORE_ADDR
i386_sigtramp_saved_sp (struct frame_info *frame)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  CORE_ADDR addr;

  addr = tdep->sigcontext_addr (frame);
  return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
}

/* Return the saved program counter for FRAME.  */

static CORE_ADDR
i386_frame_saved_pc (struct frame_info *frame)
{
  if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
    {
      ULONGEST pc;

      frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
      return pc;
    }

  if (frame->signal_handler_caller)
    return i386_sigtramp_saved_pc (frame);

  if (i386_frameless_signal_p (frame))
    {
      CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
      return read_memory_unsigned_integer (sp, 4);
    }

  return read_memory_unsigned_integer (frame->frame + 4, 4);
}

/* Immediately after a function call, return the saved pc.  */

static CORE_ADDR
i386_saved_pc_after_call (struct frame_info *frame)
{
  if (frame->signal_handler_caller)
    return i386_sigtramp_saved_pc (frame);

  return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
}

/* Return number of args passed to a frame.
   Can return -1, meaning no way to tell.  */

static int
i386_frame_num_args (struct frame_info *fi)
{
#if 1
  return -1;
#else
  /* This loses because not only might the compiler not be popping the
     args right after the function call, it might be popping args from
     both this call and a previous one, and we would say there are
     more args than there really are.  */

  int retpc;
  unsigned char op;
  struct frame_info *pfi;

  /* On the i386, the instruction following the call could be:
     popl %ecx        -  one arg
     addl $imm, %esp  -  imm/4 args; imm may be 8 or 32 bits
     anything else    -  zero args.  */

  int frameless;

  frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
  if (frameless)
    /* In the absence of a frame pointer, GDB doesn't get correct
       values for nameless arguments.  Return -1, so it doesn't print
       any nameless arguments.  */
    return -1;

  pfi = get_prev_frame (fi);
  if (pfi == 0)
    {
      /* NOTE: This can happen if we are looking at the frame for
         main, because FRAME_CHAIN_VALID won't let us go into start.
         If we have debugging symbols, that's not really a big deal;
         it just means it will only show as many arguments to main as
         are declared.  */
      return -1;
    }
  else
    {
      retpc = pfi->pc;
      op = read_memory_integer (retpc, 1);
      if (op == 0x59)		/* pop %ecx */
	return 1;
      else if (op == 0x83)
	{
	  op = read_memory_integer (retpc + 1, 1);
	  if (op == 0xc4)
	    /* addl $<signed imm 8 bits>, %esp */
	    return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
	  else
	    return 0;
	}
      else if (op == 0x81)	/* `add' with 32 bit immediate.  */
	{
	  op = read_memory_integer (retpc + 1, 1);
	  if (op == 0xc4)
	    /* addl $<imm 32>, %esp */
	    return read_memory_integer (retpc + 2, 4) / 4;
	  else
	    return 0;
	}
      else
	{
	  return 0;
	}
    }
#endif
}

/* Parse the first few instructions the function to see what registers
   were stored.
   
   We handle these cases:

   The startup sequence can be at the start of the function, or the
   function can start with a branch to startup code at the end.

   %ebp can be set up with either the 'enter' instruction, or "pushl
   %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
   once used in the System V compiler).

   Local space is allocated just below the saved %ebp by either the
   'enter' instruction, or by "subl $<size>, %esp".  'enter' has a 16
   bit unsigned argument for space to allocate, and the 'addl'
   instruction could have either a signed byte, or 32 bit immediate.

   Next, the registers used by this function are pushed.  With the
   System V compiler they will always be in the order: %edi, %esi,
   %ebx (and sometimes a harmless bug causes it to also save but not
   restore %eax); however, the code below is willing to see the pushes
   in any order, and will handle up to 8 of them.
 
   If the setup sequence is at the end of the function, then the next
   instruction will be a branch back to the start.  */

static void
i386_frame_init_saved_regs (struct frame_info *fip)
{
  long locals = -1;
  unsigned char op;
  CORE_ADDR addr;
  CORE_ADDR pc;
  int i;

  if (fip->saved_regs)
    return;

  frame_saved_regs_zalloc (fip);

  pc = get_pc_function_start (fip->pc);
  if (pc != 0)
    locals = i386_get_frame_setup (pc);

  if (locals >= 0)
    {
      addr = fip->frame - 4 - locals;
      for (i = 0; i < 8; i++)
	{
	  op = codestream_get ();
	  if (op < 0x50 || op > 0x57)
	    break;
#ifdef I386_REGNO_TO_SYMMETRY
	  /* Dynix uses different internal numbering.  Ick.  */
	  fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
#else
	  fip->saved_regs[op - 0x50] = addr;
#endif
	  addr -= 4;
	}
    }

  fip->saved_regs[PC_REGNUM] = fip->frame + 4;
  fip->saved_regs[FP_REGNUM] = fip->frame;
}

/* Return PC of first real instruction.  */

static CORE_ADDR
i386_skip_prologue (CORE_ADDR pc)
{
  unsigned char op;
  int i;
  static unsigned char pic_pat[6] =
  { 0xe8, 0, 0, 0, 0,		/* call   0x0 */
    0x5b,			/* popl   %ebx */
  };
  CORE_ADDR pos;

  if (i386_get_frame_setup (pc) < 0)
    return (pc);

  /* Found valid frame setup -- codestream now points to start of push
     instructions for saving registers.  */

  /* Skip over register saves.  */
  for (i = 0; i < 8; i++)
    {
      op = codestream_peek ();
      /* Break if not `pushl' instrunction.  */
      if (op < 0x50 || op > 0x57)
	break;
      codestream_get ();
    }

  /* The native cc on SVR4 in -K PIC mode inserts the following code
     to get the address of the global offset table (GOT) into register
     %ebx
     
        call	0x0
	popl    %ebx
        movl    %ebx,x(%ebp)    (optional)
        addl    y,%ebx

     This code is with the rest of the prologue (at the end of the
     function), so we have to skip it to get to the first real
     instruction at the start of the function.  */

  pos = codestream_tell ();
  for (i = 0; i < 6; i++)
    {
      op = codestream_get ();
      if (pic_pat[i] != op)
	break;
    }
  if (i == 6)
    {
      unsigned char buf[4];
      long delta = 6;

      op = codestream_get ();
      if (op == 0x89)		/* movl %ebx, x(%ebp) */
	{
	  op = codestream_get ();
	  if (op == 0x5d)	/* One byte offset from %ebp.  */
	    {
	      delta += 3;
	      codestream_read (buf, 1);
	    }
	  else if (op == 0x9d)	/* Four byte offset from %ebp.  */
	    {
	      delta += 6;
	      codestream_read (buf, 4);
	    }
	  else			/* Unexpected instruction.  */
	    delta = -1;
	  op = codestream_get ();
	}
      /* addl y,%ebx */
      if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
	{
	  pos += delta + 6;
	}
    }
  codestream_seek (pos);

  i386_follow_jump ();

  return (codestream_tell ());
}

/* Use the program counter to determine the contents and size of a
   breakpoint instruction.  Return a pointer to a string of bytes that
   encode a breakpoint instruction, store the length of the string in
   *LEN and optionally adjust *PC to point to the correct memory
   location for inserting the breakpoint.

   On the i386 we have a single breakpoint that fits in a single byte
   and can be inserted anywhere.  */
   
static const unsigned char *
i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
{
  static unsigned char break_insn[] = { 0xcc };	/* int 3 */
  
  *len = sizeof (break_insn);
  return break_insn;
}

/* Push the return address (pointing to the call dummy) onto the stack
   and return the new value for the stack pointer.  */

static CORE_ADDR
i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
  char buf[4];

  store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
  write_memory (sp - 4, buf, 4);
  return sp - 4;
}

static void
i386_do_pop_frame (struct frame_info *frame)
{
  CORE_ADDR fp;
  int regnum;
  char regbuf[I386_MAX_REGISTER_SIZE];

  fp = FRAME_FP (frame);
  i386_frame_init_saved_regs (frame);

  for (regnum = 0; regnum < NUM_REGS; regnum++)
    {
      CORE_ADDR addr;
      addr = frame->saved_regs[regnum];
      if (addr)
	{
	  read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
	  deprecated_write_register_gen (regnum, regbuf);
	}
    }
  write_register (FP_REGNUM, read_memory_integer (fp, 4));
  write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
  write_register (SP_REGNUM, fp + 8);
  flush_cached_frames ();
}

static void
i386_pop_frame (void)
{
  generic_pop_current_frame (i386_do_pop_frame);
}


/* Figure out where the longjmp will land.  Slurp the args out of the
   stack.  We expect the first arg to be a pointer to the jmp_buf
   structure from which we extract the address that we will land at.
   This address is copied into PC.  This routine returns true on
   success.  */

static int
i386_get_longjmp_target (CORE_ADDR *pc)
{
  char buf[4];
  CORE_ADDR sp, jb_addr;
  int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;

  /* If JB_PC_OFFSET is -1, we have no way to find out where the
     longjmp will land.  */
  if (jb_pc_offset == -1)
    return 0;

  sp = read_register (SP_REGNUM);
  if (target_read_memory (sp + 4, buf, 4))
    return 0;

  jb_addr = extract_address (buf, 4);
  if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
    return 0;

  *pc = extract_address (buf, 4);
  return 1;
}


static CORE_ADDR
i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
		     int struct_return, CORE_ADDR struct_addr)
{
  sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
  
  if (struct_return)
    {
      char buf[4];

      sp -= 4;
      store_address (buf, 4, struct_addr);
      write_memory (sp, buf, 4);
    }

  return sp;
}

static void
i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  /* Do nothing.  Everything was already done by i386_push_arguments.  */
}

/* These registers are used for returning integers (and on some
   targets also for returning `struct' and `union' values when their
   size and alignment match an integer type).  */
#define LOW_RETURN_REGNUM 0	/* %eax */
#define HIGH_RETURN_REGNUM 2	/* %edx */

/* Extract from an array REGBUF containing the (raw) register state, a
   function return value of TYPE, and copy that, in virtual format,
   into VALBUF.  */

static void
i386_extract_return_value (struct type *type, struct regcache *regcache,
			   void *dst)
{
  bfd_byte *valbuf = dst;
  int len = TYPE_LENGTH (type);
  char buf[I386_MAX_REGISTER_SIZE];

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      && TYPE_NFIELDS (type) == 1)
    {
      i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
      return;
    }

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      if (FP0_REGNUM == 0)
	{
	  warning ("Cannot find floating-point return value.");
	  memset (valbuf, 0, len);
	  return;
	}

      /* Floating-point return values can be found in %st(0).  Convert
	 its contents to the desired type.  This is probably not
	 exactly how it would happen on the target itself, but it is
	 the best we can do.  */
      regcache_raw_read (regcache, FP0_REGNUM, buf);
      convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
    }
  else
    {
      int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
      int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);

      if (len <= low_size)
	{
	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
	  memcpy (valbuf, buf, len);
	}
      else if (len <= (low_size + high_size))
	{
	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
	  memcpy (valbuf, buf, low_size);
	  regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
	  memcpy (valbuf + low_size, buf, len - low_size);
	}
      else
	internal_error (__FILE__, __LINE__,
			"Cannot extract return value of %d bytes long.", len);
    }
}

/* Write into the appropriate registers a function return value stored
   in VALBUF of type TYPE, given in virtual format.  */

static void
i386_store_return_value (struct type *type, struct regcache *regcache,
			 const void *valbuf)
{
  int len = TYPE_LENGTH (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      && TYPE_NFIELDS (type) == 1)
    {
      i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
      return;
    }

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      ULONGEST fstat;
      char buf[FPU_REG_RAW_SIZE];

      if (FP0_REGNUM == 0)
	{
	  warning ("Cannot set floating-point return value.");
	  return;
	}

      /* Returning floating-point values is a bit tricky.  Apart from
         storing the return value in %st(0), we have to simulate the
         state of the FPU at function return point.  */

      /* Convert the value found in VALBUF to the extended
	 floating-point format used by the FPU.  This is probably
	 not exactly how it would happen on the target itself, but
	 it is the best we can do.  */
      convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
      regcache_raw_write (regcache, FP0_REGNUM, buf);

      /* Set the top of the floating-point register stack to 7.  The
         actual value doesn't really matter, but 7 is what a normal
         function return would end up with if the program started out
         with a freshly initialized FPU.  */
      regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
      fstat |= (7 << 11);
      regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);

      /* Mark %st(1) through %st(7) as empty.  Since we set the top of
         the floating-point register stack to 7, the appropriate value
         for the tag word is 0x3fff.  */
      regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
    }
  else
    {
      int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
      int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);

      if (len <= low_size)
	regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
      else if (len <= (low_size + high_size))
	{
	  regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
	  regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
				   len - low_size, (char *) valbuf + low_size);
	}
      else
	internal_error (__FILE__, __LINE__,
			"Cannot store return value of %d bytes long.", len);
    }
}

/* Extract from REGCACHE, which contains the (raw) register state, the
   address in which a function should return its structure value, as a
   CORE_ADDR.  */

static CORE_ADDR
i386_extract_struct_value_address (struct regcache *regcache)
{
  ULONGEST addr;

  regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
  return addr;
}


/* This is the variable that is set with "set struct-convention", and
   its legitimate values.  */
static const char default_struct_convention[] = "default";
static const char pcc_struct_convention[] = "pcc";
static const char reg_struct_convention[] = "reg";
static const char *valid_conventions[] =
{
  default_struct_convention,
  pcc_struct_convention,
  reg_struct_convention,
  NULL
};
static const char *struct_convention = default_struct_convention;

static int
i386_use_struct_convention (int gcc_p, struct type *type)
{
  enum struct_return struct_return;

  if (struct_convention == default_struct_convention)
    struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
  else if (struct_convention == pcc_struct_convention)
    struct_return = pcc_struct_return;
  else
    struct_return = reg_struct_return;

  return generic_use_struct_convention (struct_return == reg_struct_return,
					type);
}


/* Return the GDB type object for the "standard" data type of data in
   register REGNUM.  Perhaps %esi and %edi should go here, but
   potentially they could be used for things other than address.  */

static struct type *
i386_register_virtual_type (int regnum)
{
  if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
    return lookup_pointer_type (builtin_type_void);

  if (FP_REGNUM_P (regnum))
    return builtin_type_i387_ext;

  if (SSE_REGNUM_P (regnum))
    return builtin_type_vec128i;

  if (mmx_regnum_p (regnum))
    return builtin_type_vec64i;

  return builtin_type_int;
}

/* Map a cooked register onto a raw register or memory.  For the i386,
   the MMX registers need to be mapped onto floating point registers.  */

static int
mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
{
  int mmxi;
  ULONGEST fstat;
  int tos;
  int fpi;
  mmxi = regnum - MM0_REGNUM;
  regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
  tos = (fstat >> 11) & 0x7;
  fpi = (mmxi + tos) % 8;
  return (FP0_REGNUM + fpi);
}

static void
i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int regnum, void *buf)
{
  if (mmx_regnum_p (regnum))
    {
      char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
      int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
      regcache_raw_read (regcache, fpnum, mmx_buf);
      /* Extract (always little endian).  */
      memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
    }
  else
    regcache_raw_read (regcache, regnum, buf);
}

static void
i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int regnum, const void *buf)
{
  if (mmx_regnum_p (regnum))
    {
      char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
      int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
      /* Read ...  */
      regcache_raw_read (regcache, fpnum, mmx_buf);
      /* ... Modify ... (always little endian).  */
      memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
      /* ... Write.  */
      regcache_raw_write (regcache, fpnum, mmx_buf);
    }
  else
    regcache_raw_write (regcache, regnum, buf);
}

/* Return true iff register REGNUM's virtual format is different from
   its raw format.  Note that this definition assumes that the host
   supports IEEE 32-bit floats, since it doesn't say that SSE
   registers need conversion.  Even if we can't find a counterexample,
   this is still sloppy.  */

static int
i386_register_convertible (int regnum)
{
  return FP_REGNUM_P (regnum);
}

/* Convert data from raw format for register REGNUM in buffer FROM to
   virtual format with type TYPE in buffer TO.  */

static void
i386_register_convert_to_virtual (int regnum, struct type *type,
				  char *from, char *to)
{
  gdb_assert (FP_REGNUM_P (regnum));

  /* We only support floating-point values.  */
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
    {
      warning ("Cannot convert floating-point register value "
	       "to non-floating-point type.");
      memset (to, 0, TYPE_LENGTH (type));
      return;
    }

  /* Convert to TYPE.  This should be a no-op if TYPE is equivalent to
     the extended floating-point format used by the FPU.  */
  convert_typed_floating (from, builtin_type_i387_ext, to, type);
}

/* Convert data from virtual format with type TYPE in buffer FROM to
   raw format for register REGNUM in buffer TO.  */

static void
i386_register_convert_to_raw (struct type *type, int regnum,
			      char *from, char *to)
{
  gdb_assert (FP_REGNUM_P (regnum));

  /* We only support floating-point values.  */
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
    {
      warning ("Cannot convert non-floating-point type "
	       "to floating-point register value.");
      memset (to, 0, TYPE_LENGTH (type));
      return;
    }

  /* Convert from TYPE.  This should be a no-op if TYPE is equivalent
     to the extended floating-point format used by the FPU.  */
  convert_typed_floating (from, type, to, builtin_type_i387_ext);
}
     

#ifdef STATIC_TRANSFORM_NAME
/* SunPRO encodes the static variables.  This is not related to C++
   mangling, it is done for C too.  */

char *
sunpro_static_transform_name (char *name)
{
  char *p;
  if (IS_STATIC_TRANSFORM_NAME (name))
    {
      /* For file-local statics there will be a period, a bunch of
         junk (the contents of which match a string given in the
         N_OPT), a period and the name.  For function-local statics
         there will be a bunch of junk (which seems to change the
         second character from 'A' to 'B'), a period, the name of the
         function, and the name.  So just skip everything before the
         last period.  */
      p = strrchr (name, '.');
      if (p != NULL)
	name = p + 1;
    }
  return name;
}
#endif /* STATIC_TRANSFORM_NAME */


/* Stuff for WIN32 PE style DLL's but is pretty generic really.  */

CORE_ADDR
i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
{
  if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
    {
      unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
      struct minimal_symbol *indsym =
	indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
      char *symname = indsym ? SYMBOL_NAME (indsym) : 0;

      if (symname)
	{
	  if (strncmp (symname, "__imp_", 6) == 0
	      || strncmp (symname, "_imp_", 5) == 0)
	    return name ? 1 : read_memory_unsigned_integer (indirect, 4);
	}
    }
  return 0;			/* Not a trampoline.  */
}


/* Return non-zero if PC and NAME show that we are in a signal
   trampoline.  */

static int
i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
{
  return (name && strcmp ("_sigtramp", name) == 0);
}


/* We have two flavours of disassembly.  The machinery on this page
   deals with switching between those.  */

static int
i386_print_insn (bfd_vma pc, disassemble_info *info)
{
  gdb_assert (disassembly_flavor == att_flavor
	      || disassembly_flavor == intel_flavor);

  /* FIXME: kettenis/20020915: Until disassembler_options is properly
     constified, cast to prevent a compiler warning.  */
  info->disassembler_options = (char *) disassembly_flavor;
  info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;

  return print_insn_i386 (pc, info);
}


/* There are a few i386 architecture variants that differ only
   slightly from the generic i386 target.  For now, we don't give them
   their own source file, but include them here.  As a consequence,
   they'll always be included.  */

/* System V Release 4 (SVR4).  */

static int
i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
{
  return (name && (strcmp ("_sigreturn", name) == 0
		   || strcmp ("_sigacthandler", name) == 0
		   || strcmp ("sigvechandler", name) == 0));
}

/* Get address of the pushed ucontext (sigcontext) on the stack for
   all three variants of SVR4 sigtramps.  */

static CORE_ADDR
i386_svr4_sigcontext_addr (struct frame_info *frame)
{
  int sigcontext_offset = -1;
  char *name = NULL;

  find_pc_partial_function (frame->pc, &name, NULL, NULL);
  if (name)
    {
      if (strcmp (name, "_sigreturn") == 0)
	sigcontext_offset = 132;
      else if (strcmp (name, "_sigacthandler") == 0)
	sigcontext_offset = 80;
      else if (strcmp (name, "sigvechandler") == 0)
	sigcontext_offset = 120;
    }

  gdb_assert (sigcontext_offset != -1);

  if (frame->next)
    return frame->next->frame + sigcontext_offset;
  return read_register (SP_REGNUM) + sigcontext_offset;
}


/* DJGPP.  */

static int
i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
{
  /* DJGPP doesn't have any special frames for signal handlers.  */
  return 0;
}


/* Generic ELF.  */

void
i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  /* We typically use stabs-in-ELF with the DWARF register numbering.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
}

/* System V Release 4 (SVR4).  */

void
i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* System V Release 4 uses ELF.  */
  i386_elf_init_abi (info, gdbarch);

  /* System V Release 4 has shared libraries.  */
  set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);

  /* FIXME: kettenis/20020511: Why do we override this function here?  */
  set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);

  set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
  tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
  tdep->sc_pc_offset = 14 * 4;
  tdep->sc_sp_offset = 7 * 4;

  tdep->jb_pc_offset = 20;
}

/* DJGPP.  */

static void
i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);

  tdep->jb_pc_offset = 36;
}

/* NetWare.  */

static void
i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* FIXME: kettenis/20020511: Why do we override this function here?  */
  set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);

  tdep->jb_pc_offset = 24;
}


static struct gdbarch *
i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch_tdep *tdep;
  struct gdbarch *gdbarch;
  enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;

  /* Try to determine the OS ABI of the object we're loading.  */
  if (info.abfd != NULL)
    osabi = gdbarch_lookup_osabi (info.abfd);

  /* Find a candidate among extant architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* Make sure the OS ABI selection matches.  */
      tdep = gdbarch_tdep (arches->gdbarch);
      if (tdep && tdep->osabi == osabi)
        return arches->gdbarch;
    }

  /* Allocate space for the new architecture.  */
  tdep = XMALLOC (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  tdep->osabi = osabi;

  /* The i386 default settings don't include the SSE registers.
     FIXME: kettenis/20020614: They do include the FPU registers for
     now, which probably is not quite right.  */
  tdep->num_xmm_regs = 0;

  tdep->jb_pc_offset = -1;
  tdep->struct_return = pcc_struct_return;
  tdep->sigtramp_start = 0;
  tdep->sigtramp_end = 0;
  tdep->sigcontext_addr = NULL;
  tdep->sc_pc_offset = -1;
  tdep->sc_sp_offset = -1;

  /* The format used for `long double' on almost all i386 targets is
     the i387 extended floating-point format.  In fact, of all targets
     in the GCC 2.95 tree, only OSF/1 does it different, and insists
     on having a `long double' that's not `long' at all.  */
  set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);

  /* Although the i387 extended floating-point has only 80 significant
     bits, a `long double' actually takes up 96, probably to enforce
     alignment.  */
  set_gdbarch_long_double_bit (gdbarch, 96);

  /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
     tm-symmetry.h currently override this.  Sigh.  */
  set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);

  set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
  set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
  set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
  set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
  set_gdbarch_fp0_regnum (gdbarch, 16);	/* %st(0) */

  /* Use the "default" register numbering scheme for stabs and COFF.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
  set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);

  /* Use the DWARF register numbering scheme for DWARF and DWARF 2.  */
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);

  /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
     be in use on any of the supported i386 targets.  */

  set_gdbarch_register_name (gdbarch, i386_register_name);
  set_gdbarch_register_size (gdbarch, 4);
  set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
  set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
  set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
  set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);

  set_gdbarch_print_float_info (gdbarch, i387_print_float_info);

  set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);

  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);

  /* Call dummy code.  */
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_call_dummy_words (gdbarch, NULL);
  set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);

  set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
  set_gdbarch_register_convert_to_virtual (gdbarch,
					   i386_register_convert_to_virtual);
  set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);

  set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);

  set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);

  /* "An argument's size is increased, if necessary, to make it a
     multiple of [32-bit] words.  This may require tail padding,
     depending on the size of the argument" -- from the x86 ABI.  */
  set_gdbarch_parm_boundary (gdbarch, 32);

  set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
  set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
  set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
  set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
  set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
  set_gdbarch_extract_struct_value_address (gdbarch,
					    i386_extract_struct_value_address);
  set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);

  set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
  set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);

  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
  set_gdbarch_decr_pc_after_break (gdbarch, 1);
  set_gdbarch_function_start_offset (gdbarch, 0);

  /* The following redefines make backtracing through sigtramp work.
     They manufacture a fake sigtramp frame and obtain the saved pc in
     sigtramp from the sigcontext structure which is pushed by the
     kernel on the user stack, along with a pointer to it.  */

  set_gdbarch_frame_args_skip (gdbarch, 8);
  set_gdbarch_frameless_function_invocation (gdbarch,
                                           i386_frameless_function_invocation);
  set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
  set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
  set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
  set_gdbarch_frame_args_address (gdbarch, default_frame_address);
  set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
  set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
  set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
  set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);

  /* Wire in the MMX registers.  */
  set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
  set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);

  set_gdbarch_print_insn (gdbarch, i386_print_insn);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch, osabi);

  return gdbarch;
}

static enum gdb_osabi
i386_coff_osabi_sniffer (bfd *abfd)
{
  if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
      || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
    return GDB_OSABI_GO32;

  return GDB_OSABI_UNKNOWN;
}

static enum gdb_osabi
i386_nlm_osabi_sniffer (bfd *abfd)
{
  return GDB_OSABI_NETWARE;
}


/* Provide a prototype to silence -Wmissing-prototypes.  */
void _initialize_i386_tdep (void);

void
_initialize_i386_tdep (void)
{
  register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);

  /* Add the variable that controls the disassembly flavor.  */
  {
    struct cmd_list_element *new_cmd;

    new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
				valid_flavors,
				&disassembly_flavor,
				"\
Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
and the default value is \"att\".",
				&setlist);
    add_show_from_set (new_cmd, &showlist);
  }

  /* Add the variable that controls the convention for returning
     structs.  */
  {
    struct cmd_list_element *new_cmd;

    new_cmd = add_set_enum_cmd ("struct-convention", no_class,
				valid_conventions,
				&struct_convention, "\
Set the convention for returning small structs, valid values \
are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
                                &setlist);
    add_show_from_set (new_cmd, &showlist);
  }

  gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
				  i386_coff_osabi_sniffer);
  gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
				  i386_nlm_osabi_sniffer);

  gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
			  i386_svr4_init_abi);
  gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
			  i386_go32_init_abi);
  gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
			  i386_nw_init_abi);
}