aboutsummaryrefslogtreecommitdiff
path: root/gdb/i386-tdep.c
blob: 1fbf76ab966e9925f6375ecec68c975a734587d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
/* Intel 386 target-dependent stuff.
   Copyright (C) 1988, 1989, 1991, 1994, 1995, 1996, 1998
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "gdb_string.h"
#include "frame.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include "floatformat.h"
#include "symtab.h"
#include "gdbcmd.h"
#include "command.h"

static long i386_get_frame_setup PARAMS ((CORE_ADDR));

static void i386_follow_jump PARAMS ((void));

static void codestream_read PARAMS ((unsigned char *, int));

static void codestream_seek PARAMS ((CORE_ADDR));

static unsigned char codestream_fill PARAMS ((int));

CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));

static int gdb_print_insn_i386 (bfd_vma, disassemble_info *);

void _initialize_i386_tdep PARAMS ((void));

/* i386_register_byte[i] is the offset into the register file of the
   start of register number i.  We initialize this from
   i386_register_raw_size.  */
int i386_register_byte[MAX_NUM_REGS];

/* i386_register_raw_size[i] is the number of bytes of storage in the
   actual machine representation for register i.  */
int i386_register_raw_size[MAX_NUM_REGS] = {
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,
   4,  4,  4,  4,
  10, 10, 10, 10,
  10, 10, 10, 10,
   4,  4,  4,  4,
   4,  4,  4,  4,
  16, 16, 16, 16,
  16, 16, 16, 16,
   4
};

/* i386_register_virtual_size[i] is the size in bytes of the virtual
   type of register i.  */
int i386_register_virtual_size[MAX_NUM_REGS];


/* This is the variable the is set with "set disassembly-flavor",
   and its legitimate values. */
static char att_flavor[] = "att";
static char intel_flavor[] = "intel";
static char *valid_flavors[] =
{
  att_flavor,
  intel_flavor,
  NULL
};
static char *disassembly_flavor = att_flavor;

static void i386_print_register PARAMS ((char *, int, int));

/* This is used to keep the bfd arch_info in sync with the disassembly flavor.  */
static void set_disassembly_flavor_sfunc PARAMS ((char *, int, struct cmd_list_element *));
static void set_disassembly_flavor PARAMS ((void));

/* Stdio style buffering was used to minimize calls to ptrace, but this
   buffering did not take into account that the code section being accessed
   may not be an even number of buffers long (even if the buffer is only
   sizeof(int) long).  In cases where the code section size happened to
   be a non-integral number of buffers long, attempting to read the last
   buffer would fail.  Simply using target_read_memory and ignoring errors,
   rather than read_memory, is not the correct solution, since legitimate
   access errors would then be totally ignored.  To properly handle this
   situation and continue to use buffering would require that this code
   be able to determine the minimum code section size granularity (not the
   alignment of the section itself, since the actual failing case that
   pointed out this problem had a section alignment of 4 but was not a
   multiple of 4 bytes long), on a target by target basis, and then
   adjust it's buffer size accordingly.  This is messy, but potentially
   feasible.  It probably needs the bfd library's help and support.  For
   now, the buffer size is set to 1.  (FIXME -fnf) */

#define CODESTREAM_BUFSIZ 1	/* Was sizeof(int), see note above. */
static CORE_ADDR codestream_next_addr;
static CORE_ADDR codestream_addr;
static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
static int codestream_off;
static int codestream_cnt;

#define codestream_tell() (codestream_addr + codestream_off)
#define codestream_peek() (codestream_cnt == 0 ? \
			   codestream_fill(1): codestream_buf[codestream_off])
#define codestream_get() (codestream_cnt-- == 0 ? \
			 codestream_fill(0) : codestream_buf[codestream_off++])

static unsigned char
codestream_fill (peek_flag)
     int peek_flag;
{
  codestream_addr = codestream_next_addr;
  codestream_next_addr += CODESTREAM_BUFSIZ;
  codestream_off = 0;
  codestream_cnt = CODESTREAM_BUFSIZ;
  read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);

  if (peek_flag)
    return (codestream_peek ());
  else
    return (codestream_get ());
}

static void
codestream_seek (place)
     CORE_ADDR place;
{
  codestream_next_addr = place / CODESTREAM_BUFSIZ;
  codestream_next_addr *= CODESTREAM_BUFSIZ;
  codestream_cnt = 0;
  codestream_fill (1);
  while (codestream_tell () != place)
    codestream_get ();
}

static void
codestream_read (buf, count)
     unsigned char *buf;
     int count;
{
  unsigned char *p;
  int i;
  p = buf;
  for (i = 0; i < count; i++)
    *p++ = codestream_get ();
}

/* next instruction is a jump, move to target */

static void
i386_follow_jump ()
{
  unsigned char buf[4];
  long delta;

  int data16;
  CORE_ADDR pos;

  pos = codestream_tell ();

  data16 = 0;
  if (codestream_peek () == 0x66)
    {
      codestream_get ();
      data16 = 1;
    }

  switch (codestream_get ())
    {
    case 0xe9:
      /* relative jump: if data16 == 0, disp32, else disp16 */
      if (data16)
	{
	  codestream_read (buf, 2);
	  delta = extract_signed_integer (buf, 2);

	  /* include size of jmp inst (including the 0x66 prefix).  */
	  pos += delta + 4;
	}
      else
	{
	  codestream_read (buf, 4);
	  delta = extract_signed_integer (buf, 4);

	  pos += delta + 5;
	}
      break;
    case 0xeb:
      /* relative jump, disp8 (ignore data16) */
      codestream_read (buf, 1);
      /* Sign-extend it.  */
      delta = extract_signed_integer (buf, 1);

      pos += delta + 2;
      break;
    }
  codestream_seek (pos);
}

/*
 * find & return amound a local space allocated, and advance codestream to
 * first register push (if any)
 *
 * if entry sequence doesn't make sense, return -1, and leave 
 * codestream pointer random
 */

static long
i386_get_frame_setup (pc)
     CORE_ADDR pc;
{
  unsigned char op;

  codestream_seek (pc);

  i386_follow_jump ();

  op = codestream_get ();

  if (op == 0x58)		/* popl %eax */
    {
      /*
       * this function must start with
       * 
       *    popl %eax             0x58
       *    xchgl %eax, (%esp)  0x87 0x04 0x24
       * or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
       *
       * (the system 5 compiler puts out the second xchg
       * inst, and the assembler doesn't try to optimize it,
       * so the 'sib' form gets generated)
       * 
       * this sequence is used to get the address of the return
       * buffer for a function that returns a structure
       */
      int pos;
      unsigned char buf[4];
      static unsigned char proto1[3] =
      {0x87, 0x04, 0x24};
      static unsigned char proto2[4] =
      {0x87, 0x44, 0x24, 0x00};
      pos = codestream_tell ();
      codestream_read (buf, 4);
      if (memcmp (buf, proto1, 3) == 0)
	pos += 3;
      else if (memcmp (buf, proto2, 4) == 0)
	pos += 4;

      codestream_seek (pos);
      op = codestream_get ();	/* update next opcode */
    }

  if (op == 0x68 || op == 0x6a)
    {
      /*
       * this function may start with
       *
       *   pushl constant
       *   call _probe
       *   addl $4, %esp
       *      followed by 
       *     pushl %ebp
       *     etc.
       */
      int pos;
      unsigned char buf[8];

      /* Skip past the pushl instruction; it has either a one-byte 
         or a four-byte operand, depending on the opcode.  */
      pos = codestream_tell ();
      if (op == 0x68)
	pos += 4;
      else
	pos += 1;
      codestream_seek (pos);

      /* Read the following 8 bytes, which should be "call _probe" (6 bytes)
         followed by "addl $4,%esp" (2 bytes).  */
      codestream_read (buf, sizeof (buf));
      if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
	pos += sizeof (buf);
      codestream_seek (pos);
      op = codestream_get ();	/* update next opcode */
    }

  if (op == 0x55)		/* pushl %ebp */
    {
      /* check for movl %esp, %ebp - can be written two ways */
      switch (codestream_get ())
	{
	case 0x8b:
	  if (codestream_get () != 0xec)
	    return (-1);
	  break;
	case 0x89:
	  if (codestream_get () != 0xe5)
	    return (-1);
	  break;
	default:
	  return (-1);
	}
      /* check for stack adjustment 

       *  subl $XXX, %esp
       *
       * note: you can't subtract a 16 bit immediate
       * from a 32 bit reg, so we don't have to worry
       * about a data16 prefix 
       */
      op = codestream_peek ();
      if (op == 0x83)
	{
	  /* subl with 8 bit immed */
	  codestream_get ();
	  if (codestream_get () != 0xec)
	    /* Some instruction starting with 0x83 other than subl.  */
	    {
	      codestream_seek (codestream_tell () - 2);
	      return 0;
	    }
	  /* subl with signed byte immediate 
	   * (though it wouldn't make sense to be negative)
	   */
	  return (codestream_get ());
	}
      else if (op == 0x81)
	{
	  char buf[4];
	  /* Maybe it is subl with 32 bit immedediate.  */
	  codestream_get ();
	  if (codestream_get () != 0xec)
	    /* Some instruction starting with 0x81 other than subl.  */
	    {
	      codestream_seek (codestream_tell () - 2);
	      return 0;
	    }
	  /* It is subl with 32 bit immediate.  */
	  codestream_read ((unsigned char *) buf, 4);
	  return extract_signed_integer (buf, 4);
	}
      else
	{
	  return (0);
	}
    }
  else if (op == 0xc8)
    {
      char buf[2];
      /* enter instruction: arg is 16 bit unsigned immed */
      codestream_read ((unsigned char *) buf, 2);
      codestream_get ();	/* flush final byte of enter instruction */
      return extract_unsigned_integer (buf, 2);
    }
  return (-1);
}

/* Return number of args passed to a frame.
   Can return -1, meaning no way to tell.  */

int
i386_frame_num_args (fi)
     struct frame_info *fi;
{
#if 1
  return -1;
#else
  /* This loses because not only might the compiler not be popping the
     args right after the function call, it might be popping args from both
     this call and a previous one, and we would say there are more args
     than there really are.  */

  int retpc;
  unsigned char op;
  struct frame_info *pfi;

  /* on the 386, the instruction following the call could be:
     popl %ecx        -  one arg
     addl $imm, %esp  -  imm/4 args; imm may be 8 or 32 bits
     anything else    -  zero args  */

  int frameless;

  frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
  if (frameless)
    /* In the absence of a frame pointer, GDB doesn't get correct values
       for nameless arguments.  Return -1, so it doesn't print any
       nameless arguments.  */
    return -1;

  pfi = get_prev_frame (fi);
  if (pfi == 0)
    {
      /* Note:  this can happen if we are looking at the frame for
         main, because FRAME_CHAIN_VALID won't let us go into
         start.  If we have debugging symbols, that's not really
         a big deal; it just means it will only show as many arguments
         to main as are declared.  */
      return -1;
    }
  else
    {
      retpc = pfi->pc;
      op = read_memory_integer (retpc, 1);
      if (op == 0x59)
	/* pop %ecx */
	return 1;
      else if (op == 0x83)
	{
	  op = read_memory_integer (retpc + 1, 1);
	  if (op == 0xc4)
	    /* addl $<signed imm 8 bits>, %esp */
	    return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
	  else
	    return 0;
	}
      else if (op == 0x81)
	{			/* add with 32 bit immediate */
	  op = read_memory_integer (retpc + 1, 1);
	  if (op == 0xc4)
	    /* addl $<imm 32>, %esp */
	    return read_memory_integer (retpc + 2, 4) / 4;
	  else
	    return 0;
	}
      else
	{
	  return 0;
	}
    }
#endif
}

/*
 * parse the first few instructions of the function to see
 * what registers were stored.
 *
 * We handle these cases:
 *
 * The startup sequence can be at the start of the function,
 * or the function can start with a branch to startup code at the end.
 *
 * %ebp can be set up with either the 'enter' instruction, or 
 * 'pushl %ebp, movl %esp, %ebp' (enter is too slow to be useful,
 * but was once used in the sys5 compiler)
 *
 * Local space is allocated just below the saved %ebp by either the
 * 'enter' instruction, or by 'subl $<size>, %esp'.  'enter' has
 * a 16 bit unsigned argument for space to allocate, and the
 * 'addl' instruction could have either a signed byte, or
 * 32 bit immediate.
 *
 * Next, the registers used by this function are pushed.  In
 * the sys5 compiler they will always be in the order: %edi, %esi, %ebx
 * (and sometimes a harmless bug causes it to also save but not restore %eax);
 * however, the code below is willing to see the pushes in any order,
 * and will handle up to 8 of them.
 *
 * If the setup sequence is at the end of the function, then the
 * next instruction will be a branch back to the start.
 */

void
i386_frame_find_saved_regs (fip, fsrp)
     struct frame_info *fip;
     struct frame_saved_regs *fsrp;
{
  long locals = -1;
  unsigned char op;
  CORE_ADDR dummy_bottom;
  CORE_ADDR adr;
  CORE_ADDR pc;
  int i;

  memset (fsrp, 0, sizeof *fsrp);

  /* if frame is the end of a dummy, compute where the
   * beginning would be
   */
  dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;

  /* check if the PC is in the stack, in a dummy frame */
  if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
    {
      /* all regs were saved by push_call_dummy () */
      adr = fip->frame;
      for (i = 0; i < NUM_REGS; i++)
	{
	  adr -= REGISTER_RAW_SIZE (i);
	  fsrp->regs[i] = adr;
	}
      return;
    }

  pc = get_pc_function_start (fip->pc);
  if (pc != 0)
    locals = i386_get_frame_setup (pc);

  if (locals >= 0)
    {
      adr = fip->frame - 4 - locals;
      for (i = 0; i < 8; i++)
	{
	  op = codestream_get ();
	  if (op < 0x50 || op > 0x57)
	    break;
#ifdef I386_REGNO_TO_SYMMETRY
	  /* Dynix uses different internal numbering.  Ick.  */
	  fsrp->regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = adr;
#else
	  fsrp->regs[op - 0x50] = adr;
#endif
	  adr -= 4;
	}
    }

  fsrp->regs[PC_REGNUM] = fip->frame + 4;
  fsrp->regs[FP_REGNUM] = fip->frame;
}

/* return pc of first real instruction */

int
i386_skip_prologue (pc)
     int pc;
{
  unsigned char op;
  int i;
  static unsigned char pic_pat[6] =
  {0xe8, 0, 0, 0, 0,		/* call   0x0 */
   0x5b,			/* popl   %ebx */
  };
  CORE_ADDR pos;

  if (i386_get_frame_setup (pc) < 0)
    return (pc);

  /* found valid frame setup - codestream now points to 
   * start of push instructions for saving registers
   */

  /* skip over register saves */
  for (i = 0; i < 8; i++)
    {
      op = codestream_peek ();
      /* break if not pushl inst */
      if (op < 0x50 || op > 0x57)
	break;
      codestream_get ();
    }

  /* The native cc on SVR4 in -K PIC mode inserts the following code to get
     the address of the global offset table (GOT) into register %ebx.
     call       0x0
     popl       %ebx
     movl       %ebx,x(%ebp)    (optional)
     addl       y,%ebx
     This code is with the rest of the prologue (at the end of the
     function), so we have to skip it to get to the first real
     instruction at the start of the function.  */

  pos = codestream_tell ();
  for (i = 0; i < 6; i++)
    {
      op = codestream_get ();
      if (pic_pat[i] != op)
	break;
    }
  if (i == 6)
    {
      unsigned char buf[4];
      long delta = 6;

      op = codestream_get ();
      if (op == 0x89)		/* movl %ebx, x(%ebp) */
	{
	  op = codestream_get ();
	  if (op == 0x5d)	/* one byte offset from %ebp */
	    {
	      delta += 3;
	      codestream_read (buf, 1);
	    }
	  else if (op == 0x9d)	/* four byte offset from %ebp */
	    {
	      delta += 6;
	      codestream_read (buf, 4);
	    }
	  else			/* unexpected instruction */
	    delta = -1;
	  op = codestream_get ();
	}
      /* addl y,%ebx */
      if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
	{
	  pos += delta + 6;
	}
    }
  codestream_seek (pos);

  i386_follow_jump ();

  return (codestream_tell ());
}

void
i386_push_dummy_frame ()
{
  CORE_ADDR sp = read_register (SP_REGNUM);
  int regnum;
  char regbuf[MAX_REGISTER_RAW_SIZE];

  sp = push_word (sp, read_register (PC_REGNUM));
  sp = push_word (sp, read_register (FP_REGNUM));
  write_register (FP_REGNUM, sp);
  for (regnum = 0; regnum < NUM_REGS; regnum++)
    {
      read_register_gen (regnum, regbuf);
      sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
    }
  write_register (SP_REGNUM, sp);
}

void
i386_pop_frame ()
{
  struct frame_info *frame = get_current_frame ();
  CORE_ADDR fp;
  int regnum;
  struct frame_saved_regs fsr;
  char regbuf[MAX_REGISTER_RAW_SIZE];

  fp = FRAME_FP (frame);
  get_frame_saved_regs (frame, &fsr);
  for (regnum = 0; regnum < NUM_REGS; regnum++)
    {
      CORE_ADDR adr;
      adr = fsr.regs[regnum];
      if (adr)
	{
	  read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
	  write_register_bytes (REGISTER_BYTE (regnum), regbuf,
				REGISTER_RAW_SIZE (regnum));
	}
    }
  write_register (FP_REGNUM, read_memory_integer (fp, 4));
  write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
  write_register (SP_REGNUM, fp + 8);
  flush_cached_frames ();
}

#ifdef GET_LONGJMP_TARGET

/* Figure out where the longjmp will land.  Slurp the args out of the stack.
   We expect the first arg to be a pointer to the jmp_buf structure from which
   we extract the pc (JB_PC) that we will land at.  The pc is copied into PC.
   This routine returns true on success. */

int
get_longjmp_target (pc)
     CORE_ADDR *pc;
{
  char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
  CORE_ADDR sp, jb_addr;

  sp = read_register (SP_REGNUM);

  if (target_read_memory (sp + SP_ARG0,		/* Offset of first arg on stack */
			  buf,
			  TARGET_PTR_BIT / TARGET_CHAR_BIT))
    return 0;

  jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);

  if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
			  TARGET_PTR_BIT / TARGET_CHAR_BIT))
    return 0;

  *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);

  return 1;
}

#endif /* GET_LONGJMP_TARGET */

void
i386_extract_return_value (type, regbuf, valbuf)
     struct type *type;
     char regbuf[REGISTER_BYTES];
     char *valbuf;
{
  /* On AIX and i386 GNU/Linux, floating point values are returned in
     floating point registers.  */
#if defined(I386_AIX_TARGET) || defined(I386_GNULINUX_TARGET)
  if (TYPE_CODE_FLT == TYPE_CODE (type))
    {
      double d;
      /* 387 %st(0), gcc uses this */
      floatformat_to_double (&floatformat_i387_ext,
#if defined(FPDATA_REGNUM)
			     &regbuf[REGISTER_BYTE (FPDATA_REGNUM)],
#else /* !FPDATA_REGNUM */
			     &regbuf[REGISTER_BYTE (FP0_REGNUM)],
#endif /* FPDATA_REGNUM */

			     &d);
      store_floating (valbuf, TYPE_LENGTH (type), d);
    }
  else
#endif /* I386_AIX_TARGET || I386_GNULINUX_TARGET*/
    {
#if defined(LOW_RETURN_REGNUM)
      int len = TYPE_LENGTH (type);
      int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
      int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);

      if (len <= low_size)
	memcpy (valbuf, regbuf + REGISTER_BYTE (LOW_RETURN_REGNUM), len);
      else if (len <= (low_size + high_size))
	{
	  memcpy (valbuf,
		  regbuf + REGISTER_BYTE (LOW_RETURN_REGNUM),
		  low_size);
	  memcpy (valbuf + low_size,
		  regbuf + REGISTER_BYTE (HIGH_RETURN_REGNUM),
		  len - low_size);
	}
      else
	error ("GDB bug: i386-tdep.c (i386_extract_return_value): Don't know how to find a return value %d bytes long", len);
#else /* !LOW_RETURN_REGNUM */
      memcpy (valbuf, regbuf, TYPE_LENGTH (type));
#endif /* LOW_RETURN_REGNUM */
    }
}

#ifdef I386V4_SIGTRAMP_SAVED_PC
/* Get saved user PC for sigtramp from the pushed ucontext on the stack
   for all three variants of SVR4 sigtramps.  */

CORE_ADDR
i386v4_sigtramp_saved_pc (frame)
     struct frame_info *frame;
{
  CORE_ADDR saved_pc_offset = 4;
  char *name = NULL;

  find_pc_partial_function (frame->pc, &name, NULL, NULL);
  if (name)
    {
      if (STREQ (name, "_sigreturn"))
	saved_pc_offset = 132 + 14 * 4;
      else if (STREQ (name, "_sigacthandler"))
	saved_pc_offset = 80 + 14 * 4;
      else if (STREQ (name, "sigvechandler"))
	saved_pc_offset = 120 + 14 * 4;
    }

  if (frame->next)
    return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
  return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
}
#endif /* I386V4_SIGTRAMP_SAVED_PC */

#ifdef I386_LINUX_SIGTRAMP

/* When the i386 Linux kernel calls a signal handler, the return
   address points to a bit of code on the stack.  This function
   returns whether the PC appears to be within this bit of code.

   The instruction sequence is
       pop    %eax
       mov    $0x77,%eax
       int    $0x80
   or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.

   Checking for the code sequence should be somewhat reliable, because
   the effect is to call the system call sigreturn.  This is unlikely
   to occur anywhere other than a signal trampoline.

   It kind of sucks that we have to read memory from the process in
   order to identify a signal trampoline, but there doesn't seem to be
   any other way.  The IN_SIGTRAMP macro in tm-linux.h arranges to
   only call us if no function name could be identified, which should
   be the case since the code is on the stack.  */

#define LINUX_SIGTRAMP_INSN0 (0x58)	/* pop %eax */
#define LINUX_SIGTRAMP_OFFSET0 (0)
#define LINUX_SIGTRAMP_INSN1 (0xb8)	/* mov $NNNN,%eax */
#define LINUX_SIGTRAMP_OFFSET1 (1)
#define LINUX_SIGTRAMP_INSN2 (0xcd)	/* int */
#define LINUX_SIGTRAMP_OFFSET2 (6)

static const unsigned char linux_sigtramp_code[] =
{
  LINUX_SIGTRAMP_INSN0,					/* pop %eax */
  LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77,%eax */
  LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */
};

#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)

/* If PC is in a sigtramp routine, return the address of the start of
   the routine.  Otherwise, return 0.  */

static CORE_ADDR
i386_linux_sigtramp_start (pc)
     CORE_ADDR pc;
{
  unsigned char buf[LINUX_SIGTRAMP_LEN];

  /* We only recognize a signal trampoline if PC is at the start of
     one of the three instructions.  We optimize for finding the PC at
     the start, as will be the case when the trampoline is not the
     first frame on the stack.  We assume that in the case where the
     PC is not at the start of the instruction sequence, there will be
     a few trailing readable bytes on the stack.  */

  if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
    return 0;

  if (buf[0] != LINUX_SIGTRAMP_INSN0)
    {
      int adjust;

      switch (buf[0])
	{
	case LINUX_SIGTRAMP_INSN1:
	  adjust = LINUX_SIGTRAMP_OFFSET1;
	  break;
	case LINUX_SIGTRAMP_INSN2:
	  adjust = LINUX_SIGTRAMP_OFFSET2;
	  break;
	default:
	  return 0;
	}

      pc -= adjust;

      if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
	return 0;
    }

  if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
    return 0;

  return pc;
}

/* Return whether PC is in a Linux sigtramp routine.  */

int
i386_linux_sigtramp (pc)
     CORE_ADDR pc;
{
  return i386_linux_sigtramp_start (pc) != 0;
}

/* Assuming FRAME is for a Linux sigtramp routine, return the saved
   program counter.  The Linux kernel will set up a sigcontext
   structure immediately before the sigtramp routine on the stack.  */

CORE_ADDR
i386_linux_sigtramp_saved_pc (frame)
     struct frame_info *frame;
{
  CORE_ADDR pc;

  pc = i386_linux_sigtramp_start (frame->pc);
  if (pc == 0)
    error ("i386_linux_sigtramp_saved_pc called when no sigtramp");
  return read_memory_integer ((pc
			       - LINUX_SIGCONTEXT_SIZE
			       + LINUX_SIGCONTEXT_PC_OFFSET),
			      4);
}

/* Assuming FRAME is for a Linux sigtramp routine, return the saved
   stack pointer.  The Linux kernel will set up a sigcontext structure
   immediately before the sigtramp routine on the stack.  */

CORE_ADDR
i386_linux_sigtramp_saved_sp (frame)
     struct frame_info *frame;
{
  CORE_ADDR pc;

  pc = i386_linux_sigtramp_start (frame->pc);
  if (pc == 0)
    error ("i386_linux_sigtramp_saved_sp called when no sigtramp");
  return read_memory_integer ((pc
			       - LINUX_SIGCONTEXT_SIZE
			       + LINUX_SIGCONTEXT_SP_OFFSET),
			      4);
}

#endif /* I386_LINUX_SIGTRAMP */

#ifdef STATIC_TRANSFORM_NAME
/* SunPRO encodes the static variables.  This is not related to C++ mangling,
   it is done for C too.  */

char *
sunpro_static_transform_name (name)
     char *name;
{
  char *p;
  if (IS_STATIC_TRANSFORM_NAME (name))
    {
      /* For file-local statics there will be a period, a bunch
         of junk (the contents of which match a string given in the
         N_OPT), a period and the name.  For function-local statics
         there will be a bunch of junk (which seems to change the
         second character from 'A' to 'B'), a period, the name of the
         function, and the name.  So just skip everything before the
         last period.  */
      p = strrchr (name, '.');
      if (p != NULL)
	name = p + 1;
    }
  return name;
}
#endif /* STATIC_TRANSFORM_NAME */



/* Stuff for WIN32 PE style DLL's but is pretty generic really. */

CORE_ADDR
skip_trampoline_code (pc, name)
     CORE_ADDR pc;
     char *name;
{
  if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff)	/* jmp *(dest) */
    {
      unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
      struct minimal_symbol *indsym =
      indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
      char *symname = indsym ? SYMBOL_NAME (indsym) : 0;

      if (symname)
	{
	  if (strncmp (symname, "__imp_", 6) == 0
	      || strncmp (symname, "_imp_", 5) == 0)
	    return name ? 1 : read_memory_unsigned_integer (indirect, 4);
	}
    }
  return 0;			/* not a trampoline */
}

static int
gdb_print_insn_i386 (memaddr, info)
     bfd_vma memaddr;
     disassemble_info *info;
{
  if (disassembly_flavor == att_flavor)
    return print_insn_i386_att (memaddr, info);
  else if (disassembly_flavor == intel_flavor)
    return print_insn_i386_intel (memaddr, info);
  /* Never reached - disassembly_flavour is always either att_flavor
     or intel_flavor */
  abort ();
}

/* If the disassembly mode is intel, we have to also switch the
   bfd mach_type.  This function is run in the set disassembly_flavor
   command, and does that.  */

static void
set_disassembly_flavor_sfunc (args, from_tty, c)
     char *args;
     int from_tty;
     struct cmd_list_element *c;
{
  set_disassembly_flavor ();
}

static void
set_disassembly_flavor ()
{
  if (disassembly_flavor == att_flavor)
    set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
  else if (disassembly_flavor == intel_flavor)
    set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386_intel_syntax);
}


void
_initialize_i386_tdep ()
{
  /* Initialize the table saying where each register starts in the
     register file.  */
  {
    int i, offset;

    offset = 0;
    for (i = 0; i < MAX_NUM_REGS; i++)
      {
	i386_register_byte[i] = offset;
	offset += i386_register_raw_size[i];
      }
  }

  /* Initialize the table of virtual register sizes.  */
  {
    int i;

    for (i = 0; i < MAX_NUM_REGS; i++)
      i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
  }

  tm_print_insn = gdb_print_insn_i386;
  tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;

  /* Add the variable that controls the disassembly flavor */
  {
    struct cmd_list_element *new_cmd;

    new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
				valid_flavors,
				(char *) &disassembly_flavor,
				"Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
and the default value is \"att\".",
				&setlist);
    new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
    add_show_from_set (new_cmd, &showlist);
  }

  /* Finally, initialize the disassembly flavor to the default given
     in the disassembly_flavor variable */

  set_disassembly_flavor ();
}