aboutsummaryrefslogtreecommitdiff
path: root/gdb/i386-tdep.c
blob: b8fd0e5d888584efe3223f275d0518e51975fe44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
/* Intel 386 target-dependent stuff.

   Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
   1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "arch-utils.h"
#include "command.h"
#include "dummy-frame.h"
#include "dwarf2-frame.h"
#include "doublest.h"
#include "floatformat.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "inferior.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "objfiles.h"
#include "osabi.h"
#include "regcache.h"
#include "reggroups.h"
#include "symfile.h"
#include "symtab.h"
#include "target.h"
#include "value.h"

#include "gdb_assert.h"
#include "gdb_string.h"

#include "i386-tdep.h"
#include "i387-tdep.h"

/* Names of the registers.  The first 10 registers match the register
   numbering scheme used by GCC for stabs and DWARF.  */

static char *i386_register_names[] =
{
  "eax",   "ecx",    "edx",   "ebx",
  "esp",   "ebp",    "esi",   "edi",
  "eip",   "eflags", "cs",    "ss",
  "ds",    "es",     "fs",    "gs",
  "st0",   "st1",    "st2",   "st3",
  "st4",   "st5",    "st6",   "st7",
  "fctrl", "fstat",  "ftag",  "fiseg",
  "fioff", "foseg",  "fooff", "fop",
  "xmm0",  "xmm1",   "xmm2",  "xmm3",
  "xmm4",  "xmm5",   "xmm6",  "xmm7",
  "mxcsr"
};

static const int i386_num_register_names =
  (sizeof (i386_register_names) / sizeof (*i386_register_names));

/* MMX registers.  */

static char *i386_mmx_names[] =
{
  "mm0", "mm1", "mm2", "mm3",
  "mm4", "mm5", "mm6", "mm7"
};

static const int i386_num_mmx_regs =
  (sizeof (i386_mmx_names) / sizeof (i386_mmx_names[0]));

#define MM0_REGNUM NUM_REGS

static int
i386_mmx_regnum_p (int regnum)
{
  return (regnum >= MM0_REGNUM
	  && regnum < MM0_REGNUM + i386_num_mmx_regs);
}

/* FP register?  */

int
i386_fp_regnum_p (int regnum)
{
  return (regnum < NUM_REGS
	  && (FP0_REGNUM && FP0_REGNUM <= regnum && regnum < FPC_REGNUM));
}

int
i386_fpc_regnum_p (int regnum)
{
  return (regnum < NUM_REGS
	  && (FPC_REGNUM <= regnum && regnum < XMM0_REGNUM));
}

/* SSE register?  */

int
i386_sse_regnum_p (int regnum)
{
  return (regnum < NUM_REGS
	  && (XMM0_REGNUM <= regnum && regnum < MXCSR_REGNUM));
}

int
i386_mxcsr_regnum_p (int regnum)
{
  return (regnum < NUM_REGS
	  && regnum == MXCSR_REGNUM);
}

/* Return the name of register REG.  */

const char *
i386_register_name (int reg)
{
  if (i386_mmx_regnum_p (reg))
    return i386_mmx_names[reg - MM0_REGNUM];

  if (reg >= 0 && reg < i386_num_register_names)
    return i386_register_names[reg];

  return NULL;
}

/* Convert stabs register number REG to the appropriate register
   number used by GDB.  */

static int
i386_stab_reg_to_regnum (int reg)
{
  /* This implements what GCC calls the "default" register map.  */
  if (reg >= 0 && reg <= 7)
    {
      /* General-purpose registers.  */
      return reg;
    }
  else if (reg >= 12 && reg <= 19)
    {
      /* Floating-point registers.  */
      return reg - 12 + FP0_REGNUM;
    }
  else if (reg >= 21 && reg <= 28)
    {
      /* SSE registers.  */
      return reg - 21 + XMM0_REGNUM;
    }
  else if (reg >= 29 && reg <= 36)
    {
      /* MMX registers.  */
      return reg - 29 + MM0_REGNUM;
    }

  /* This will hopefully provoke a warning.  */
  return NUM_REGS + NUM_PSEUDO_REGS;
}

/* Convert DWARF register number REG to the appropriate register
   number used by GDB.  */

static int
i386_dwarf_reg_to_regnum (int reg)
{
  /* The DWARF register numbering includes %eip and %eflags, and
     numbers the floating point registers differently.  */
  if (reg >= 0 && reg <= 9)
    {
      /* General-purpose registers.  */
      return reg;
    }
  else if (reg >= 11 && reg <= 18)
    {
      /* Floating-point registers.  */
      return reg - 11 + FP0_REGNUM;
    }
  else if (reg >= 21)
    {
      /* The SSE and MMX registers have identical numbers as in stabs.  */
      return i386_stab_reg_to_regnum (reg);
    }

  /* This will hopefully provoke a warning.  */
  return NUM_REGS + NUM_PSEUDO_REGS;
}


/* This is the variable that is set with "set disassembly-flavor", and
   its legitimate values.  */
static const char att_flavor[] = "att";
static const char intel_flavor[] = "intel";
static const char *valid_flavors[] =
{
  att_flavor,
  intel_flavor,
  NULL
};
static const char *disassembly_flavor = att_flavor;


/* Use the program counter to determine the contents and size of a
   breakpoint instruction.  Return a pointer to a string of bytes that
   encode a breakpoint instruction, store the length of the string in
   *LEN and optionally adjust *PC to point to the correct memory
   location for inserting the breakpoint.

   On the i386 we have a single breakpoint that fits in a single byte
   and can be inserted anywhere.

   This function is 64-bit safe.  */
   
static const unsigned char *
i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
{
  static unsigned char break_insn[] = { 0xcc };	/* int 3 */
  
  *len = sizeof (break_insn);
  return break_insn;
}

#ifdef I386_REGNO_TO_SYMMETRY
#error "The Sequent Symmetry is no longer supported."
#endif

/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
   and %esp "belong" to the calling function.  Therefore these
   registers should be saved if they're going to be modified.  */

/* The maximum number of saved registers.  This should include all
   registers mentioned above, and %eip.  */
#define I386_NUM_SAVED_REGS	I386_NUM_GREGS

struct i386_frame_cache
{
  /* Base address.  */
  CORE_ADDR base;
  CORE_ADDR sp_offset;
  CORE_ADDR pc;

  /* Saved registers.  */
  CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
  CORE_ADDR saved_sp;
  int pc_in_eax;

  /* Stack space reserved for local variables.  */
  long locals;
};

/* Allocate and initialize a frame cache.  */

static struct i386_frame_cache *
i386_alloc_frame_cache (void)
{
  struct i386_frame_cache *cache;
  int i;

  cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);

  /* Base address.  */
  cache->base = 0;
  cache->sp_offset = -4;
  cache->pc = 0;

  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset (that's where %ebp is supposed to be stored).  */
  for (i = 0; i < I386_NUM_SAVED_REGS; i++)
    cache->saved_regs[i] = -1;
  cache->saved_sp = 0;
  cache->pc_in_eax = 0;

  /* Frameless until proven otherwise.  */
  cache->locals = -1;

  return cache;
}

/* If the instruction at PC is a jump, return the address of its
   target.  Otherwise, return PC.  */

static CORE_ADDR
i386_follow_jump (CORE_ADDR pc)
{
  unsigned char op;
  long delta = 0;
  int data16 = 0;

  op = read_memory_unsigned_integer (pc, 1);
  if (op == 0x66)
    {
      data16 = 1;
      op = read_memory_unsigned_integer (pc + 1, 1);
    }

  switch (op)
    {
    case 0xe9:
      /* Relative jump: if data16 == 0, disp32, else disp16.  */
      if (data16)
	{
	  delta = read_memory_integer (pc + 2, 2);

	  /* Include the size of the jmp instruction (including the
             0x66 prefix).  */
	  delta += 4;
	}
      else
	{
	  delta = read_memory_integer (pc + 1, 4);

	  /* Include the size of the jmp instruction.  */
	  delta += 5;
	}
      break;
    case 0xeb:
      /* Relative jump, disp8 (ignore data16).  */
      delta = read_memory_integer (pc + data16 + 1, 1);

      delta += data16 + 2;
      break;
    }

  return pc + delta;
}

/* Check whether PC points at a prologue for a function returning a
   structure or union.  If so, it updates CACHE and returns the
   address of the first instruction after the code sequence that
   removes the "hidden" argument from the stack or CURRENT_PC,
   whichever is smaller.  Otherwise, return PC.  */

static CORE_ADDR
i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
			    struct i386_frame_cache *cache)
{
  /* Functions that return a structure or union start with:

        popl %eax             0x58
        xchgl %eax, (%esp)    0x87 0x04 0x24
     or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00

     (the System V compiler puts out the second `xchg' instruction,
     and the assembler doesn't try to optimize it, so the 'sib' form
     gets generated).  This sequence is used to get the address of the
     return buffer for a function that returns a structure.  */
  static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
  static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
  unsigned char buf[4];
  unsigned char op;

  if (current_pc <= pc)
    return pc;

  op = read_memory_unsigned_integer (pc, 1);

  if (op != 0x58)		/* popl %eax */
    return pc;

  read_memory (pc + 1, buf, 4);
  if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
    return pc;

  if (current_pc == pc)
    {
      cache->sp_offset += 4;
      return current_pc;
    }

  if (current_pc == pc + 1)
    {
      cache->pc_in_eax = 1;
      return current_pc;
    }
  
  if (buf[1] == proto1[1])
    return pc + 4;
  else
    return pc + 5;
}

static CORE_ADDR
i386_skip_probe (CORE_ADDR pc)
{
  /* A function may start with

        pushl constant
        call _probe
	addl $4, %esp
	   
     followed by

        pushl %ebp

     etc.  */
  unsigned char buf[8];
  unsigned char op;

  op = read_memory_unsigned_integer (pc, 1);

  if (op == 0x68 || op == 0x6a)
    {
      int delta;

      /* Skip past the `pushl' instruction; it has either a one-byte or a
	 four-byte operand, depending on the opcode.  */
      if (op == 0x68)
	delta = 5;
      else
	delta = 2;

      /* Read the following 8 bytes, which should be `call _probe' (6
	 bytes) followed by `addl $4,%esp' (2 bytes).  */
      read_memory (pc + delta, buf, sizeof (buf));
      if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
	pc += delta + sizeof (buf);
    }

  return pc;
}

/* Check whether PC points at a code that sets up a new stack frame.
   If so, it updates CACHE and returns the address of the first
   instruction after the sequence that sets removes the "hidden"
   argument from the stack or CURRENT_PC, whichever is smaller.
   Otherwise, return PC.  */

static CORE_ADDR
i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
			  struct i386_frame_cache *cache)
{
  unsigned char op;

  if (current_pc <= pc)
    return current_pc;

  op = read_memory_unsigned_integer (pc, 1);

  if (op == 0x55)		/* pushl %ebp */
    {
      /* Take into account that we've executed the `pushl %ebp' that
	 starts this instruction sequence.  */
      cache->saved_regs[I386_EBP_REGNUM] = 0;
      cache->sp_offset += 4;

      /* If that's all, return now.  */
      if (current_pc <= pc + 1)
	return current_pc;

      /* Check for `movl %esp, %ebp' -- can be written in two ways.  */
      op = read_memory_unsigned_integer (pc + 1, 1);
      switch (op)
	{
	case 0x8b:
	  if (read_memory_unsigned_integer (pc + 2, 1) != 0xec)
	    return pc + 1;
	  break;
	case 0x89:
	  if (read_memory_unsigned_integer (pc + 2, 1) != 0xe5)
	    return pc + 1;
	  break;
	default:
	  return pc + 1;
	}

      /* OK, we actually have a frame.  We just don't know how large it is
	 yet.  Set its size to zero.  We'll adjust it if necessary.  */
      cache->locals = 0;

      /* If that's all, return now.  */
      if (current_pc <= pc + 3)
	return current_pc;

      /* Check for stack adjustment 

	    subl $XXX, %esp

	 NOTE: You can't subtract a 16 bit immediate from a 32 bit
	 reg, so we don't have to worry about a data16 prefix.  */
      op = read_memory_unsigned_integer (pc + 3, 1);
      if (op == 0x83)
	{
	  /* `subl' with 8 bit immediate.  */
	  if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
	    /* Some instruction starting with 0x83 other than `subl'.  */
	    return pc + 3;

	  /* `subl' with signed byte immediate (though it wouldn't make
	     sense to be negative).  */
	  cache->locals = read_memory_integer (pc + 5, 1);
	  return pc + 6;
	}
      else if (op == 0x81)
	{
	  /* Maybe it is `subl' with a 32 bit immedediate.  */
	  if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
	    /* Some instruction starting with 0x81 other than `subl'.  */
	    return pc + 3;

	  /* It is `subl' with a 32 bit immediate.  */
	  cache->locals = read_memory_integer (pc + 5, 4);
	  return pc + 9;
	}
      else
	{
	  /* Some instruction other than `subl'.  */
	  return pc + 3;
	}
    }
  else if (op == 0xc8)		/* enter $XXX */
    {
      cache->locals = read_memory_unsigned_integer (pc + 1, 2);
      return pc + 4;
    }

  return pc;
}

/* Check whether PC points at code that saves registers on the stack.
   If so, it updates CACHE and returns the address of the first
   instruction after the register saves or CURRENT_PC, whichever is
   smaller.  Otherwise, return PC.  */

static CORE_ADDR
i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
			     struct i386_frame_cache *cache)
{
  if (cache->locals >= 0)
    {
      CORE_ADDR offset;
      unsigned char op;
      int i;

      offset = - 4 - cache->locals;
      for (i = 0; i < 8 && pc < current_pc; i++)
	{
	  op = read_memory_unsigned_integer (pc, 1);
	  if (op < 0x50 || op > 0x57)
	    break;

	  cache->saved_regs[op - 0x50] = offset;
	  offset -= 4;
	  pc++;
	}
    }

  return pc;
}

/* Do a full analysis of the prologue at PC and update CACHE
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   address where the analysis stopped.

   We handle these cases:

   The startup sequence can be at the start of the function, or the
   function can start with a branch to startup code at the end.

   %ebp can be set up with either the 'enter' instruction, or "pushl
   %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
   once used in the System V compiler).

   Local space is allocated just below the saved %ebp by either the
   'enter' instruction, or by "subl $<size>, %esp".  'enter' has a 16
   bit unsigned argument for space to allocate, and the 'addl'
   instruction could have either a signed byte, or 32 bit immediate.

   Next, the registers used by this function are pushed.  With the
   System V compiler they will always be in the order: %edi, %esi,
   %ebx (and sometimes a harmless bug causes it to also save but not
   restore %eax); however, the code below is willing to see the pushes
   in any order, and will handle up to 8 of them.
 
   If the setup sequence is at the end of the function, then the next
   instruction will be a branch back to the start.  */

static CORE_ADDR
i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
		       struct i386_frame_cache *cache)
{
  pc = i386_follow_jump (pc);
  pc = i386_analyze_struct_return (pc, current_pc, cache);
  pc = i386_skip_probe (pc);
  pc = i386_analyze_frame_setup (pc, current_pc, cache);
  return i386_analyze_register_saves (pc, current_pc, cache);
}

/* Return PC of first real instruction.  */

static CORE_ADDR
i386_skip_prologue (CORE_ADDR start_pc)
{
  static unsigned char pic_pat[6] =
  {
    0xe8, 0, 0, 0, 0,		/* call 0x0 */
    0x5b,			/* popl %ebx */
  };
  struct i386_frame_cache cache;
  CORE_ADDR pc;
  unsigned char op;
  int i;

  cache.locals = -1;
  pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
  if (cache.locals < 0)
    return start_pc;

  /* Found valid frame setup.  */

  /* The native cc on SVR4 in -K PIC mode inserts the following code
     to get the address of the global offset table (GOT) into register
     %ebx:

        call	0x0
	popl    %ebx
        movl    %ebx,x(%ebp)    (optional)
        addl    y,%ebx

     This code is with the rest of the prologue (at the end of the
     function), so we have to skip it to get to the first real
     instruction at the start of the function.  */

  for (i = 0; i < 6; i++)
    {
      op = read_memory_unsigned_integer (pc + i, 1);
      if (pic_pat[i] != op)
	break;
    }
  if (i == 6)
    {
      int delta = 6;

      op = read_memory_unsigned_integer (pc + delta, 1);

      if (op == 0x89)		/* movl %ebx, x(%ebp) */
	{
	  op = read_memory_unsigned_integer (pc + delta + 1, 1);

	  if (op == 0x5d)	/* One byte offset from %ebp.  */
	    delta += 3;
	  else if (op == 0x9d)	/* Four byte offset from %ebp.  */
	    delta += 6;
	  else			/* Unexpected instruction.  */
	    delta = 0;

	  op = read_memory_unsigned_integer (pc + delta, 1);
	}

      /* addl y,%ebx */
      if (delta > 0 && op == 0x81
	  && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
	{
	  pc += delta + 6;
	}
    }

  return i386_follow_jump (pc);
}

/* This function is 64-bit safe.  */

static CORE_ADDR
i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  char buf[8];

  frame_unwind_register (next_frame, PC_REGNUM, buf);
  return extract_typed_address (buf, builtin_type_void_func_ptr);
}


/* Normal frames.  */

static struct i386_frame_cache *
i386_frame_cache (struct frame_info *next_frame, void **this_cache)
{
  struct i386_frame_cache *cache;
  char buf[4];
  int i;

  if (*this_cache)
    return *this_cache;

  cache = i386_alloc_frame_cache ();
  *this_cache = cache;

  /* In principle, for normal frames, %ebp holds the frame pointer,
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  Signal
     trampolines are just a special case of a "frameless" function.
     They (usually) share their frame pointer with the frame that was
     in progress when the signal occurred.  */

  frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
  cache->base = extract_unsigned_integer (buf, 4);
  if (cache->base == 0)
    return cache;

  /* For normal frames, %eip is stored at 4(%ebp).  */
  cache->saved_regs[I386_EIP_REGNUM] = 4;

  cache->pc = frame_func_unwind (next_frame);
  if (cache->pc != 0)
    i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);

  if (cache->locals < 0)
    {
      /* We didn't find a valid frame, which means that CACHE->base
	 currently holds the frame pointer for our calling frame.  If
	 we're at the start of a function, or somewhere half-way its
	 prologue, the function's frame probably hasn't been fully
	 setup yet.  Try to reconstruct the base address for the stack
	 frame by looking at the stack pointer.  For truly "frameless"
	 functions this might work too.  */

      frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
      cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
    }

  /* Now that we have the base address for the stack frame we can
     calculate the value of %esp in the calling frame.  */
  cache->saved_sp = cache->base + 8;

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < I386_NUM_SAVED_REGS; i++)
    if (cache->saved_regs[i] != -1)
      cache->saved_regs[i] += cache->base;

  return cache;
}

static void
i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  (*this_id) = frame_id_build (cache->base + 8, cache->pc);
}

static void
i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
			  int regnum, int *optimizedp,
			  enum lval_type *lvalp, CORE_ADDR *addrp,
			  int *realnump, void *valuep)
{
  struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);

  gdb_assert (regnum >= 0);

  /* The System V ABI says that:

     "The flags register contains the system flags, such as the
     direction flag and the carry flag.  The direction flag must be
     set to the forward (that is, zero) direction before entry and
     upon exit from a function.  Other user flags have no specified
     role in the standard calling sequence and are not preserved."

     To guarantee the "upon exit" part of that statement we fake a
     saved flags register that has its direction flag cleared.

     Note that GCC doesn't seem to rely on the fact that the direction
     flag is cleared after a function return; it always explicitly
     clears the flag before operations where it matters.

     FIXME: kettenis/20030316: I'm not quite sure whether this is the
     right thing to do.  The way we fake the flags register here makes
     it impossible to change it.  */

  if (regnum == I386_EFLAGS_REGNUM)
    {
      *optimizedp = 0;
      *lvalp = not_lval;
      *addrp = 0;
      *realnump = -1;
      if (valuep)
	{
	  ULONGEST val;

	  /* Clear the direction flag.  */
	  frame_unwind_unsigned_register (next_frame, PS_REGNUM, &val);
	  val &= ~(1 << 10);
	  store_unsigned_integer (valuep, 4, val);
	}

      return;
    }

  if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
    {
      frame_register_unwind (next_frame, I386_EAX_REGNUM,
			     optimizedp, lvalp, addrp, realnump, valuep);
      return;
    }

  if (regnum == I386_ESP_REGNUM && cache->saved_sp)
    {
      *optimizedp = 0;
      *lvalp = not_lval;
      *addrp = 0;
      *realnump = -1;
      if (valuep)
	{
	  /* Store the value.  */
	  store_unsigned_integer (valuep, 4, cache->saved_sp);
	}
      return;
    }

  if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
    {
      *optimizedp = 0;
      *lvalp = lval_memory;
      *addrp = cache->saved_regs[regnum];
      *realnump = -1;
      if (valuep)
	{
	  /* Read the value in from memory.  */
	  read_memory (*addrp, valuep,
		       register_size (current_gdbarch, regnum));
	}
      return;
    }

  frame_register_unwind (next_frame, regnum,
			 optimizedp, lvalp, addrp, realnump, valuep);
}

static const struct frame_unwind i386_frame_unwind =
{
  NORMAL_FRAME,
  i386_frame_this_id,
  i386_frame_prev_register
};

static const struct frame_unwind *
i386_frame_p (CORE_ADDR pc)
{
  return &i386_frame_unwind;
}


/* Signal trampolines.  */

static struct i386_frame_cache *
i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
{
  struct i386_frame_cache *cache;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  CORE_ADDR addr;
  char buf[4];

  if (*this_cache)
    return *this_cache;

  cache = i386_alloc_frame_cache ();

  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
  cache->base = extract_unsigned_integer (buf, 4) - 4;

  addr = tdep->sigcontext_addr (next_frame);
  if (tdep->sc_reg_offset)
    {
      int i;

      gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);

      for (i = 0; i < tdep->sc_num_regs; i++)
	if (tdep->sc_reg_offset[i] != -1)
	  cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
    }
  else
    {
      cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
      cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
    }

  *this_cache = cache;
  return cache;
}

static void
i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
			     struct frame_id *this_id)
{
  struct i386_frame_cache *cache =
    i386_sigtramp_frame_cache (next_frame, this_cache);

  (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
}

static void
i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
				   void **this_cache,
				   int regnum, int *optimizedp,
				   enum lval_type *lvalp, CORE_ADDR *addrp,
				   int *realnump, void *valuep)
{
  /* Make sure we've initialized the cache.  */
  i386_sigtramp_frame_cache (next_frame, this_cache);

  i386_frame_prev_register (next_frame, this_cache, regnum,
			    optimizedp, lvalp, addrp, realnump, valuep);
}

static const struct frame_unwind i386_sigtramp_frame_unwind =
{
  SIGTRAMP_FRAME,
  i386_sigtramp_frame_this_id,
  i386_sigtramp_frame_prev_register
};

static const struct frame_unwind *
i386_sigtramp_frame_p (CORE_ADDR pc)
{
  char *name;

  /* We shouldn't even bother to try if the OSABI didn't register
     a sigcontext_addr handler.  */
  if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
    return NULL;

  find_pc_partial_function (pc, &name, NULL, NULL);
  if (PC_IN_SIGTRAMP (pc, name))
    return &i386_sigtramp_frame_unwind;

  return NULL;
}


static CORE_ADDR
i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
  struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);

  return cache->base;
}

static const struct frame_base i386_frame_base =
{
  &i386_frame_unwind,
  i386_frame_base_address,
  i386_frame_base_address,
  i386_frame_base_address
};

static void
i386_save_dummy_frame_tos (CORE_ADDR sp)
{
  generic_save_dummy_frame_tos (sp + 8);
}

static struct frame_id
i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  char buf[4];
  CORE_ADDR fp;

  frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
  fp = extract_unsigned_integer (buf, 4);

  return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
}


/* Figure out where the longjmp will land.  Slurp the args out of the
   stack.  We expect the first arg to be a pointer to the jmp_buf
   structure from which we extract the address that we will land at.
   This address is copied into PC.  This routine returns non-zero on
   success.

   This function is 64-bit safe.  */

static int
i386_get_longjmp_target (CORE_ADDR *pc)
{
  char buf[8];
  CORE_ADDR sp, jb_addr;
  int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
  int len = TYPE_LENGTH (builtin_type_void_func_ptr);

  /* If JB_PC_OFFSET is -1, we have no way to find out where the
     longjmp will land.  */
  if (jb_pc_offset == -1)
    return 0;

  sp = read_register (SP_REGNUM);
  if (target_read_memory (sp + len, buf, len))
    return 0;

  jb_addr = extract_typed_address (buf, builtin_type_void_func_ptr);
  if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
    return 0;

  *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
  return 1;
}


static CORE_ADDR
i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		      struct value **args, CORE_ADDR sp, int struct_return,
		      CORE_ADDR struct_addr)
{
  char buf[4];
  int i;

  /* Push arguments in reverse order.  */
  for (i = nargs - 1; i >= 0; i--)
    {
      int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));

      /* The System V ABI says that:

	 "An argument's size is increased, if necessary, to make it a
	 multiple of [32-bit] words.  This may require tail padding,
	 depending on the size of the argument."

	 This makes sure the stack says word-aligned.  */
      sp -= (len + 3) & ~3;
      write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
    }

  /* Push value address.  */
  if (struct_return)
    {
      sp -= 4;
      store_unsigned_integer (buf, 4, struct_addr);
      write_memory (sp, buf, 4);
    }

  /* Store return address.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, bp_addr);
  write_memory (sp, buf, 4);

  /* Finally, update the stack pointer...  */
  store_unsigned_integer (buf, 4, sp);
  regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);

  /* ...and fake a frame pointer.  */
  regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);

  return sp;
}

/* These registers are used for returning integers (and on some
   targets also for returning `struct' and `union' values when their
   size and alignment match an integer type).  */
#define LOW_RETURN_REGNUM	I386_EAX_REGNUM /* %eax */
#define HIGH_RETURN_REGNUM	I386_EDX_REGNUM /* %edx */

/* Extract from an array REGBUF containing the (raw) register state, a
   function return value of TYPE, and copy that, in virtual format,
   into VALBUF.  */

static void
i386_extract_return_value (struct type *type, struct regcache *regcache,
			   void *dst)
{
  bfd_byte *valbuf = dst;
  int len = TYPE_LENGTH (type);
  char buf[I386_MAX_REGISTER_SIZE];

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      && TYPE_NFIELDS (type) == 1)
    {
      i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
      return;
    }

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      if (FP0_REGNUM < 0)
	{
	  warning ("Cannot find floating-point return value.");
	  memset (valbuf, 0, len);
	  return;
	}

      /* Floating-point return values can be found in %st(0).  Convert
	 its contents to the desired type.  This is probably not
	 exactly how it would happen on the target itself, but it is
	 the best we can do.  */
      regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
      convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
    }
  else
    {
      int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
      int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);

      if (len <= low_size)
	{
	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
	  memcpy (valbuf, buf, len);
	}
      else if (len <= (low_size + high_size))
	{
	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
	  memcpy (valbuf, buf, low_size);
	  regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
	  memcpy (valbuf + low_size, buf, len - low_size);
	}
      else
	internal_error (__FILE__, __LINE__,
			"Cannot extract return value of %d bytes long.", len);
    }
}

/* Write into the appropriate registers a function return value stored
   in VALBUF of type TYPE, given in virtual format.  */

static void
i386_store_return_value (struct type *type, struct regcache *regcache,
			 const void *valbuf)
{
  int len = TYPE_LENGTH (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      && TYPE_NFIELDS (type) == 1)
    {
      i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
      return;
    }

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      ULONGEST fstat;
      char buf[FPU_REG_RAW_SIZE];

      if (FP0_REGNUM < 0)
	{
	  warning ("Cannot set floating-point return value.");
	  return;
	}

      /* Returning floating-point values is a bit tricky.  Apart from
         storing the return value in %st(0), we have to simulate the
         state of the FPU at function return point.  */

      /* Convert the value found in VALBUF to the extended
	 floating-point format used by the FPU.  This is probably
	 not exactly how it would happen on the target itself, but
	 it is the best we can do.  */
      convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
      regcache_raw_write (regcache, I386_ST0_REGNUM, buf);

      /* Set the top of the floating-point register stack to 7.  The
         actual value doesn't really matter, but 7 is what a normal
         function return would end up with if the program started out
         with a freshly initialized FPU.  */
      regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
      fstat |= (7 << 11);
      regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);

      /* Mark %st(1) through %st(7) as empty.  Since we set the top of
         the floating-point register stack to 7, the appropriate value
         for the tag word is 0x3fff.  */
      regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
    }
  else
    {
      int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
      int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);

      if (len <= low_size)
	regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
      else if (len <= (low_size + high_size))
	{
	  regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
	  regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
				   len - low_size, (char *) valbuf + low_size);
	}
      else
	internal_error (__FILE__, __LINE__,
			"Cannot store return value of %d bytes long.", len);
    }
}

/* Extract from REGCACHE, which contains the (raw) register state, the
   address in which a function should return its structure value, as a
   CORE_ADDR.  */

static CORE_ADDR
i386_extract_struct_value_address (struct regcache *regcache)
{
  char buf[4];

  regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
  return extract_unsigned_integer (buf, 4);
}


/* This is the variable that is set with "set struct-convention", and
   its legitimate values.  */
static const char default_struct_convention[] = "default";
static const char pcc_struct_convention[] = "pcc";
static const char reg_struct_convention[] = "reg";
static const char *valid_conventions[] =
{
  default_struct_convention,
  pcc_struct_convention,
  reg_struct_convention,
  NULL
};
static const char *struct_convention = default_struct_convention;

static int
i386_use_struct_convention (int gcc_p, struct type *type)
{
  enum struct_return struct_return;

  if (struct_convention == default_struct_convention)
    struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
  else if (struct_convention == pcc_struct_convention)
    struct_return = pcc_struct_return;
  else
    struct_return = reg_struct_return;

  return generic_use_struct_convention (struct_return == reg_struct_return,
					type);
}


/* Return the GDB type object for the "standard" data type of data in
   register REGNUM.  Perhaps %esi and %edi should go here, but
   potentially they could be used for things other than address.  */

static struct type *
i386_register_type (struct gdbarch *gdbarch, int regnum)
{
  if (regnum == I386_EIP_REGNUM
      || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
    return lookup_pointer_type (builtin_type_void);

  if (i386_fp_regnum_p (regnum))
    return builtin_type_i387_ext;

  if (i386_sse_regnum_p (regnum))
    return builtin_type_vec128i;

  if (i386_mmx_regnum_p (regnum))
    return builtin_type_vec64i;

  return builtin_type_int;
}

/* Map a cooked register onto a raw register or memory.  For the i386,
   the MMX registers need to be mapped onto floating point registers.  */

static int
i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
{
  int mmxi;
  ULONGEST fstat;
  int tos;
  int fpi;

  mmxi = regnum - MM0_REGNUM;
  regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
  tos = (fstat >> 11) & 0x7;
  fpi = (mmxi + tos) % 8;

  return (FP0_REGNUM + fpi);
}

static void
i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int regnum, void *buf)
{
  if (i386_mmx_regnum_p (regnum))
    {
      char mmx_buf[MAX_REGISTER_SIZE];
      int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);

      /* Extract (always little endian).  */
      regcache_raw_read (regcache, fpnum, mmx_buf);
      memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
    }
  else
    regcache_raw_read (regcache, regnum, buf);
}

static void
i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int regnum, const void *buf)
{
  if (i386_mmx_regnum_p (regnum))
    {
      char mmx_buf[MAX_REGISTER_SIZE];
      int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);

      /* Read ...  */
      regcache_raw_read (regcache, fpnum, mmx_buf);
      /* ... Modify ... (always little endian).  */
      memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
      /* ... Write.  */
      regcache_raw_write (regcache, fpnum, mmx_buf);
    }
  else
    regcache_raw_write (regcache, regnum, buf);
}

/* Return true iff register REGNUM's virtual format is different from
   its raw format.  Note that this definition assumes that the host
   supports IEEE 32-bit floats, since it doesn't say that SSE
   registers need conversion.  Even if we can't find a counterexample,
   this is still sloppy.  */

static int
i386_register_convertible (int regnum)
{
  return i386_fp_regnum_p (regnum);
}

/* Convert data from raw format for register REGNUM in buffer FROM to
   virtual format with type TYPE in buffer TO.  */

static void
i386_register_convert_to_virtual (int regnum, struct type *type,
				  char *from, char *to)
{
  gdb_assert (i386_fp_regnum_p (regnum));

  /* We only support floating-point values.  */
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
    {
      warning ("Cannot convert floating-point register value "
	       "to non-floating-point type.");
      memset (to, 0, TYPE_LENGTH (type));
      return;
    }

  /* Convert to TYPE.  This should be a no-op if TYPE is equivalent to
     the extended floating-point format used by the FPU.  */
  convert_typed_floating (from, builtin_type_i387_ext, to, type);
}

/* Convert data from virtual format with type TYPE in buffer FROM to
   raw format for register REGNUM in buffer TO.  */

static void
i386_register_convert_to_raw (struct type *type, int regnum,
			      char *from, char *to)
{
  gdb_assert (i386_fp_regnum_p (regnum));

  /* We only support floating-point values.  */
  if (TYPE_CODE (type) != TYPE_CODE_FLT)
    {
      warning ("Cannot convert non-floating-point type "
	       "to floating-point register value.");
      memset (to, 0, TYPE_LENGTH (type));
      return;
    }

  /* Convert from TYPE.  This should be a no-op if TYPE is equivalent
     to the extended floating-point format used by the FPU.  */
  convert_typed_floating (from, type, to, builtin_type_i387_ext);
}
     

#ifdef STATIC_TRANSFORM_NAME
/* SunPRO encodes the static variables.  This is not related to C++
   mangling, it is done for C too.  */

char *
sunpro_static_transform_name (char *name)
{
  char *p;
  if (IS_STATIC_TRANSFORM_NAME (name))
    {
      /* For file-local statics there will be a period, a bunch of
         junk (the contents of which match a string given in the
         N_OPT), a period and the name.  For function-local statics
         there will be a bunch of junk (which seems to change the
         second character from 'A' to 'B'), a period, the name of the
         function, and the name.  So just skip everything before the
         last period.  */
      p = strrchr (name, '.');
      if (p != NULL)
	name = p + 1;
    }
  return name;
}
#endif /* STATIC_TRANSFORM_NAME */


/* Stuff for WIN32 PE style DLL's but is pretty generic really.  */

CORE_ADDR
i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
{
  if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
    {
      unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
      struct minimal_symbol *indsym =
	indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
      char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;

      if (symname)
	{
	  if (strncmp (symname, "__imp_", 6) == 0
	      || strncmp (symname, "_imp_", 5) == 0)
	    return name ? 1 : read_memory_unsigned_integer (indirect, 4);
	}
    }
  return 0;			/* Not a trampoline.  */
}


/* Return non-zero if PC and NAME show that we are in a signal
   trampoline.  */

static int
i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
{
  return (name && strcmp ("_sigtramp", name) == 0);
}


/* We have two flavours of disassembly.  The machinery on this page
   deals with switching between those.  */

static int
i386_print_insn (bfd_vma pc, disassemble_info *info)
{
  gdb_assert (disassembly_flavor == att_flavor
	      || disassembly_flavor == intel_flavor);

  /* FIXME: kettenis/20020915: Until disassembler_options is properly
     constified, cast to prevent a compiler warning.  */
  info->disassembler_options = (char *) disassembly_flavor;
  info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;

  return print_insn_i386 (pc, info);
}


/* There are a few i386 architecture variants that differ only
   slightly from the generic i386 target.  For now, we don't give them
   their own source file, but include them here.  As a consequence,
   they'll always be included.  */

/* System V Release 4 (SVR4).  */

static int
i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
{
  /* UnixWare uses _sigacthandler.  The origin of the other symbols is
     currently unknown.  */
  return (name && (strcmp ("_sigreturn", name) == 0
		   || strcmp ("_sigacthandler", name) == 0
		   || strcmp ("sigvechandler", name) == 0));
}

/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
   routine, return the address of the associated sigcontext (ucontext)
   structure.  */

static CORE_ADDR
i386_svr4_sigcontext_addr (struct frame_info *next_frame)
{
  char buf[4];
  CORE_ADDR sp;

  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
  sp = extract_unsigned_integer (buf, 4);

  return read_memory_unsigned_integer (sp + 8, 4);
}


/* DJGPP.  */

static int
i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
{
  /* DJGPP doesn't have any special frames for signal handlers.  */
  return 0;
}


/* Generic ELF.  */

void
i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  /* We typically use stabs-in-ELF with the DWARF register numbering.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
}

/* System V Release 4 (SVR4).  */

void
i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* System V Release 4 uses ELF.  */
  i386_elf_init_abi (info, gdbarch);

  /* System V Release 4 has shared libraries.  */
  set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);

  set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
  tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
  tdep->sc_pc_offset = 36 + 14 * 4;
  tdep->sc_sp_offset = 36 + 17 * 4;

  tdep->jb_pc_offset = 20;
}

/* DJGPP.  */

static void
i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);

  tdep->jb_pc_offset = 36;
}

/* NetWare.  */

static void
i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  tdep->jb_pc_offset = 24;
}


/* i386 register groups.  In addition to the normal groups, add "mmx"
   and "sse".  */

static struct reggroup *i386_sse_reggroup;
static struct reggroup *i386_mmx_reggroup;

static void
i386_init_reggroups (void)
{
  i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
  i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
}

static void
i386_add_reggroups (struct gdbarch *gdbarch)
{
  reggroup_add (gdbarch, i386_sse_reggroup);
  reggroup_add (gdbarch, i386_mmx_reggroup);
  reggroup_add (gdbarch, general_reggroup);
  reggroup_add (gdbarch, float_reggroup);
  reggroup_add (gdbarch, all_reggroup);
  reggroup_add (gdbarch, save_reggroup);
  reggroup_add (gdbarch, restore_reggroup);
  reggroup_add (gdbarch, vector_reggroup);
  reggroup_add (gdbarch, system_reggroup);
}

int
i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *group)
{
  int sse_regnum_p = (i386_sse_regnum_p (regnum)
		      || i386_mxcsr_regnum_p (regnum));
  int fp_regnum_p = (i386_fp_regnum_p (regnum)
		     || i386_fpc_regnum_p (regnum));
  int mmx_regnum_p = (i386_mmx_regnum_p (regnum));

  if (group == i386_mmx_reggroup)
    return mmx_regnum_p;
  if (group == i386_sse_reggroup)
    return sse_regnum_p;
  if (group == vector_reggroup)
    return (mmx_regnum_p || sse_regnum_p);
  if (group == float_reggroup)
    return fp_regnum_p;
  if (group == general_reggroup)
    return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);

  return default_register_reggroup_p (gdbarch, regnum, group);
}


/* Get the ith function argument for the current function.  */
CORE_ADDR
i386_fetch_pointer_argument (struct frame_info *frame, int argi, 
			     struct type *type)
{
  CORE_ADDR stack;
  frame_read_register (frame, SP_REGNUM, &stack);
  return read_memory_unsigned_integer (stack + (4 * (argi + 1)), 4);
}


static struct gdbarch *
i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch_tdep *tdep;
  struct gdbarch *gdbarch;

  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* Allocate space for the new architecture.  */
  tdep = XMALLOC (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  /* The i386 default settings don't include the SSE registers.
     FIXME: kettenis/20020614: They do include the FPU registers for
     now, which probably is not quite right.  */
  tdep->num_xmm_regs = 0;

  tdep->jb_pc_offset = -1;
  tdep->struct_return = pcc_struct_return;
  tdep->sigtramp_start = 0;
  tdep->sigtramp_end = 0;
  tdep->sigcontext_addr = NULL;
  tdep->sc_reg_offset = NULL;
  tdep->sc_pc_offset = -1;
  tdep->sc_sp_offset = -1;

  /* The format used for `long double' on almost all i386 targets is
     the i387 extended floating-point format.  In fact, of all targets
     in the GCC 2.95 tree, only OSF/1 does it different, and insists
     on having a `long double' that's not `long' at all.  */
  set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);

  /* Although the i387 extended floating-point has only 80 significant
     bits, a `long double' actually takes up 96, probably to enforce
     alignment.  */
  set_gdbarch_long_double_bit (gdbarch, 96);

  /* The default ABI includes general-purpose registers and
     floating-point registers.  */
  set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
  set_gdbarch_register_name (gdbarch, i386_register_name);
  set_gdbarch_register_type (gdbarch, i386_register_type);

  /* Register numbers of various important registers.  */
  set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
  set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
  set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
  set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */

  /* Use the "default" register numbering scheme for stabs and COFF.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
  set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);

  /* Use the DWARF register numbering scheme for DWARF and DWARF 2.  */
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);

  /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
     be in use on any of the supported i386 targets.  */

  set_gdbarch_print_float_info (gdbarch, i387_print_float_info);

  set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);

  /* Call dummy code.  */
  set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);

  set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
  set_gdbarch_register_convert_to_virtual (gdbarch,
					   i386_register_convert_to_virtual);
  set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);

  set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
  set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
  set_gdbarch_extract_struct_value_address (gdbarch,
					    i386_extract_struct_value_address);
  set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);

  set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);

  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
  set_gdbarch_decr_pc_after_break (gdbarch, 1);
  set_gdbarch_function_start_offset (gdbarch, 0);

  set_gdbarch_frame_args_skip (gdbarch, 8);
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
  set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);

  /* Wire in the MMX registers.  */
  set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
  set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);

  set_gdbarch_print_insn (gdbarch, i386_print_insn);

  set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
  set_gdbarch_save_dummy_frame_tos (gdbarch, i386_save_dummy_frame_tos);

  set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);

  /* Add the i386 register groups.  */
  i386_add_reggroups (gdbarch);
  set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);

  /* Helper for function argument information.  */
  set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);

  /* Hook in the DWARF CFI frame unwinder.  */
  frame_unwind_append_predicate (gdbarch, dwarf2_frame_p);
  set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);

  frame_base_set_default (gdbarch, &i386_frame_base);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  frame_unwind_append_predicate (gdbarch, i386_sigtramp_frame_p);
  frame_unwind_append_predicate (gdbarch, i386_frame_p);

  return gdbarch;
}

static enum gdb_osabi
i386_coff_osabi_sniffer (bfd *abfd)
{
  if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
      || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
    return GDB_OSABI_GO32;

  return GDB_OSABI_UNKNOWN;
}

static enum gdb_osabi
i386_nlm_osabi_sniffer (bfd *abfd)
{
  return GDB_OSABI_NETWARE;
}


/* Provide a prototype to silence -Wmissing-prototypes.  */
void _initialize_i386_tdep (void);

void
_initialize_i386_tdep (void)
{
  register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);

  /* Add the variable that controls the disassembly flavor.  */
  {
    struct cmd_list_element *new_cmd;

    new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
				valid_flavors,
				&disassembly_flavor,
				"\
Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
and the default value is \"att\".",
				&setlist);
    add_show_from_set (new_cmd, &showlist);
  }

  /* Add the variable that controls the convention for returning
     structs.  */
  {
    struct cmd_list_element *new_cmd;

    new_cmd = add_set_enum_cmd ("struct-convention", no_class,
				valid_conventions,
				&struct_convention, "\
Set the convention for returning small structs, valid values \
are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
                                &setlist);
    add_show_from_set (new_cmd, &showlist);
  }

  gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
				  i386_coff_osabi_sniffer);
  gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
				  i386_nlm_osabi_sniffer);

  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
			  i386_svr4_init_abi);
  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
			  i386_go32_init_abi);
  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
			  i386_nw_init_abi);

  /* Initialize the i386 specific register groups.  */
  i386_init_reggroups ();
}