aboutsummaryrefslogtreecommitdiff
path: root/gdb/i386-tdep.c
blob: bf3a8445ce37eee48518c65b58bead309674190f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
/* Intel 386 target-dependent stuff.

   Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "opcode/i386.h"
#include "arch-utils.h"
#include "command.h"
#include "dummy-frame.h"
#include "dwarf2-frame.h"
#include "doublest.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "inferior.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdbtypes.h"
#include "objfiles.h"
#include "osabi.h"
#include "regcache.h"
#include "reggroups.h"
#include "regset.h"
#include "symfile.h"
#include "symtab.h"
#include "target.h"
#include "value.h"
#include "dis-asm.h"

#include "gdb_assert.h"
#include "gdb_string.h"

#include "i386-tdep.h"
#include "i387-tdep.h"

#include "record.h"
#include <stdint.h>

/* Register names.  */

static char *i386_register_names[] =
{
  "eax",   "ecx",    "edx",   "ebx",
  "esp",   "ebp",    "esi",   "edi",
  "eip",   "eflags", "cs",    "ss",
  "ds",    "es",     "fs",    "gs",
  "st0",   "st1",    "st2",   "st3",
  "st4",   "st5",    "st6",   "st7",
  "fctrl", "fstat",  "ftag",  "fiseg",
  "fioff", "foseg",  "fooff", "fop",
  "xmm0",  "xmm1",   "xmm2",  "xmm3",
  "xmm4",  "xmm5",   "xmm6",  "xmm7",
  "mxcsr"
};

static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);

/* Register names for MMX pseudo-registers.  */

static char *i386_mmx_names[] =
{
  "mm0", "mm1", "mm2", "mm3",
  "mm4", "mm5", "mm6", "mm7"
};

static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);

static int
i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;

  if (mm0_regnum < 0)
    return 0;

  return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
}

/* SSE register?  */

static int
i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (I387_NUM_XMM_REGS (tdep) == 0)
    return 0;

  return (I387_XMM0_REGNUM (tdep) <= regnum
	  && regnum < I387_MXCSR_REGNUM (tdep));
}

static int
i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (I387_NUM_XMM_REGS (tdep) == 0)
    return 0;

  return (regnum == I387_MXCSR_REGNUM (tdep));
}

/* FP register?  */

int
i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (I387_ST0_REGNUM (tdep) < 0)
    return 0;

  return (I387_ST0_REGNUM (tdep) <= regnum
	  && regnum < I387_FCTRL_REGNUM (tdep));
}

int
i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (I387_ST0_REGNUM (tdep) < 0)
    return 0;

  return (I387_FCTRL_REGNUM (tdep) <= regnum 
	  && regnum < I387_XMM0_REGNUM (tdep));
}

/* Return the name of register REGNUM.  */

const char *
i386_register_name (struct gdbarch *gdbarch, int regnum)
{
  if (i386_mmx_regnum_p (gdbarch, regnum))
    return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];

  if (regnum >= 0 && regnum < i386_num_register_names)
    return i386_register_names[regnum];

  return NULL;
}

/* Convert a dbx register number REG to the appropriate register
   number used by GDB.  */

static int
i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* This implements what GCC calls the "default" register map
     (dbx_register_map[]).  */

  if (reg >= 0 && reg <= 7)
    {
      /* General-purpose registers.  The debug info calls %ebp
         register 4, and %esp register 5.  */
      if (reg == 4)
        return 5;
      else if (reg == 5)
        return 4;
      else return reg;
    }
  else if (reg >= 12 && reg <= 19)
    {
      /* Floating-point registers.  */
      return reg - 12 + I387_ST0_REGNUM (tdep);
    }
  else if (reg >= 21 && reg <= 28)
    {
      /* SSE registers.  */
      return reg - 21 + I387_XMM0_REGNUM (tdep);
    }
  else if (reg >= 29 && reg <= 36)
    {
      /* MMX registers.  */
      return reg - 29 + I387_MM0_REGNUM (tdep);
    }

  /* This will hopefully provoke a warning.  */
  return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
}

/* Convert SVR4 register number REG to the appropriate register number
   used by GDB.  */

static int
i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* This implements the GCC register map that tries to be compatible
     with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]).  */

  /* The SVR4 register numbering includes %eip and %eflags, and
     numbers the floating point registers differently.  */
  if (reg >= 0 && reg <= 9)
    {
      /* General-purpose registers.  */
      return reg;
    }
  else if (reg >= 11 && reg <= 18)
    {
      /* Floating-point registers.  */
      return reg - 11 + I387_ST0_REGNUM (tdep);
    }
  else if (reg >= 21 && reg <= 36)
    {
      /* The SSE and MMX registers have the same numbers as with dbx.  */
      return i386_dbx_reg_to_regnum (gdbarch, reg);
    }

  switch (reg)
    {
    case 37: return I387_FCTRL_REGNUM (tdep);
    case 38: return I387_FSTAT_REGNUM (tdep);
    case 39: return I387_MXCSR_REGNUM (tdep);
    case 40: return I386_ES_REGNUM;
    case 41: return I386_CS_REGNUM;
    case 42: return I386_SS_REGNUM;
    case 43: return I386_DS_REGNUM;
    case 44: return I386_FS_REGNUM;
    case 45: return I386_GS_REGNUM;
    }

  /* This will hopefully provoke a warning.  */
  return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
}



/* This is the variable that is set with "set disassembly-flavor", and
   its legitimate values.  */
static const char att_flavor[] = "att";
static const char intel_flavor[] = "intel";
static const char *valid_flavors[] =
{
  att_flavor,
  intel_flavor,
  NULL
};
static const char *disassembly_flavor = att_flavor;


/* Use the program counter to determine the contents and size of a
   breakpoint instruction.  Return a pointer to a string of bytes that
   encode a breakpoint instruction, store the length of the string in
   *LEN and optionally adjust *PC to point to the correct memory
   location for inserting the breakpoint.

   On the i386 we have a single breakpoint that fits in a single byte
   and can be inserted anywhere.

   This function is 64-bit safe.  */

static const gdb_byte *
i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
{
  static gdb_byte break_insn[] = { 0xcc }; /* int 3 */

  *len = sizeof (break_insn);
  return break_insn;
}

/* Displaced instruction handling.  */

/* Skip the legacy instruction prefixes in INSN.
   Not all prefixes are valid for any particular insn
   but we needn't care, the insn will fault if it's invalid.
   The result is a pointer to the first opcode byte,
   or NULL if we run off the end of the buffer.  */

static gdb_byte *
i386_skip_prefixes (gdb_byte *insn, size_t max_len)
{
  gdb_byte *end = insn + max_len;

  while (insn < end)
    {
      switch (*insn)
	{
	case DATA_PREFIX_OPCODE:
	case ADDR_PREFIX_OPCODE:
	case CS_PREFIX_OPCODE:
	case DS_PREFIX_OPCODE:
	case ES_PREFIX_OPCODE:
	case FS_PREFIX_OPCODE:
	case GS_PREFIX_OPCODE:
	case SS_PREFIX_OPCODE:
	case LOCK_PREFIX_OPCODE:
	case REPE_PREFIX_OPCODE:
	case REPNE_PREFIX_OPCODE:
	  ++insn;
	  continue;
	default:
	  return insn;
	}
    }

  return NULL;
}

static int
i386_absolute_jmp_p (const gdb_byte *insn)
{
  /* jmp far (absolute address in operand) */
  if (insn[0] == 0xea)
    return 1;

  if (insn[0] == 0xff)
    {
      /* jump near, absolute indirect (/4) */
      if ((insn[1] & 0x38) == 0x20)
        return 1;

      /* jump far, absolute indirect (/5) */
      if ((insn[1] & 0x38) == 0x28)
        return 1;
    }

  return 0;
}

static int
i386_absolute_call_p (const gdb_byte *insn)
{
  /* call far, absolute */
  if (insn[0] == 0x9a)
    return 1;

  if (insn[0] == 0xff)
    {
      /* Call near, absolute indirect (/2) */
      if ((insn[1] & 0x38) == 0x10)
        return 1;

      /* Call far, absolute indirect (/3) */
      if ((insn[1] & 0x38) == 0x18)
        return 1;
    }

  return 0;
}

static int
i386_ret_p (const gdb_byte *insn)
{
  switch (insn[0])
    {
    case 0xc2: /* ret near, pop N bytes */
    case 0xc3: /* ret near */
    case 0xca: /* ret far, pop N bytes */
    case 0xcb: /* ret far */
    case 0xcf: /* iret */
      return 1;

    default:
      return 0;
    }
}

static int
i386_call_p (const gdb_byte *insn)
{
  if (i386_absolute_call_p (insn))
    return 1;

  /* call near, relative */
  if (insn[0] == 0xe8)
    return 1;

  return 0;
}

/* Return non-zero if INSN is a system call, and set *LENGTHP to its
   length in bytes.  Otherwise, return zero.  */

static int
i386_syscall_p (const gdb_byte *insn, ULONGEST *lengthp)
{
  if (insn[0] == 0xcd)
    {
      *lengthp = 2;
      return 1;
    }

  return 0;
}

/* Fix up the state of registers and memory after having single-stepped
   a displaced instruction.  */

void
i386_displaced_step_fixup (struct gdbarch *gdbarch,
                           struct displaced_step_closure *closure,
                           CORE_ADDR from, CORE_ADDR to,
                           struct regcache *regs)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* The offset we applied to the instruction's address.
     This could well be negative (when viewed as a signed 32-bit
     value), but ULONGEST won't reflect that, so take care when
     applying it.  */
  ULONGEST insn_offset = to - from;

  /* Since we use simple_displaced_step_copy_insn, our closure is a
     copy of the instruction.  */
  gdb_byte *insn = (gdb_byte *) closure;
  /* The start of the insn, needed in case we see some prefixes.  */
  gdb_byte *insn_start = insn;

  if (debug_displaced)
    fprintf_unfiltered (gdb_stdlog,
                        "displaced: fixup (%s, %s), "
                        "insn = 0x%02x 0x%02x ...\n",
                        paddress (gdbarch, from), paddress (gdbarch, to),
			insn[0], insn[1]);

  /* The list of issues to contend with here is taken from
     resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
     Yay for Free Software!  */

  /* Relocate the %eip, if necessary.  */

  /* The instruction recognizers we use assume any leading prefixes
     have been skipped.  */
  {
    /* This is the size of the buffer in closure.  */
    size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
    gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
    /* If there are too many prefixes, just ignore the insn.
       It will fault when run.  */
    if (opcode != NULL)
      insn = opcode;
  }

  /* Except in the case of absolute or indirect jump or call
     instructions, or a return instruction, the new eip is relative to
     the displaced instruction; make it relative.  Well, signal
     handler returns don't need relocation either, but we use the
     value of %eip to recognize those; see below.  */
  if (! i386_absolute_jmp_p (insn)
      && ! i386_absolute_call_p (insn)
      && ! i386_ret_p (insn))
    {
      ULONGEST orig_eip;
      ULONGEST insn_len;

      regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);

      /* A signal trampoline system call changes the %eip, resuming
         execution of the main program after the signal handler has
         returned.  That makes them like 'return' instructions; we
         shouldn't relocate %eip.

         But most system calls don't, and we do need to relocate %eip.

         Our heuristic for distinguishing these cases: if stepping
         over the system call instruction left control directly after
         the instruction, the we relocate --- control almost certainly
         doesn't belong in the displaced copy.  Otherwise, we assume
         the instruction has put control where it belongs, and leave
         it unrelocated.  Goodness help us if there are PC-relative
         system calls.  */
      if (i386_syscall_p (insn, &insn_len)
          && orig_eip != to + (insn - insn_start) + insn_len)
        {
          if (debug_displaced)
            fprintf_unfiltered (gdb_stdlog,
                                "displaced: syscall changed %%eip; "
                                "not relocating\n");
        }
      else
        {
          ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;

	  /* If we just stepped over a breakpoint insn, we don't backup
	     the pc on purpose; this is to match behaviour without
	     stepping.  */

          regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);

          if (debug_displaced)
            fprintf_unfiltered (gdb_stdlog,
                                "displaced: "
                                "relocated %%eip from %s to %s\n",
                                paddress (gdbarch, orig_eip),
				paddress (gdbarch, eip));
        }
    }

  /* If the instruction was PUSHFL, then the TF bit will be set in the
     pushed value, and should be cleared.  We'll leave this for later,
     since GDB already messes up the TF flag when stepping over a
     pushfl.  */

  /* If the instruction was a call, the return address now atop the
     stack is the address following the copied instruction.  We need
     to make it the address following the original instruction.  */
  if (i386_call_p (insn))
    {
      ULONGEST esp;
      ULONGEST retaddr;
      const ULONGEST retaddr_len = 4;

      regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
      retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
      retaddr = (retaddr - insn_offset) & 0xffffffffUL;
      write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);

      if (debug_displaced)
        fprintf_unfiltered (gdb_stdlog,
                            "displaced: relocated return addr at %s to %s\n",
                            paddress (gdbarch, esp),
                            paddress (gdbarch, retaddr));
    }
}

#ifdef I386_REGNO_TO_SYMMETRY
#error "The Sequent Symmetry is no longer supported."
#endif

/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
   and %esp "belong" to the calling function.  Therefore these
   registers should be saved if they're going to be modified.  */

/* The maximum number of saved registers.  This should include all
   registers mentioned above, and %eip.  */
#define I386_NUM_SAVED_REGS	I386_NUM_GREGS

struct i386_frame_cache
{
  /* Base address.  */
  CORE_ADDR base;
  LONGEST sp_offset;
  CORE_ADDR pc;

  /* Saved registers.  */
  CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
  CORE_ADDR saved_sp;
  int saved_sp_reg;
  int pc_in_eax;

  /* Stack space reserved for local variables.  */
  long locals;
};

/* Allocate and initialize a frame cache.  */

static struct i386_frame_cache *
i386_alloc_frame_cache (void)
{
  struct i386_frame_cache *cache;
  int i;

  cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);

  /* Base address.  */
  cache->base = 0;
  cache->sp_offset = -4;
  cache->pc = 0;

  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset (that's where %ebp is supposed to be stored).  */
  for (i = 0; i < I386_NUM_SAVED_REGS; i++)
    cache->saved_regs[i] = -1;
  cache->saved_sp = 0;
  cache->saved_sp_reg = -1;
  cache->pc_in_eax = 0;

  /* Frameless until proven otherwise.  */
  cache->locals = -1;

  return cache;
}

/* If the instruction at PC is a jump, return the address of its
   target.  Otherwise, return PC.  */

static CORE_ADDR
i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte op;
  long delta = 0;
  int data16 = 0;

  target_read_memory (pc, &op, 1);
  if (op == 0x66)
    {
      data16 = 1;
      op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
    }

  switch (op)
    {
    case 0xe9:
      /* Relative jump: if data16 == 0, disp32, else disp16.  */
      if (data16)
	{
	  delta = read_memory_integer (pc + 2, 2, byte_order);

	  /* Include the size of the jmp instruction (including the
             0x66 prefix).  */
	  delta += 4;
	}
      else
	{
	  delta = read_memory_integer (pc + 1, 4, byte_order);

	  /* Include the size of the jmp instruction.  */
	  delta += 5;
	}
      break;
    case 0xeb:
      /* Relative jump, disp8 (ignore data16).  */
      delta = read_memory_integer (pc + data16 + 1, 1, byte_order);

      delta += data16 + 2;
      break;
    }

  return pc + delta;
}

/* Check whether PC points at a prologue for a function returning a
   structure or union.  If so, it updates CACHE and returns the
   address of the first instruction after the code sequence that
   removes the "hidden" argument from the stack or CURRENT_PC,
   whichever is smaller.  Otherwise, return PC.  */

static CORE_ADDR
i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
			    struct i386_frame_cache *cache)
{
  /* Functions that return a structure or union start with:

        popl %eax             0x58
        xchgl %eax, (%esp)    0x87 0x04 0x24
     or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00

     (the System V compiler puts out the second `xchg' instruction,
     and the assembler doesn't try to optimize it, so the 'sib' form
     gets generated).  This sequence is used to get the address of the
     return buffer for a function that returns a structure.  */
  static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
  static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
  gdb_byte buf[4];
  gdb_byte op;

  if (current_pc <= pc)
    return pc;

  target_read_memory (pc, &op, 1);

  if (op != 0x58)		/* popl %eax */
    return pc;

  target_read_memory (pc + 1, buf, 4);
  if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
    return pc;

  if (current_pc == pc)
    {
      cache->sp_offset += 4;
      return current_pc;
    }

  if (current_pc == pc + 1)
    {
      cache->pc_in_eax = 1;
      return current_pc;
    }
  
  if (buf[1] == proto1[1])
    return pc + 4;
  else
    return pc + 5;
}

static CORE_ADDR
i386_skip_probe (CORE_ADDR pc)
{
  /* A function may start with

        pushl constant
        call _probe
	addl $4, %esp
	   
     followed by

        pushl %ebp

     etc.  */
  gdb_byte buf[8];
  gdb_byte op;

  target_read_memory (pc, &op, 1);

  if (op == 0x68 || op == 0x6a)
    {
      int delta;

      /* Skip past the `pushl' instruction; it has either a one-byte or a
	 four-byte operand, depending on the opcode.  */
      if (op == 0x68)
	delta = 5;
      else
	delta = 2;

      /* Read the following 8 bytes, which should be `call _probe' (6
	 bytes) followed by `addl $4,%esp' (2 bytes).  */
      read_memory (pc + delta, buf, sizeof (buf));
      if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
	pc += delta + sizeof (buf);
    }

  return pc;
}

/* GCC 4.1 and later, can put code in the prologue to realign the
   stack pointer.  Check whether PC points to such code, and update
   CACHE accordingly.  Return the first instruction after the code
   sequence or CURRENT_PC, whichever is smaller.  If we don't
   recognize the code, return PC.  */

static CORE_ADDR
i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
			  struct i386_frame_cache *cache)
{
  /* There are 2 code sequences to re-align stack before the frame
     gets set up:

	1. Use a caller-saved saved register:

		leal  4(%esp), %reg
		andl  $-XXX, %esp
		pushl -4(%reg)

	2. Use a callee-saved saved register:

		pushl %reg
		leal  8(%esp), %reg
		andl  $-XXX, %esp
		pushl -4(%reg)

     "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
     
     	0x83 0xe4 0xf0			andl $-16, %esp
     	0x81 0xe4 0x00 0xff 0xff 0xff	andl $-256, %esp
   */

  gdb_byte buf[14];
  int reg;
  int offset, offset_and;
  static int regnums[8] = {
    I386_EAX_REGNUM,		/* %eax */
    I386_ECX_REGNUM,		/* %ecx */
    I386_EDX_REGNUM,		/* %edx */
    I386_EBX_REGNUM,		/* %ebx */
    I386_ESP_REGNUM,		/* %esp */
    I386_EBP_REGNUM,		/* %ebp */
    I386_ESI_REGNUM,		/* %esi */
    I386_EDI_REGNUM		/* %edi */
  };

  if (target_read_memory (pc, buf, sizeof buf))
    return pc;

  /* Check caller-saved saved register.  The first instruction has
     to be "leal 4(%esp), %reg".  */
  if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
    {
      /* MOD must be binary 10 and R/M must be binary 100.  */
      if ((buf[1] & 0xc7) != 0x44)
	return pc;

      /* REG has register number.  */
      reg = (buf[1] >> 3) & 7;
      offset = 4;
    }
  else
    {
      /* Check callee-saved saved register.  The first instruction
	 has to be "pushl %reg".  */
      if ((buf[0] & 0xf8) != 0x50)
	return pc;

      /* Get register.  */
      reg = buf[0] & 0x7;

      /* The next instruction has to be "leal 8(%esp), %reg".  */
      if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
	return pc;

      /* MOD must be binary 10 and R/M must be binary 100.  */
      if ((buf[2] & 0xc7) != 0x44)
	return pc;
      
      /* REG has register number.  Registers in pushl and leal have to
	 be the same.  */
      if (reg != ((buf[2] >> 3) & 7))
	return pc;

      offset = 5;
    }

  /* Rigister can't be %esp nor %ebp.  */
  if (reg == 4 || reg == 5)
    return pc;

  /* The next instruction has to be "andl $-XXX, %esp".  */
  if (buf[offset + 1] != 0xe4
      || (buf[offset] != 0x81 && buf[offset] != 0x83))
    return pc;

  offset_and = offset;
  offset += buf[offset] == 0x81 ? 6 : 3;

  /* The next instruction has to be "pushl -4(%reg)".  8bit -4 is
     0xfc.  REG must be binary 110 and MOD must be binary 01.  */
  if (buf[offset] != 0xff
      || buf[offset + 2] != 0xfc
      || (buf[offset + 1] & 0xf8) != 0x70)
    return pc;

  /* R/M has register.  Registers in leal and pushl have to be the
     same.  */
  if (reg != (buf[offset + 1] & 7))
    return pc;

  if (current_pc > pc + offset_and)
    cache->saved_sp_reg = regnums[reg];

  return min (pc + offset + 3, current_pc);
}

/* Maximum instruction length we need to handle.  */
#define I386_MAX_MATCHED_INSN_LEN	6

/* Instruction description.  */
struct i386_insn
{
  size_t len;
  gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
  gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
};

/* Search for the instruction at PC in the list SKIP_INSNS.  Return
   the first instruction description that matches.  Otherwise, return
   NULL.  */

static struct i386_insn *
i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
{
  struct i386_insn *insn;
  gdb_byte op;

  target_read_memory (pc, &op, 1);

  for (insn = skip_insns; insn->len > 0; insn++)
    {
      if ((op & insn->mask[0]) == insn->insn[0])
	{
	  gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
	  int insn_matched = 1;
	  size_t i;

	  gdb_assert (insn->len > 1);
	  gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);

	  target_read_memory (pc + 1, buf, insn->len - 1);
	  for (i = 1; i < insn->len; i++)
	    {
	      if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
		insn_matched = 0;
	    }

	  if (insn_matched)
	    return insn;
	}
    }

  return NULL;
}

/* Some special instructions that might be migrated by GCC into the
   part of the prologue that sets up the new stack frame.  Because the
   stack frame hasn't been setup yet, no registers have been saved
   yet, and only the scratch registers %eax, %ecx and %edx can be
   touched.  */

struct i386_insn i386_frame_setup_skip_insns[] =
{
  /* Check for `movb imm8, r' and `movl imm32, r'. 
    
     ??? Should we handle 16-bit operand-sizes here?  */

  /* `movb imm8, %al' and `movb imm8, %ah' */
  /* `movb imm8, %cl' and `movb imm8, %ch' */
  { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
  /* `movb imm8, %dl' and `movb imm8, %dh' */
  { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
  /* `movl imm32, %eax' and `movl imm32, %ecx' */
  { 5, { 0xb8 }, { 0xfe } },
  /* `movl imm32, %edx' */
  { 5, { 0xba }, { 0xff } },

  /* Check for `mov imm32, r32'.  Note that there is an alternative
     encoding for `mov m32, %eax'.

     ??? Should we handle SIB adressing here?
     ??? Should we handle 16-bit operand-sizes here?  */

  /* `movl m32, %eax' */
  { 5, { 0xa1 }, { 0xff } },
  /* `movl m32, %eax' and `mov; m32, %ecx' */
  { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
  /* `movl m32, %edx' */
  { 6, { 0x89, 0x15 }, {0xff, 0xff } },

  /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
     Because of the symmetry, there are actually two ways to encode
     these instructions; opcode bytes 0x29 and 0x2b for `subl' and
     opcode bytes 0x31 and 0x33 for `xorl'.  */

  /* `subl %eax, %eax' */
  { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
  /* `subl %ecx, %ecx' */
  { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
  /* `subl %edx, %edx' */
  { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
  /* `xorl %eax, %eax' */
  { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
  /* `xorl %ecx, %ecx' */
  { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
  /* `xorl %edx, %edx' */
  { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
  { 0 }
};


/* Check whether PC points to a no-op instruction.  */
static CORE_ADDR
i386_skip_noop (CORE_ADDR pc)
{
  gdb_byte op;
  int check = 1;

  target_read_memory (pc, &op, 1);

  while (check) 
    {
      check = 0;
      /* Ignore `nop' instruction.  */
      if (op == 0x90) 
	{
	  pc += 1;
	  target_read_memory (pc, &op, 1);
	  check = 1;
	}
      /* Ignore no-op instruction `mov %edi, %edi'.
	 Microsoft system dlls often start with
	 a `mov %edi,%edi' instruction.
	 The 5 bytes before the function start are
	 filled with `nop' instructions.
	 This pattern can be used for hot-patching:
	 The `mov %edi, %edi' instruction can be replaced by a
	 near jump to the location of the 5 `nop' instructions
	 which can be replaced by a 32-bit jump to anywhere
	 in the 32-bit address space.  */

      else if (op == 0x8b)
	{
	  target_read_memory (pc + 1, &op, 1);
	  if (op == 0xff)
	    {
	      pc += 2;
	      target_read_memory (pc, &op, 1);
	      check = 1;
	    }
	}
    }
  return pc; 
}

/* Check whether PC points at a code that sets up a new stack frame.
   If so, it updates CACHE and returns the address of the first
   instruction after the sequence that sets up the frame or LIMIT,
   whichever is smaller.  If we don't recognize the code, return PC.  */

static CORE_ADDR
i386_analyze_frame_setup (struct gdbarch *gdbarch,
			  CORE_ADDR pc, CORE_ADDR limit,
			  struct i386_frame_cache *cache)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct i386_insn *insn;
  gdb_byte op;
  int skip = 0;

  if (limit <= pc)
    return limit;

  target_read_memory (pc, &op, 1);

  if (op == 0x55)		/* pushl %ebp */
    {
      /* Take into account that we've executed the `pushl %ebp' that
	 starts this instruction sequence.  */
      cache->saved_regs[I386_EBP_REGNUM] = 0;
      cache->sp_offset += 4;
      pc++;

      /* If that's all, return now.  */
      if (limit <= pc)
	return limit;

      /* Check for some special instructions that might be migrated by
	 GCC into the prologue and skip them.  At this point in the
	 prologue, code should only touch the scratch registers %eax,
	 %ecx and %edx, so while the number of posibilities is sheer,
	 it is limited.

	 Make sure we only skip these instructions if we later see the
	 `movl %esp, %ebp' that actually sets up the frame.  */
      while (pc + skip < limit)
	{
	  insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
	  if (insn == NULL)
	    break;

	  skip += insn->len;
	}

      /* If that's all, return now.  */
      if (limit <= pc + skip)
	return limit;

      target_read_memory (pc + skip, &op, 1);

      /* Check for `movl %esp, %ebp' -- can be written in two ways.  */
      switch (op)
	{
	case 0x8b:
	  if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
	      != 0xec)
	    return pc;
	  break;
	case 0x89:
	  if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
	      != 0xe5)
	    return pc;
	  break;
	default:
	  return pc;
	}

      /* OK, we actually have a frame.  We just don't know how large
	 it is yet.  Set its size to zero.  We'll adjust it if
	 necessary.  We also now commit to skipping the special
	 instructions mentioned before.  */
      cache->locals = 0;
      pc += (skip + 2);

      /* If that's all, return now.  */
      if (limit <= pc)
	return limit;

      /* Check for stack adjustment 

	    subl $XXX, %esp

	 NOTE: You can't subtract a 16-bit immediate from a 32-bit
	 reg, so we don't have to worry about a data16 prefix.  */
      target_read_memory (pc, &op, 1);
      if (op == 0x83)
	{
	  /* `subl' with 8-bit immediate.  */
	  if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
	    /* Some instruction starting with 0x83 other than `subl'.  */
	    return pc;

	  /* `subl' with signed 8-bit immediate (though it wouldn't
	     make sense to be negative).  */
	  cache->locals = read_memory_integer (pc + 2, 1, byte_order);
	  return pc + 3;
	}
      else if (op == 0x81)
	{
	  /* Maybe it is `subl' with a 32-bit immediate.  */
	  if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
	    /* Some instruction starting with 0x81 other than `subl'.  */
	    return pc;

	  /* It is `subl' with a 32-bit immediate.  */
	  cache->locals = read_memory_integer (pc + 2, 4, byte_order);
	  return pc + 6;
	}
      else
	{
	  /* Some instruction other than `subl'.  */
	  return pc;
	}
    }
  else if (op == 0xc8)		/* enter */
    {
      cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
      return pc + 4;
    }

  return pc;
}

/* Check whether PC points at code that saves registers on the stack.
   If so, it updates CACHE and returns the address of the first
   instruction after the register saves or CURRENT_PC, whichever is
   smaller.  Otherwise, return PC.  */

static CORE_ADDR
i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
			     struct i386_frame_cache *cache)
{
  CORE_ADDR offset = 0;
  gdb_byte op;
  int i;

  if (cache->locals > 0)
    offset -= cache->locals;
  for (i = 0; i < 8 && pc < current_pc; i++)
    {
      target_read_memory (pc, &op, 1);
      if (op < 0x50 || op > 0x57)
	break;

      offset -= 4;
      cache->saved_regs[op - 0x50] = offset;
      cache->sp_offset += 4;
      pc++;
    }

  return pc;
}

/* Do a full analysis of the prologue at PC and update CACHE
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   address where the analysis stopped.

   We handle these cases:

   The startup sequence can be at the start of the function, or the
   function can start with a branch to startup code at the end.

   %ebp can be set up with either the 'enter' instruction, or "pushl
   %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
   once used in the System V compiler).

   Local space is allocated just below the saved %ebp by either the
   'enter' instruction, or by "subl $<size>, %esp".  'enter' has a
   16-bit unsigned argument for space to allocate, and the 'addl'
   instruction could have either a signed byte, or 32-bit immediate.

   Next, the registers used by this function are pushed.  With the
   System V compiler they will always be in the order: %edi, %esi,
   %ebx (and sometimes a harmless bug causes it to also save but not
   restore %eax); however, the code below is willing to see the pushes
   in any order, and will handle up to 8 of them.
 
   If the setup sequence is at the end of the function, then the next
   instruction will be a branch back to the start.  */

static CORE_ADDR
i386_analyze_prologue (struct gdbarch *gdbarch,
		       CORE_ADDR pc, CORE_ADDR current_pc,
		       struct i386_frame_cache *cache)
{
  pc = i386_skip_noop (pc);
  pc = i386_follow_jump (gdbarch, pc);
  pc = i386_analyze_struct_return (pc, current_pc, cache);
  pc = i386_skip_probe (pc);
  pc = i386_analyze_stack_align (pc, current_pc, cache);
  pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
  return i386_analyze_register_saves (pc, current_pc, cache);
}

/* Return PC of first real instruction.  */

static CORE_ADDR
i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  static gdb_byte pic_pat[6] =
  {
    0xe8, 0, 0, 0, 0,		/* call 0x0 */
    0x5b,			/* popl %ebx */
  };
  struct i386_frame_cache cache;
  CORE_ADDR pc;
  gdb_byte op;
  int i;

  cache.locals = -1;
  pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
  if (cache.locals < 0)
    return start_pc;

  /* Found valid frame setup.  */

  /* The native cc on SVR4 in -K PIC mode inserts the following code
     to get the address of the global offset table (GOT) into register
     %ebx:

        call	0x0
	popl    %ebx
        movl    %ebx,x(%ebp)    (optional)
        addl    y,%ebx

     This code is with the rest of the prologue (at the end of the
     function), so we have to skip it to get to the first real
     instruction at the start of the function.  */

  for (i = 0; i < 6; i++)
    {
      target_read_memory (pc + i, &op, 1);
      if (pic_pat[i] != op)
	break;
    }
  if (i == 6)
    {
      int delta = 6;

      target_read_memory (pc + delta, &op, 1);

      if (op == 0x89)		/* movl %ebx, x(%ebp) */
	{
	  op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);

	  if (op == 0x5d)	/* One byte offset from %ebp.  */
	    delta += 3;
	  else if (op == 0x9d)	/* Four byte offset from %ebp.  */
	    delta += 6;
	  else			/* Unexpected instruction.  */
	    delta = 0;

          target_read_memory (pc + delta, &op, 1);
	}

      /* addl y,%ebx */
      if (delta > 0 && op == 0x81
	  && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
	     == 0xc3)
	{
	  pc += delta + 6;
	}
    }

  /* If the function starts with a branch (to startup code at the end)
     the last instruction should bring us back to the first
     instruction of the real code.  */
  if (i386_follow_jump (gdbarch, start_pc) != start_pc)
    pc = i386_follow_jump (gdbarch, pc);

  return pc;
}

/* Check that the code pointed to by PC corresponds to a call to
   __main, skip it if so.  Return PC otherwise.  */

CORE_ADDR
i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte op;

  target_read_memory (pc, &op, 1);
  if (op == 0xe8)
    {
      gdb_byte buf[4];

      if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
 	{
	  /* Make sure address is computed correctly as a 32bit
	     integer even if CORE_ADDR is 64 bit wide.  */
 	  struct minimal_symbol *s;
 	  CORE_ADDR call_dest;

	  call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
	  call_dest = call_dest & 0xffffffffU;
 	  s = lookup_minimal_symbol_by_pc (call_dest);
 	  if (s != NULL
 	      && SYMBOL_LINKAGE_NAME (s) != NULL
 	      && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
 	    pc += 5;
 	}
    }

  return pc;
}

/* This function is 64-bit safe.  */

static CORE_ADDR
i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  gdb_byte buf[8];

  frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
  return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
}


/* Normal frames.  */

static struct i386_frame_cache *
i386_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct i386_frame_cache *cache;
  gdb_byte buf[4];
  int i;

  if (*this_cache)
    return *this_cache;

  cache = i386_alloc_frame_cache ();
  *this_cache = cache;

  /* In principle, for normal frames, %ebp holds the frame pointer,
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  Signal
     trampolines are just a special case of a "frameless" function.
     They (usually) share their frame pointer with the frame that was
     in progress when the signal occurred.  */

  get_frame_register (this_frame, I386_EBP_REGNUM, buf);
  cache->base = extract_unsigned_integer (buf, 4, byte_order);
  if (cache->base == 0)
    return cache;

  /* For normal frames, %eip is stored at 4(%ebp).  */
  cache->saved_regs[I386_EIP_REGNUM] = 4;

  cache->pc = get_frame_func (this_frame);
  if (cache->pc != 0)
    i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
			   cache);

  if (cache->saved_sp_reg != -1)
    {
      /* Saved stack pointer has been saved.  */
      get_frame_register (this_frame, cache->saved_sp_reg, buf);
      cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
    }

  if (cache->locals < 0)
    {
      /* We didn't find a valid frame, which means that CACHE->base
	 currently holds the frame pointer for our calling frame.  If
	 we're at the start of a function, or somewhere half-way its
	 prologue, the function's frame probably hasn't been fully
	 setup yet.  Try to reconstruct the base address for the stack
	 frame by looking at the stack pointer.  For truly "frameless"
	 functions this might work too.  */

      if (cache->saved_sp_reg != -1)
	{
	  /* We're halfway aligning the stack.  */
	  cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
	  cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;

	  /* This will be added back below.  */
	  cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
	}
      else
	{
	  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
	  cache->base = extract_unsigned_integer (buf, 4, byte_order)
			+ cache->sp_offset;
	}
    }

  /* Now that we have the base address for the stack frame we can
     calculate the value of %esp in the calling frame.  */
  if (cache->saved_sp == 0)
    cache->saved_sp = cache->base + 8;

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < I386_NUM_SAVED_REGS; i++)
    if (cache->saved_regs[i] != -1)
      cache->saved_regs[i] += cache->base;

  return cache;
}

static void
i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  /* See the end of i386_push_dummy_call.  */
  (*this_id) = frame_id_build (cache->base + 8, cache->pc);
}

static struct value *
i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
			  int regnum)
{
  struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);

  gdb_assert (regnum >= 0);

  /* The System V ABI says that:

     "The flags register contains the system flags, such as the
     direction flag and the carry flag.  The direction flag must be
     set to the forward (that is, zero) direction before entry and
     upon exit from a function.  Other user flags have no specified
     role in the standard calling sequence and are not preserved."

     To guarantee the "upon exit" part of that statement we fake a
     saved flags register that has its direction flag cleared.

     Note that GCC doesn't seem to rely on the fact that the direction
     flag is cleared after a function return; it always explicitly
     clears the flag before operations where it matters.

     FIXME: kettenis/20030316: I'm not quite sure whether this is the
     right thing to do.  The way we fake the flags register here makes
     it impossible to change it.  */

  if (regnum == I386_EFLAGS_REGNUM)
    {
      ULONGEST val;

      val = get_frame_register_unsigned (this_frame, regnum);
      val &= ~(1 << 10);
      return frame_unwind_got_constant (this_frame, regnum, val);
    }

  if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
    return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);

  if (regnum == I386_ESP_REGNUM && cache->saved_sp)
    return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);

  if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
    return frame_unwind_got_memory (this_frame, regnum,
				    cache->saved_regs[regnum]);

  return frame_unwind_got_register (this_frame, regnum, regnum);
}

static const struct frame_unwind i386_frame_unwind =
{
  NORMAL_FRAME,
  i386_frame_this_id,
  i386_frame_prev_register,
  NULL,
  default_frame_sniffer
};


/* Signal trampolines.  */

static struct i386_frame_cache *
i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct i386_frame_cache *cache;
  CORE_ADDR addr;
  gdb_byte buf[4];

  if (*this_cache)
    return *this_cache;

  cache = i386_alloc_frame_cache ();

  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
  cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;

  addr = tdep->sigcontext_addr (this_frame);
  if (tdep->sc_reg_offset)
    {
      int i;

      gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);

      for (i = 0; i < tdep->sc_num_regs; i++)
	if (tdep->sc_reg_offset[i] != -1)
	  cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
    }
  else
    {
      cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
      cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
    }

  *this_cache = cache;
  return cache;
}

static void
i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
			     struct frame_id *this_id)
{
  struct i386_frame_cache *cache =
    i386_sigtramp_frame_cache (this_frame, this_cache);

  /* See the end of i386_push_dummy_call.  */
  (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
}

static struct value *
i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
				   void **this_cache, int regnum)
{
  /* Make sure we've initialized the cache.  */
  i386_sigtramp_frame_cache (this_frame, this_cache);

  return i386_frame_prev_register (this_frame, this_cache, regnum);
}

static int
i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
			     struct frame_info *this_frame,
			     void **this_prologue_cache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));

  /* We shouldn't even bother if we don't have a sigcontext_addr
     handler.  */
  if (tdep->sigcontext_addr == NULL)
    return 0;

  if (tdep->sigtramp_p != NULL)
    {
      if (tdep->sigtramp_p (this_frame))
	return 1;
    }

  if (tdep->sigtramp_start != 0)
    {
      CORE_ADDR pc = get_frame_pc (this_frame);

      gdb_assert (tdep->sigtramp_end != 0);
      if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
	return 1;
    }

  return 0;
}

static const struct frame_unwind i386_sigtramp_frame_unwind =
{
  SIGTRAMP_FRAME,
  i386_sigtramp_frame_this_id,
  i386_sigtramp_frame_prev_register,
  NULL,
  i386_sigtramp_frame_sniffer
};


static CORE_ADDR
i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_base i386_frame_base =
{
  &i386_frame_unwind,
  i386_frame_base_address,
  i386_frame_base_address,
  i386_frame_base_address
};

static struct frame_id
i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  CORE_ADDR fp;

  fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);

  /* See the end of i386_push_dummy_call.  */
  return frame_id_build (fp + 8, get_frame_pc (this_frame));
}


/* Figure out where the longjmp will land.  Slurp the args out of the
   stack.  We expect the first arg to be a pointer to the jmp_buf
   structure from which we extract the address that we will land at.
   This address is copied into PC.  This routine returns non-zero on
   success.  */

static int
i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
  gdb_byte buf[4];
  CORE_ADDR sp, jb_addr;
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;

  /* If JB_PC_OFFSET is -1, we have no way to find out where the
     longjmp will land.  */
  if (jb_pc_offset == -1)
    return 0;

  get_frame_register (frame, I386_ESP_REGNUM, buf);
  sp = extract_unsigned_integer (buf, 4, byte_order);
  if (target_read_memory (sp + 4, buf, 4))
    return 0;

  jb_addr = extract_unsigned_integer (buf, 4, byte_order);
  if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
    return 0;

  *pc = extract_unsigned_integer (buf, 4, byte_order);
  return 1;
}


/* Check whether TYPE must be 16-byte-aligned when passed as a
   function argument.  16-byte vectors, _Decimal128 and structures or
   unions containing such types must be 16-byte-aligned; other
   arguments are 4-byte-aligned.  */

static int
i386_16_byte_align_p (struct type *type)
{
  type = check_typedef (type);
  if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
       || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
      && TYPE_LENGTH (type) == 16)
    return 1;
  if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
    return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      || TYPE_CODE (type) == TYPE_CODE_UNION)
    {
      int i;
      for (i = 0; i < TYPE_NFIELDS (type); i++)
	{
	  if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
	    return 1;
	}
    }
  return 0;
}

static CORE_ADDR
i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		      struct value **args, CORE_ADDR sp, int struct_return,
		      CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  int i;
  int write_pass;
  int args_space = 0;

  /* Determine the total space required for arguments and struct
     return address in a first pass (allowing for 16-byte-aligned
     arguments), then push arguments in a second pass.  */

  for (write_pass = 0; write_pass < 2; write_pass++)
    {
      int args_space_used = 0;
      int have_16_byte_aligned_arg = 0;

      if (struct_return)
	{
	  if (write_pass)
	    {
	      /* Push value address.  */
	      store_unsigned_integer (buf, 4, byte_order, struct_addr);
	      write_memory (sp, buf, 4);
	      args_space_used += 4;
	    }
	  else
	    args_space += 4;
	}

      for (i = 0; i < nargs; i++)
	{
	  int len = TYPE_LENGTH (value_enclosing_type (args[i]));

	  if (write_pass)
	    {
	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
		args_space_used = align_up (args_space_used, 16);

	      write_memory (sp + args_space_used,
			    value_contents_all (args[i]), len);
	      /* The System V ABI says that:

	      "An argument's size is increased, if necessary, to make it a
	      multiple of [32-bit] words.  This may require tail padding,
	      depending on the size of the argument."

	      This makes sure the stack stays word-aligned.  */
	      args_space_used += align_up (len, 4);
	    }
	  else
	    {
	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
		{
		  args_space = align_up (args_space, 16);
		  have_16_byte_aligned_arg = 1;
		}
	      args_space += align_up (len, 4);
	    }
	}

      if (!write_pass)
	{
	  if (have_16_byte_aligned_arg)
	    args_space = align_up (args_space, 16);
	  sp -= args_space;
	}
    }

  /* Store return address.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, byte_order, bp_addr);
  write_memory (sp, buf, 4);

  /* Finally, update the stack pointer...  */
  store_unsigned_integer (buf, 4, byte_order, sp);
  regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);

  /* ...and fake a frame pointer.  */
  regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);

  /* MarkK wrote: This "+ 8" is all over the place:
     (i386_frame_this_id, i386_sigtramp_frame_this_id,
     i386_dummy_id).  It's there, since all frame unwinders for
     a given target have to agree (within a certain margin) on the
     definition of the stack address of a frame.  Otherwise frame id
     comparison might not work correctly.  Since DWARF2/GCC uses the
     stack address *before* the function call as a frame's CFA.  On
     the i386, when %ebp is used as a frame pointer, the offset
     between the contents %ebp and the CFA as defined by GCC.  */
  return sp + 8;
}

/* These registers are used for returning integers (and on some
   targets also for returning `struct' and `union' values when their
   size and alignment match an integer type).  */
#define LOW_RETURN_REGNUM	I386_EAX_REGNUM /* %eax */
#define HIGH_RETURN_REGNUM	I386_EDX_REGNUM /* %edx */

/* Read, for architecture GDBARCH, a function return value of TYPE
   from REGCACHE, and copy that into VALBUF.  */

static void
i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
			   struct regcache *regcache, gdb_byte *valbuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int len = TYPE_LENGTH (type);
  gdb_byte buf[I386_MAX_REGISTER_SIZE];

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      if (tdep->st0_regnum < 0)
	{
	  warning (_("Cannot find floating-point return value."));
	  memset (valbuf, 0, len);
	  return;
	}

      /* Floating-point return values can be found in %st(0).  Convert
	 its contents to the desired type.  This is probably not
	 exactly how it would happen on the target itself, but it is
	 the best we can do.  */
      regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
      convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
    }
  else
    {
      int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
      int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);

      if (len <= low_size)
	{
	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
	  memcpy (valbuf, buf, len);
	}
      else if (len <= (low_size + high_size))
	{
	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
	  memcpy (valbuf, buf, low_size);
	  regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
	  memcpy (valbuf + low_size, buf, len - low_size);
	}
      else
	internal_error (__FILE__, __LINE__,
			_("Cannot extract return value of %d bytes long."), len);
    }
}

/* Write, for architecture GDBARCH, a function return value of TYPE
   from VALBUF into REGCACHE.  */

static void
i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
			 struct regcache *regcache, const gdb_byte *valbuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int len = TYPE_LENGTH (type);

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      ULONGEST fstat;
      gdb_byte buf[I386_MAX_REGISTER_SIZE];

      if (tdep->st0_regnum < 0)
	{
	  warning (_("Cannot set floating-point return value."));
	  return;
	}

      /* Returning floating-point values is a bit tricky.  Apart from
         storing the return value in %st(0), we have to simulate the
         state of the FPU at function return point.  */

      /* Convert the value found in VALBUF to the extended
	 floating-point format used by the FPU.  This is probably
	 not exactly how it would happen on the target itself, but
	 it is the best we can do.  */
      convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
      regcache_raw_write (regcache, I386_ST0_REGNUM, buf);

      /* Set the top of the floating-point register stack to 7.  The
         actual value doesn't really matter, but 7 is what a normal
         function return would end up with if the program started out
         with a freshly initialized FPU.  */
      regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
      fstat |= (7 << 11);
      regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);

      /* Mark %st(1) through %st(7) as empty.  Since we set the top of
         the floating-point register stack to 7, the appropriate value
         for the tag word is 0x3fff.  */
      regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
    }
  else
    {
      int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
      int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);

      if (len <= low_size)
	regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
      else if (len <= (low_size + high_size))
	{
	  regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
	  regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
				   len - low_size, valbuf + low_size);
	}
      else
	internal_error (__FILE__, __LINE__,
			_("Cannot store return value of %d bytes long."), len);
    }
}


/* This is the variable that is set with "set struct-convention", and
   its legitimate values.  */
static const char default_struct_convention[] = "default";
static const char pcc_struct_convention[] = "pcc";
static const char reg_struct_convention[] = "reg";
static const char *valid_conventions[] =
{
  default_struct_convention,
  pcc_struct_convention,
  reg_struct_convention,
  NULL
};
static const char *struct_convention = default_struct_convention;

/* Return non-zero if TYPE, which is assumed to be a structure,
   a union type, or an array type, should be returned in registers
   for architecture GDBARCH.  */

static int
i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum type_code code = TYPE_CODE (type);
  int len = TYPE_LENGTH (type);

  gdb_assert (code == TYPE_CODE_STRUCT
              || code == TYPE_CODE_UNION
              || code == TYPE_CODE_ARRAY);

  if (struct_convention == pcc_struct_convention
      || (struct_convention == default_struct_convention
	  && tdep->struct_return == pcc_struct_return))
    return 0;

  /* Structures consisting of a single `float', `double' or 'long
     double' member are returned in %st(0).  */
  if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
    {
      type = check_typedef (TYPE_FIELD_TYPE (type, 0));
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
	return (len == 4 || len == 8 || len == 12);
    }

  return (len == 1 || len == 2 || len == 4 || len == 8);
}

/* Determine, for architecture GDBARCH, how a return value of TYPE
   should be returned.  If it is supposed to be returned in registers,
   and READBUF is non-zero, read the appropriate value from REGCACHE,
   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
   from WRITEBUF into REGCACHE.  */

static enum return_value_convention
i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
		   struct type *type, struct regcache *regcache,
		   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  enum type_code code = TYPE_CODE (type);

  if (((code == TYPE_CODE_STRUCT
	|| code == TYPE_CODE_UNION
	|| code == TYPE_CODE_ARRAY)
       && !i386_reg_struct_return_p (gdbarch, type))
      /* 128-bit decimal float uses the struct return convention.  */
      || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
    {
      /* The System V ABI says that:

	 "A function that returns a structure or union also sets %eax
	 to the value of the original address of the caller's area
	 before it returns.  Thus when the caller receives control
	 again, the address of the returned object resides in register
	 %eax and can be used to access the object."

	 So the ABI guarantees that we can always find the return
	 value just after the function has returned.  */

      /* Note that the ABI doesn't mention functions returning arrays,
         which is something possible in certain languages such as Ada.
         In this case, the value is returned as if it was wrapped in
         a record, so the convention applied to records also applies
         to arrays.  */

      if (readbuf)
	{
	  ULONGEST addr;

	  regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
	  read_memory (addr, readbuf, TYPE_LENGTH (type));
	}

      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }

  /* This special case is for structures consisting of a single
     `float', `double' or 'long double' member.  These structures are
     returned in %st(0).  For these structures, we call ourselves
     recursively, changing TYPE into the type of the first member of
     the structure.  Since that should work for all structures that
     have only one member, we don't bother to check the member's type
     here.  */
  if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
    {
      type = check_typedef (TYPE_FIELD_TYPE (type, 0));
      return i386_return_value (gdbarch, func_type, type, regcache,
				readbuf, writebuf);
    }

  if (readbuf)
    i386_extract_return_value (gdbarch, type, regcache, readbuf);
  if (writebuf)
    i386_store_return_value (gdbarch, type, regcache, writebuf);

  return RETURN_VALUE_REGISTER_CONVENTION;
}


/* Construct types for ISA-specific registers.  */
struct type *
i386_eflags_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->i386_eflags_type)
    {
      struct type *type;

      type = arch_flags_type (gdbarch, "builtin_type_i386_eflags", 4);
      append_flags_type_flag (type, 0, "CF");
      append_flags_type_flag (type, 1, NULL);
      append_flags_type_flag (type, 2, "PF");
      append_flags_type_flag (type, 4, "AF");
      append_flags_type_flag (type, 6, "ZF");
      append_flags_type_flag (type, 7, "SF");
      append_flags_type_flag (type, 8, "TF");
      append_flags_type_flag (type, 9, "IF");
      append_flags_type_flag (type, 10, "DF");
      append_flags_type_flag (type, 11, "OF");
      append_flags_type_flag (type, 14, "NT");
      append_flags_type_flag (type, 16, "RF");
      append_flags_type_flag (type, 17, "VM");
      append_flags_type_flag (type, 18, "AC");
      append_flags_type_flag (type, 19, "VIF");
      append_flags_type_flag (type, 20, "VIP");
      append_flags_type_flag (type, 21, "ID");

      tdep->i386_eflags_type = type;
    }

  return tdep->i386_eflags_type;
}

struct type *
i386_mxcsr_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->i386_mxcsr_type)
    {
      struct type *type;

      type = arch_flags_type (gdbarch, "builtin_type_i386_mxcsr", 4);
      append_flags_type_flag (type, 0, "IE");
      append_flags_type_flag (type, 1, "DE");
      append_flags_type_flag (type, 2, "ZE");
      append_flags_type_flag (type, 3, "OE");
      append_flags_type_flag (type, 4, "UE");
      append_flags_type_flag (type, 5, "PE");
      append_flags_type_flag (type, 6, "DAZ");
      append_flags_type_flag (type, 7, "IM");
      append_flags_type_flag (type, 8, "DM");
      append_flags_type_flag (type, 9, "ZM");
      append_flags_type_flag (type, 10, "OM");
      append_flags_type_flag (type, 11, "UM");
      append_flags_type_flag (type, 12, "PM");
      append_flags_type_flag (type, 15, "FZ");

      tdep->i386_mxcsr_type = type;
    }

  return tdep->i386_mxcsr_type;
}

struct type *
i387_ext_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->i387_ext_type)
    tdep->i387_ext_type
      = arch_float_type (gdbarch, -1, "builtin_type_i387_ext",
			 floatformats_i387_ext);

  return tdep->i387_ext_type;
}

/* Construct vector type for MMX registers.  */
struct type *
i386_mmx_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->i386_mmx_type)
    {
      const struct builtin_type *bt = builtin_type (gdbarch);

      /* The type we're building is this: */
#if 0
      union __gdb_builtin_type_vec64i
      {
        int64_t uint64;
        int32_t v2_int32[2];
        int16_t v4_int16[4];
        int8_t v8_int8[8];
      };
#endif

      struct type *t;

      t = arch_composite_type (gdbarch,
			       "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);

      append_composite_type_field (t, "uint64", bt->builtin_int64);
      append_composite_type_field (t, "v2_int32",
				   init_vector_type (bt->builtin_int32, 2));
      append_composite_type_field (t, "v4_int16",
				   init_vector_type (bt->builtin_int16, 4));
      append_composite_type_field (t, "v8_int8",
				   init_vector_type (bt->builtin_int8, 8));

      TYPE_VECTOR (t) = 1;
      TYPE_NAME (t) = "builtin_type_vec64i";
      tdep->i386_mmx_type = t;
    }

  return tdep->i386_mmx_type;
}

struct type *
i386_sse_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->i386_sse_type)
    {
      const struct builtin_type *bt = builtin_type (gdbarch);

      /* The type we're building is this: */
#if 0
      union __gdb_builtin_type_vec128i
      {
        int128_t uint128;
        int64_t v2_int64[2];
        int32_t v4_int32[4];
        int16_t v8_int16[8];
        int8_t v16_int8[16];
        double v2_double[2];
        float v4_float[4];
      };
#endif

      struct type *t;

      t = arch_composite_type (gdbarch,
			       "__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
      append_composite_type_field (t, "v4_float",
				   init_vector_type (bt->builtin_float, 4));
      append_composite_type_field (t, "v2_double",
				   init_vector_type (bt->builtin_double, 2));
      append_composite_type_field (t, "v16_int8",
				   init_vector_type (bt->builtin_int8, 16));
      append_composite_type_field (t, "v8_int16",
				   init_vector_type (bt->builtin_int16, 8));
      append_composite_type_field (t, "v4_int32",
				   init_vector_type (bt->builtin_int32, 4));
      append_composite_type_field (t, "v2_int64",
				   init_vector_type (bt->builtin_int64, 2));
      append_composite_type_field (t, "uint128", bt->builtin_int128);

      TYPE_VECTOR (t) = 1;
      TYPE_NAME (t) = "builtin_type_vec128i";
      tdep->i386_sse_type = t;
    }

  return tdep->i386_sse_type;
}

/* Return the GDB type object for the "standard" data type of data in
   register REGNUM.  Perhaps %esi and %edi should go here, but
   potentially they could be used for things other than address.  */

static struct type *
i386_register_type (struct gdbarch *gdbarch, int regnum)
{
  if (regnum == I386_EIP_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;

  if (regnum == I386_EFLAGS_REGNUM)
    return i386_eflags_type (gdbarch);

  if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
    return builtin_type (gdbarch)->builtin_data_ptr;

  if (i386_fp_regnum_p (gdbarch, regnum))
    return i387_ext_type (gdbarch);

  if (i386_mmx_regnum_p (gdbarch, regnum))
    return i386_mmx_type (gdbarch);

  if (i386_sse_regnum_p (gdbarch, regnum))
    return i386_sse_type (gdbarch);

  if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
    return i386_mxcsr_type (gdbarch);

  return builtin_type (gdbarch)->builtin_int;
}

/* Map a cooked register onto a raw register or memory.  For the i386,
   the MMX registers need to be mapped onto floating point registers.  */

static int
i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
  int mmxreg, fpreg;
  ULONGEST fstat;
  int tos;

  mmxreg = regnum - tdep->mm0_regnum;
  regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
  tos = (fstat >> 11) & 0x7;
  fpreg = (mmxreg + tos) % 8;

  return (I387_ST0_REGNUM (tdep) + fpreg);
}

static void
i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int regnum, gdb_byte *buf)
{
  if (i386_mmx_regnum_p (gdbarch, regnum))
    {
      gdb_byte mmx_buf[MAX_REGISTER_SIZE];
      int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);

      /* Extract (always little endian).  */
      regcache_raw_read (regcache, fpnum, mmx_buf);
      memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
    }
  else
    regcache_raw_read (regcache, regnum, buf);
}

static void
i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int regnum, const gdb_byte *buf)
{
  if (i386_mmx_regnum_p (gdbarch, regnum))
    {
      gdb_byte mmx_buf[MAX_REGISTER_SIZE];
      int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);

      /* Read ...  */
      regcache_raw_read (regcache, fpnum, mmx_buf);
      /* ... Modify ... (always little endian).  */
      memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
      /* ... Write.  */
      regcache_raw_write (regcache, fpnum, mmx_buf);
    }
  else
    regcache_raw_write (regcache, regnum, buf);
}


/* Return the register number of the register allocated by GCC after
   REGNUM, or -1 if there is no such register.  */

static int
i386_next_regnum (int regnum)
{
  /* GCC allocates the registers in the order:

     %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...

     Since storing a variable in %esp doesn't make any sense we return
     -1 for %ebp and for %esp itself.  */
  static int next_regnum[] =
  {
    I386_EDX_REGNUM,		/* Slot for %eax.  */
    I386_EBX_REGNUM,		/* Slot for %ecx.  */
    I386_ECX_REGNUM,		/* Slot for %edx.  */
    I386_ESI_REGNUM,		/* Slot for %ebx.  */
    -1, -1,			/* Slots for %esp and %ebp.  */
    I386_EDI_REGNUM,		/* Slot for %esi.  */
    I386_EBP_REGNUM		/* Slot for %edi.  */
  };

  if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
    return next_regnum[regnum];

  return -1;
}

/* Return nonzero if a value of type TYPE stored in register REGNUM
   needs any special handling.  */

static int
i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
{
  int len = TYPE_LENGTH (type);

  /* Values may be spread across multiple registers.  Most debugging
     formats aren't expressive enough to specify the locations, so
     some heuristics is involved.  Right now we only handle types that
     have a length that is a multiple of the word size, since GCC
     doesn't seem to put any other types into registers.  */
  if (len > 4 && len % 4 == 0)
    {
      int last_regnum = regnum;

      while (len > 4)
	{
	  last_regnum = i386_next_regnum (last_regnum);
	  len -= 4;
	}

      if (last_regnum != -1)
	return 1;
    }

  return i387_convert_register_p (gdbarch, regnum, type);
}

/* Read a value of type TYPE from register REGNUM in frame FRAME, and
   return its contents in TO.  */

static void
i386_register_to_value (struct frame_info *frame, int regnum,
			struct type *type, gdb_byte *to)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int len = TYPE_LENGTH (type);

  /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
     available in FRAME (i.e. if it wasn't saved)?  */

  if (i386_fp_regnum_p (gdbarch, regnum))
    {
      i387_register_to_value (frame, regnum, type, to);
      return;
    }

  /* Read a value spread across multiple registers.  */

  gdb_assert (len > 4 && len % 4 == 0);

  while (len > 0)
    {
      gdb_assert (regnum != -1);
      gdb_assert (register_size (gdbarch, regnum) == 4);

      get_frame_register (frame, regnum, to);
      regnum = i386_next_regnum (regnum);
      len -= 4;
      to += 4;
    }
}

/* Write the contents FROM of a value of type TYPE into register
   REGNUM in frame FRAME.  */

static void
i386_value_to_register (struct frame_info *frame, int regnum,
			struct type *type, const gdb_byte *from)
{
  int len = TYPE_LENGTH (type);

  if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
    {
      i387_value_to_register (frame, regnum, type, from);
      return;
    }

  /* Write a value spread across multiple registers.  */

  gdb_assert (len > 4 && len % 4 == 0);

  while (len > 0)
    {
      gdb_assert (regnum != -1);
      gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);

      put_frame_register (frame, regnum, from);
      regnum = i386_next_regnum (regnum);
      len -= 4;
      from += 4;
    }
}

/* Supply register REGNUM from the buffer specified by GREGS and LEN
   in the general-purpose register set REGSET to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

void
i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
		     int regnum, const void *gregs, size_t len)
{
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
  const gdb_byte *regs = gregs;
  int i;

  gdb_assert (len == tdep->sizeof_gregset);

  for (i = 0; i < tdep->gregset_num_regs; i++)
    {
      if ((regnum == i || regnum == -1)
	  && tdep->gregset_reg_offset[i] != -1)
	regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
    }
}

/* Collect register REGNUM from the register cache REGCACHE and store
   it in the buffer specified by GREGS and LEN as described by the
   general-purpose register set REGSET.  If REGNUM is -1, do this for
   all registers in REGSET.  */

void
i386_collect_gregset (const struct regset *regset,
		      const struct regcache *regcache,
		      int regnum, void *gregs, size_t len)
{
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
  gdb_byte *regs = gregs;
  int i;

  gdb_assert (len == tdep->sizeof_gregset);

  for (i = 0; i < tdep->gregset_num_regs; i++)
    {
      if ((regnum == i || regnum == -1)
	  && tdep->gregset_reg_offset[i] != -1)
	regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
    }
}

/* Supply register REGNUM from the buffer specified by FPREGS and LEN
   in the floating-point register set REGSET to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

static void
i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
		      int regnum, const void *fpregs, size_t len)
{
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);

  if (len == I387_SIZEOF_FXSAVE)
    {
      i387_supply_fxsave (regcache, regnum, fpregs);
      return;
    }

  gdb_assert (len == tdep->sizeof_fpregset);
  i387_supply_fsave (regcache, regnum, fpregs);
}

/* Collect register REGNUM from the register cache REGCACHE and store
   it in the buffer specified by FPREGS and LEN as described by the
   floating-point register set REGSET.  If REGNUM is -1, do this for
   all registers in REGSET.  */

static void
i386_collect_fpregset (const struct regset *regset,
		       const struct regcache *regcache,
		       int regnum, void *fpregs, size_t len)
{
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);

  if (len == I387_SIZEOF_FXSAVE)
    {
      i387_collect_fxsave (regcache, regnum, fpregs);
      return;
    }

  gdb_assert (len == tdep->sizeof_fpregset);
  i387_collect_fsave (regcache, regnum, fpregs);
}

/* Return the appropriate register set for the core section identified
   by SECT_NAME and SECT_SIZE.  */

const struct regset *
i386_regset_from_core_section (struct gdbarch *gdbarch,
			       const char *sect_name, size_t sect_size)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
    {
      if (tdep->gregset == NULL)
	tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
				      i386_collect_gregset);
      return tdep->gregset;
    }

  if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
      || (strcmp (sect_name, ".reg-xfp") == 0
	  && sect_size == I387_SIZEOF_FXSAVE))
    {
      if (tdep->fpregset == NULL)
	tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
				       i386_collect_fpregset);
      return tdep->fpregset;
    }

  return NULL;
}


/* Stuff for WIN32 PE style DLL's but is pretty generic really.  */

CORE_ADDR
i386_pe_skip_trampoline_code (struct frame_info *frame,
			      CORE_ADDR pc, char *name)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* jmp *(dest) */
  if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
    {
      unsigned long indirect =
	read_memory_unsigned_integer (pc + 2, 4, byte_order);
      struct minimal_symbol *indsym =
	indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
      char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;

      if (symname)
	{
	  if (strncmp (symname, "__imp_", 6) == 0
	      || strncmp (symname, "_imp_", 5) == 0)
	    return name ? 1 :
		   read_memory_unsigned_integer (indirect, 4, byte_order);
	}
    }
  return 0;			/* Not a trampoline.  */
}


/* Return whether the THIS_FRAME corresponds to a sigtramp
   routine.  */

int
i386_sigtramp_p (struct frame_info *this_frame)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  char *name;

  find_pc_partial_function (pc, &name, NULL, NULL);
  return (name && strcmp ("_sigtramp", name) == 0);
}


/* We have two flavours of disassembly.  The machinery on this page
   deals with switching between those.  */

static int
i386_print_insn (bfd_vma pc, struct disassemble_info *info)
{
  gdb_assert (disassembly_flavor == att_flavor
	      || disassembly_flavor == intel_flavor);

  /* FIXME: kettenis/20020915: Until disassembler_options is properly
     constified, cast to prevent a compiler warning.  */
  info->disassembler_options = (char *) disassembly_flavor;

  return print_insn_i386 (pc, info);
}


/* There are a few i386 architecture variants that differ only
   slightly from the generic i386 target.  For now, we don't give them
   their own source file, but include them here.  As a consequence,
   they'll always be included.  */

/* System V Release 4 (SVR4).  */

/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
   routine.  */

static int
i386_svr4_sigtramp_p (struct frame_info *this_frame)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  char *name;

  /* UnixWare uses _sigacthandler.  The origin of the other symbols is
     currently unknown.  */
  find_pc_partial_function (pc, &name, NULL, NULL);
  return (name && (strcmp ("_sigreturn", name) == 0
		   || strcmp ("_sigacthandler", name) == 0
		   || strcmp ("sigvechandler", name) == 0));
}

/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
   address of the associated sigcontext (ucontext) structure.  */

static CORE_ADDR
i386_svr4_sigcontext_addr (struct frame_info *this_frame)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  CORE_ADDR sp;

  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
  sp = extract_unsigned_integer (buf, 4, byte_order);

  return read_memory_unsigned_integer (sp + 8, 4, byte_order);
}


/* Generic ELF.  */

void
i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  /* We typically use stabs-in-ELF with the SVR4 register numbering.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
}

/* System V Release 4 (SVR4).  */

void
i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* System V Release 4 uses ELF.  */
  i386_elf_init_abi (info, gdbarch);

  /* System V Release 4 has shared libraries.  */
  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);

  tdep->sigtramp_p = i386_svr4_sigtramp_p;
  tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
  tdep->sc_pc_offset = 36 + 14 * 4;
  tdep->sc_sp_offset = 36 + 17 * 4;

  tdep->jb_pc_offset = 20;
}

/* DJGPP.  */

static void
i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* DJGPP doesn't have any special frames for signal handlers.  */
  tdep->sigtramp_p = NULL;

  tdep->jb_pc_offset = 36;

  /* DJGPP does not support the SSE registers.  */
  tdep->num_xmm_regs = 0;
  set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);

  /* Native compiler is GCC, which uses the SVR4 register numbering
     even in COFF and STABS.  See the comment in i386_gdbarch_init,
     before the calls to set_gdbarch_stab_reg_to_regnum and
     set_gdbarch_sdb_reg_to_regnum.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
  set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
}


/* i386 register groups.  In addition to the normal groups, add "mmx"
   and "sse".  */

static struct reggroup *i386_sse_reggroup;
static struct reggroup *i386_mmx_reggroup;

static void
i386_init_reggroups (void)
{
  i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
  i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
}

static void
i386_add_reggroups (struct gdbarch *gdbarch)
{
  reggroup_add (gdbarch, i386_sse_reggroup);
  reggroup_add (gdbarch, i386_mmx_reggroup);
  reggroup_add (gdbarch, general_reggroup);
  reggroup_add (gdbarch, float_reggroup);
  reggroup_add (gdbarch, all_reggroup);
  reggroup_add (gdbarch, save_reggroup);
  reggroup_add (gdbarch, restore_reggroup);
  reggroup_add (gdbarch, vector_reggroup);
  reggroup_add (gdbarch, system_reggroup);
}

int
i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *group)
{
  int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
		      || i386_mxcsr_regnum_p (gdbarch, regnum));
  int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
		     || i386_fpc_regnum_p (gdbarch, regnum));
  int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));

  if (group == i386_mmx_reggroup)
    return mmx_regnum_p;
  if (group == i386_sse_reggroup)
    return sse_regnum_p;
  if (group == vector_reggroup)
    return (mmx_regnum_p || sse_regnum_p);
  if (group == float_reggroup)
    return fp_regnum_p;
  if (group == general_reggroup)
    return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);

  return default_register_reggroup_p (gdbarch, regnum, group);
}


/* Get the ARGIth function argument for the current function.  */

static CORE_ADDR
i386_fetch_pointer_argument (struct frame_info *frame, int argi, 
			     struct type *type)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR sp = get_frame_register_unsigned  (frame, I386_ESP_REGNUM);
  return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
}

static void
i386_skip_permanent_breakpoint (struct regcache *regcache)
{
  CORE_ADDR current_pc = regcache_read_pc (regcache);

 /* On i386, breakpoint is exactly 1 byte long, so we just
    adjust the PC in the regcache.  */
  current_pc += 1;
  regcache_write_pc (regcache, current_pc);
}


#define PREFIX_REPZ	0x01
#define PREFIX_REPNZ	0x02
#define PREFIX_LOCK	0x04
#define PREFIX_DATA	0x08
#define PREFIX_ADDR	0x10

/* operand size */
enum
{
  OT_BYTE = 0,
  OT_WORD,
  OT_LONG,
};

/* i386 arith/logic operations */
enum
{
  OP_ADDL,
  OP_ORL,
  OP_ADCL,
  OP_SBBL,
  OP_ANDL,
  OP_SUBL,
  OP_XORL,
  OP_CMPL,
};

struct i386_record_s
{
  struct regcache *regcache;
  CORE_ADDR addr;
  int aflag;
  int dflag;
  int override;
  uint8_t modrm;
  uint8_t mod, reg, rm;
  int ot;
};

/* Parse "modrm" part in current memory address that irp->addr point to
   Return -1 if something wrong. */

static int
i386_record_modrm (struct i386_record_s *irp)
{
  struct gdbarch *gdbarch = get_regcache_arch (irp->regcache);

  if (target_read_memory (irp->addr, &irp->modrm, 1))
    {
      if (record_debug)
	printf_unfiltered (_("Process record: error reading memory at "
			     "addr %s len = 1.\n"),
			   paddress (gdbarch, irp->addr));
      return -1;
    }
  irp->addr++;
  irp->mod = (irp->modrm >> 6) & 3;
  irp->reg = (irp->modrm >> 3) & 7;
  irp->rm = irp->modrm & 7;

  return 0;
}

/* Get the memory address that current instruction  write to and set it to
   the argument "addr".
   Return -1 if something wrong. */

static int
i386_record_lea_modrm_addr (struct i386_record_s *irp, uint32_t * addr)
{
  struct gdbarch *gdbarch = get_regcache_arch (irp->regcache);
  uint8_t tmpu8;
  uint16_t tmpu16;
  uint32_t tmpu32;

  *addr = 0;
  if (irp->aflag)
    {
      /* 32 bits */
      int havesib = 0;
      uint8_t scale = 0;
      uint8_t index = 0;
      uint8_t base = irp->rm;

      if (base == 4)
	{
	  havesib = 1;
	  if (target_read_memory (irp->addr, &tmpu8, 1))
	    {
	      if (record_debug)
		printf_unfiltered (_("Process record: error reading memory "
				     "at addr %s len = 1.\n"),
				   paddress (gdbarch, irp->addr));
	      return -1;
	    }
	  irp->addr++;
	  scale = (tmpu8 >> 6) & 3;
	  index = ((tmpu8 >> 3) & 7);
	  base = (tmpu8 & 7);
	}

      switch (irp->mod)
	{
	case 0:
	  if ((base & 7) == 5)
	    {
	      base = 0xff;
	      if (target_read_memory (irp->addr, (gdb_byte *) addr, 4))
		{
		  if (record_debug)
		    printf_unfiltered (_("Process record: error reading "
				         "memory at addr %s len = 4.\n"),
				       paddress (gdbarch, irp->addr));
		  return -1;
		}
	      irp->addr += 4;
	    }
	  else
	    {
	      *addr = 0;
	    }
	  break;
	case 1:
	  if (target_read_memory (irp->addr, &tmpu8, 1))
	    {
	      if (record_debug)
		printf_unfiltered (_("Process record: error reading memory "
				     "at addr %s len = 1.\n"),
				   paddress (gdbarch, irp->addr));
	      return -1;
	    }
	  irp->addr++;
	  *addr = (int8_t) tmpu8;
	  break;
	case 2:
	  if (target_read_memory (irp->addr, (gdb_byte *) addr, 4))
	    {
	      if (record_debug)
		printf_unfiltered (_("Process record: error reading memory "
				     "at addr %s len = 4.\n"),
				   paddress (gdbarch, irp->addr));
	      return -1;
	    }
	  irp->addr += 4;
	  break;
	}

      if (base != 0xff)
	{
	  regcache_raw_read (irp->regcache, base, (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	}

      /* XXX: index == 4 is always invalid */
      if (havesib && (index != 4 || scale != 0))
	{
	  regcache_raw_read (irp->regcache, index, (gdb_byte *) & tmpu32);
	  *addr += tmpu32 << scale;
	}
    }
  else
    {
      /* 16 bits */
      switch (irp->mod)
	{
	case 0:
	  if (irp->rm == 6)
	    {
	      if (target_read_memory
		  (irp->addr, (gdb_byte *) & tmpu16, 2))
		{
		  if (record_debug)
		    printf_unfiltered (_("Process record: error reading "
					 "memory at addr %s len = 2.\n"),
				       paddress (gdbarch, irp->addr));
		  return -1;
		}
	      irp->addr += 2;
	      *addr = (int16_t) tmpu16;
	      irp->rm = 0;
	      goto no_rm;
	    }
	  else
	    {
	      *addr = 0;
	    }
	  break;
	case 1:
	  if (target_read_memory (irp->addr, &tmpu8, 1))
	    {
	      if (record_debug)
		printf_unfiltered (_("Process record: error reading memory "
				     "at addr %s len = 1.\n"),
				   paddress (gdbarch, irp->addr));
	      return -1;
	    }
	  irp->addr++;
	  *addr = (int8_t) tmpu8;
	  break;
	case 2:
	  if (target_read_memory (irp->addr, (gdb_byte *) & tmpu16, 2))
	    {
	      if (record_debug)
		printf_unfiltered (_("Process record: error reading memory "
				     "at addr %s len = 2.\n"),
				   paddress (gdbarch, irp->addr));
	      return -1;
	    }
	  irp->addr += 2;
	  *addr = (int16_t) tmpu16;
	  break;
	}

      switch (irp->rm)
	{
	case 0:
	  regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  break;
	case 1:
	  regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  break;
	case 2:
	  regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  break;
	case 3:
	  regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  break;
	case 4:
	  regcache_raw_read (irp->regcache, I386_ESI_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  break;
	case 5:
	  regcache_raw_read (irp->regcache, I386_EDI_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  break;
	case 6:
	  regcache_raw_read (irp->regcache, I386_EBP_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  break;
	case 7:
	  regcache_raw_read (irp->regcache, I386_EBX_REGNUM,
			     (gdb_byte *) & tmpu32);
	  *addr += tmpu32;
	  break;
	}
      *addr &= 0xffff;
    }

no_rm:
  return 0;
}

/* Record the value of the memory that willbe changed in current instruction
   to "record_arch_list".
   Return -1 if something wrong. */

static int
i386_record_lea_modrm (struct i386_record_s *irp)
{
  struct gdbarch *gdbarch = get_regcache_arch (irp->regcache);
  uint32_t addr;

  if (irp->override)
    {
      if (record_debug)
	printf_unfiltered (_("Process record ignores the memory change "
			     "of instruction at address %s because it "
			     "can't get the value of the segment register.\n"),
			   paddress (gdbarch, irp->addr));
      return 0;
    }

  if (i386_record_lea_modrm_addr (irp, &addr))
    return -1;

  if (record_arch_list_add_mem (addr, 1 << irp->ot))
    return -1;

  return 0;
}

/* Parse the current instruction and record the values of the registers and
   memory that will be changed in current instruction to "record_arch_list".
   Return -1 if something wrong. */

int
i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
		     CORE_ADDR addr)
{
  int prefixes = 0;
  uint8_t tmpu8;
  uint16_t tmpu16;
  uint32_t tmpu32;
  uint32_t opcode;
  struct i386_record_s ir;

  memset (&ir, 0, sizeof (struct i386_record_s));
  ir.regcache = regcache;
  ir.addr = addr;
  ir.aflag = 1;
  ir.dflag = 1;

  if (record_debug > 1)
    fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
			            "addr = %s\n",
			paddress (gdbarch, ir.addr));

  /* prefixes */
  while (1)
    {
      if (target_read_memory (ir.addr, &tmpu8, 1))
	{
	  if (record_debug)
	    printf_unfiltered (_("Process record: error reading memory at "
				 "addr %s len = 1.\n"),
			       paddress (gdbarch, ir.addr));
	  return -1;
	}
      ir.addr++;
      switch (tmpu8)
	{
	case 0xf3:
	  prefixes |= PREFIX_REPZ;
	  break;
	case 0xf2:
	  prefixes |= PREFIX_REPNZ;
	  break;
	case 0xf0:
	  prefixes |= PREFIX_LOCK;
	  break;
	case 0x2e:
	  ir.override = I386_CS_REGNUM;
	  break;
	case 0x36:
	  ir.override = I386_SS_REGNUM;
	  break;
	case 0x3e:
	  ir.override = I386_DS_REGNUM;
	  break;
	case 0x26:
	  ir.override = I386_ES_REGNUM;
	  break;
	case 0x64:
	  ir.override = I386_FS_REGNUM;
	  break;
	case 0x65:
	  ir.override = I386_GS_REGNUM;
	  break;
	case 0x66:
	  prefixes |= PREFIX_DATA;
	  break;
	case 0x67:
	  prefixes |= PREFIX_ADDR;
	  break;
	default:
	  goto out_prefixes;
	  break;
	}
    }
out_prefixes:
  if (prefixes & PREFIX_DATA)
    ir.dflag ^= 1;
  if (prefixes & PREFIX_ADDR)
    ir.aflag ^= 1;

  /* now check op code */
  opcode = (uint32_t) tmpu8;
reswitch:
  switch (opcode)
    {
    case 0x0f:
      if (target_read_memory (ir.addr, &tmpu8, 1))
	{
	  if (record_debug)
	    printf_unfiltered (_("Process record: error reading memory at "
				 "addr %s len = 1.\n"),
			       paddress (gdbarch, ir.addr));
	  return -1;
	}
      ir.addr++;
      opcode = (uint16_t) tmpu8 | 0x0f00;
      goto reswitch;
      break;

      /* arith & logic */
    case 0x00:
    case 0x01:
    case 0x02:
    case 0x03:
    case 0x04:
    case 0x05:
    case 0x08:
    case 0x09:
    case 0x0a:
    case 0x0b:
    case 0x0c:
    case 0x0d:
    case 0x10:
    case 0x11:
    case 0x12:
    case 0x13:
    case 0x14:
    case 0x15:
    case 0x18:
    case 0x19:
    case 0x1a:
    case 0x1b:
    case 0x1c:
    case 0x1d:
    case 0x20:
    case 0x21:
    case 0x22:
    case 0x23:
    case 0x24:
    case 0x25:
    case 0x28:
    case 0x29:
    case 0x2a:
    case 0x2b:
    case 0x2c:
    case 0x2d:
    case 0x30:
    case 0x31:
    case 0x32:
    case 0x33:
    case 0x34:
    case 0x35:
    case 0x38:
    case 0x39:
    case 0x3a:
    case 0x3b:
    case 0x3c:
    case 0x3d:
      if (((opcode >> 3) & 7) != OP_CMPL)
	{
	  if ((opcode & 1) == 0)
	    ir.ot = OT_BYTE;
	  else
	    ir.ot = ir.dflag + OT_WORD;

	  switch ((opcode >> 1) & 3)
	    {
	      /* OP Ev, Gv */
	    case 0:
	      if (i386_record_modrm (&ir))
		return -1;
	      if (ir.mod != 3)
		{
		  if (i386_record_lea_modrm (&ir))
		    return -1;
		}
	      else
		{
		  if (ir.ot == OT_BYTE)
		    ir.rm &= 0x3;
		  if (record_arch_list_add_reg (ir.regcache, ir.rm))
		    return -1;
		}
	      break;
	      /* OP Gv, Ev */
	    case 1:
	      if (i386_record_modrm (&ir))
		return -1;
	      if (ir.ot == OT_BYTE)
		ir.reg &= 0x3;
	      if (record_arch_list_add_reg (ir.regcache, ir.reg))
		return -1;
	      break;
	      /* OP A, Iv */
	    case 2:
	      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
		return -1;
	      break;
	    }
	}
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* GRP1 */
    case 0x80:
    case 0x81:
    case 0x82:
    case 0x83:
      if (i386_record_modrm (&ir))
	return -1;

      if (ir.reg != OP_CMPL)
	{
	  if ((opcode & 1) == 0)
	    ir.ot = OT_BYTE;
	  else
	    ir.ot = ir.dflag + OT_WORD;

	  if (ir.mod != 3)
	    {
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  else
	    {
	      if (record_arch_list_add_reg (ir.regcache, ir.rm))
		return -1;
	    }
	}
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* inv */
    case 0x40:
    case 0x41:
    case 0x42:
    case 0x43:
    case 0x44:
    case 0x45:
    case 0x46:
    case 0x47:
      /* dec */
    case 0x48:
    case 0x49:
    case 0x4a:
    case 0x4b:
    case 0x4c:
    case 0x4d:
    case 0x4e:
    case 0x4f:
      if (record_arch_list_add_reg (ir.regcache, opcode & 7))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* GRP3 */
    case 0xf6:
    case 0xf7:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;

      switch (ir.reg)
	{
	  /* test */
	case 0:
	  if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	    return -1;
	  break;
	  /* not */
	case 2:
	  if (ir.mod != 3)
	    {
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  else
	    {
	      if (ir.ot == OT_BYTE)
		ir.rm &= 0x3;
	      if (record_arch_list_add_reg (ir.regcache, ir.rm))
		return -1;
	    }
	  break;
	  /* neg */
	case 3:
	  if (ir.mod != 3)
	    {
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  else
	    {
	      if (ir.ot == OT_BYTE)
		ir.rm &= 0x3;
	      if (record_arch_list_add_reg (ir.regcache, ir.rm))
		return -1;
	    }
	  if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	    return -1;
	  break;
	  /* mul */
	case 4:
	  /* imul */
	case 5:
	  /* div */
	case 6:
	  /* idiv */
	case 7:
	  if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	    return -1;
	  if (ir.ot != OT_BYTE)
	    {
	      if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
		return -1;
	    }
	  if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	    return -1;
	  break;
	default:
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      break;

      /* GRP4 */
    case 0xfe:
      /* GRP5 */
    case 0xff:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.reg >= 2 && opcode == 0xfe)
	{
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}

      switch (ir.reg)
	{
	  /* inc */
	case 0:
	  /* dec */
	case 1:
	  if (ir.mod != 3)
	    {
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  else
	    {
	      if (ir.ot == OT_BYTE)
		ir.rm &= 0x3;
	      if (record_arch_list_add_reg (ir.regcache, ir.rm))
		return -1;
	    }
	  if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	    return -1;
	  break;
	  /* call */
	case 2:
	  /* push */
	case 6:
	  if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	    return -1;
	  regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
			     (gdb_byte *) & tmpu32);
	  if (record_arch_list_add_mem
	      ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
	    return -1;
	  break;
	  /* lcall */
	case 3:
	  if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	    return -1;
	  if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
	    return -1;
	  regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
			     (gdb_byte *) & tmpu32);
	  if (record_arch_list_add_mem
	      ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 2)), (1 << (ir.dflag + 2))))
	    return -1;
	  break;
	  /* jmp */
	case 4:
	  /* ljmp */
	case 5:
	  break;
	default:
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      break;

      /* test */
    case 0x84:
    case 0x85:
    case 0xa8:
    case 0xa9:
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* CWDE/CBW */
    case 0x98:
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      break;

      /* CDQ/CWD */
    case 0x99:
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
	return -1;
      break;

      /* imul */
    case 0x0faf:
    case 0x69:
    case 0x6b:
      ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.ot == OT_BYTE)
	ir.reg &= 0x3;
      if (record_arch_list_add_reg (ir.regcache, ir.reg))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* xadd */
    case 0x0fc0:
    case 0x0fc1:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  if (ir.ot == OT_BYTE)
	    ir.reg &= 0x3;
	  if (record_arch_list_add_reg (ir.regcache, ir.reg))
	    return -1;
	  if (ir.ot == OT_BYTE)
	    ir.rm &= 0x3;
	  if (record_arch_list_add_reg (ir.regcache, ir.rm))
	    return -1;
	}
      else
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	  if (ir.ot == OT_BYTE)
	    ir.reg &= 0x3;
	  if (record_arch_list_add_reg (ir.regcache, ir.reg))
	    return -1;
	}
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* cmpxchg */
    case 0x0fb0:
    case 0x0fb1:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	    return -1;
	  if (ir.ot == OT_BYTE)
	    ir.reg &= 0x3;
	  if (record_arch_list_add_reg (ir.regcache, ir.reg))
	    return -1;
	}
      else
	{
	  if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	    return -1;
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* cmpxchg8b */
    case 0x0fc7:
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
	return -1;
      if (i386_record_lea_modrm (&ir))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* push */
    case 0x50:
    case 0x51:
    case 0x52:
    case 0x53:
    case 0x54:
    case 0x55:
    case 0x56:
    case 0x57:
    case 0x68:
    case 0x6a:
      /* push es */
    case 0x06:
      /* push cs */
    case 0x0e:
      /* push ss */
    case 0x16:
      /* push ds */
    case 0x1e:
      /* push fs */
    case 0x0fa0:
      /* push gs */
    case 0x0fa8:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
			 (gdb_byte *) & tmpu32);
      if (record_arch_list_add_mem
	  ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
	return -1;
      break;

      /* pop */
    case 0x58:
    case 0x59:
    case 0x5a:
    case 0x5b:
    case 0x5c:
    case 0x5d:
    case 0x5e:
    case 0x5f:
      ir.ot = ir.dflag + OT_WORD;
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (ir.ot == OT_BYTE)
	opcode &= 0x3;
      if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
	return -1;
      break;

      /* pusha */
    case 0x60:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
			 (gdb_byte *) & tmpu32);
      if (record_arch_list_add_mem
	  ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 4)), (1 << (ir.dflag + 4))))
	return -1;
      break;

      /* popa */
    case 0x61:
      for (tmpu8 = I386_EAX_REGNUM; tmpu8 <= I386_EDI_REGNUM; tmpu8++)
	{
	  if (record_arch_list_add_reg (ir.regcache, tmpu8))
	    return -1;
	}
      break;

      /* pop */
    case 0x8f:
      ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  if (record_arch_list_add_reg (ir.regcache, ir.rm))
	    return -1;
	}
      else
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      break;

      /* enter */
    case 0xc8:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EBP_REGNUM))
	return -1;
      regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
			 (gdb_byte *) & tmpu32);
      if (record_arch_list_add_mem
	  ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
	return -1;
      break;

      /* leave */
    case 0xc9:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EBP_REGNUM))
	return -1;
      break;

      /* pop es */
    case 0x07:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_ES_REGNUM))
	return -1;
      break;

      /* pop ss */
    case 0x17:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_SS_REGNUM))
	return -1;
      break;

      /* pop ds */
    case 0x1f:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_DS_REGNUM))
	return -1;
      break;

      /* pop fs */
    case 0x0fa1:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_FS_REGNUM))
	return -1;
      break;

      /* pop gs */
    case 0x0fa9:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_GS_REGNUM))
	return -1;
      break;

      /* mov */
    case 0x88:
    case 0x89:
    case 0xc6:
    case 0xc7:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;

      if (i386_record_modrm (&ir))
	return -1;

      if (ir.mod != 3)
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      else
	{
	  if (ir.ot == OT_BYTE)
	    ir.rm &= 0x3;
	  if (record_arch_list_add_reg (ir.regcache, ir.rm))
	    return -1;
	}
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;
      /* mov */
    case 0x8a:
    case 0x8b:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;

      if (i386_record_modrm (&ir))
	return -1;

      if (ir.ot == OT_BYTE)
	ir.reg &= 0x3;
      if (record_arch_list_add_reg (ir.regcache, ir.reg))
	return -1;

      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* mov seg */
    case 0x8e:
      if (i386_record_modrm (&ir))
	return -1;

      switch (ir.reg)
	{
	case 0:
	  tmpu8 = I386_ES_REGNUM;
	  break;
	case 2:
	  tmpu8 = I386_SS_REGNUM;
	  break;
	case 3:
	  tmpu8 = I386_DS_REGNUM;
	  break;
	case 4:
	  tmpu8 = I386_FS_REGNUM;
	  break;
	case 5:
	  tmpu8 = I386_GS_REGNUM;
	  break;
	default:
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      if (record_arch_list_add_reg (ir.regcache, tmpu8))
	return -1;

      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* mov seg */
    case 0x8c:
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.reg > 5)
	{
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}

      if (ir.mod == 3)
	{
	  if (record_arch_list_add_reg (ir.regcache, ir.rm))
	    return -1;
	}
      else
	{
	  ir.ot = OT_WORD;
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}

      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* movzbS */
    case 0x0fb6:
      /* movzwS */
    case 0x0fb7:
      /* movsbS */
    case 0x0fbe:
      /* movswS */
    case 0x0fbf:
      if (i386_record_modrm (&ir))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, ir.reg))
	return -1;
      break;

      /* lea */
    case 0x8d:
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}

      ir.ot = ir.dflag;
      if (ir.ot == OT_BYTE)
	ir.reg &= 0x3;
      if (record_arch_list_add_reg (ir.regcache, ir.reg))
	return -1;
      break;

      /* mov EAX */
    case 0xa0:
    case 0xa1:
      /* xlat */
    case 0xd7:
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      break;

      /* mov EAX */
    case 0xa2:
    case 0xa3:
      {
	uint32_t addr;

	if (ir.override)
	  {
	    if (record_debug)
	      printf_unfiltered (_("Process record ignores the memory change "
				   "of instruction at address %s because "
				   "it can't get the value of the segment "
				   "register.\n"),
				 paddress (gdbarch, ir.addr));
	  }
	else
	  {
	    if ((opcode & 1) == 0)
	      ir.ot = OT_BYTE;
	    else
	      ir.ot = ir.dflag + OT_WORD;
	    if (ir.aflag)
	      {
		if (target_read_memory
		    (ir.addr, (gdb_byte *) & addr, 4))
		  {
		    if (record_debug)
		      printf_unfiltered (_("Process record: error reading "
					   "memory at addr %s len = 4.\n"),
					 paddress (gdbarch, ir.addr));
		    return -1;
		  }
		ir.addr += 4;
	      }
	    else
	      {
		if (target_read_memory
		    (ir.addr, (gdb_byte *) & tmpu16, 4))
		  {
		    if (record_debug)
		      printf_unfiltered (_("Process record: error reading "
					   "memory at addr %s len = 4.\n"),
					 paddress (gdbarch, ir.addr));
		    return -1;
		  }
		ir.addr += 2;
		addr = tmpu16;
	      }
	    if (record_arch_list_add_mem (addr, 1 << ir.ot))
	      return -1;
	  }
      }
      break;

      /* mov R, Ib */
    case 0xb0:
    case 0xb1:
    case 0xb2:
    case 0xb3:
    case 0xb4:
    case 0xb5:
    case 0xb6:
    case 0xb7:
      if (record_arch_list_add_reg (ir.regcache, (opcode & 0x7) & 0x3))
	return -1;
      break;

      /* mov R, Iv */
    case 0xb8:
    case 0xb9:
    case 0xba:
    case 0xbb:
    case 0xbc:
    case 0xbd:
    case 0xbe:
    case 0xbf:
      if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
	return -1;
      break;

      /* xchg R, EAX */
    case 0x91:
    case 0x92:
    case 0x93:
    case 0x94:
    case 0x95:
    case 0x96:
    case 0x97:
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, opcode & 0x7))
	return -1;
      break;

      /* xchg Ev, Gv */
    case 0x86:
    case 0x87:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;

      if (i386_record_modrm (&ir))
	return -1;

      if (ir.mod == 3)
	{
	  if (ir.ot == OT_BYTE)
	    ir.rm &= 0x3;
	  if (record_arch_list_add_reg (ir.regcache, ir.rm))
	    return -1;
	}
      else
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}

      if (ir.ot == OT_BYTE)
	ir.reg &= 0x3;
      if (record_arch_list_add_reg (ir.regcache, ir.reg))
	return -1;
      break;

      /* les Gv */
    case 0xc4:
      /* lds Gv */
    case 0xc5:
      /* lss Gv */
    case 0x0fb2:
      /* lfs Gv */
    case 0x0fb4:
      /* lgs Gv */
    case 0x0fb5:
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  if (opcode > 0xff)
	    ir.addr -= 3;
	  else
	    ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}

      switch (opcode)
	{
	  /* les Gv */
	case 0xc4:
	  tmpu8 = I386_ES_REGNUM;
	  break;
	  /* lds Gv */
	case 0xc5:
	  tmpu8 = I386_DS_REGNUM;
	  break;
	  /* lss Gv */
	case 0x0fb2:
	  tmpu8 = I386_SS_REGNUM;
	  break;
	  /* lfs Gv */
	case 0x0fb4:
	  tmpu8 = I386_FS_REGNUM;
	  break;
	  /* lgs Gv */
	case 0x0fb5:
	  tmpu8 = I386_GS_REGNUM;
	  break;
	}
      if (record_arch_list_add_reg (ir.regcache, tmpu8))
	return -1;

      if (record_arch_list_add_reg (ir.regcache, ir.reg))
	return -1;
      break;

      /* shifts */
    case 0xc0:
    case 0xc1:
    case 0xd0:
    case 0xd1:
    case 0xd2:
    case 0xd3:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;

      if (i386_record_modrm (&ir))
	return -1;

      if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      else
	{
	  if (ir.ot == OT_BYTE)
	    ir.rm &= 0x3;
	  if (record_arch_list_add_reg (ir.regcache, ir.rm))
	    return -1;
	}

      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

    case 0x0fa4:
    case 0x0fa5:
    case 0x0fac:
    case 0x0fad:
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  if (record_arch_list_add_reg (ir.regcache, ir.rm))
	    return -1;
	}
      else
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      break;

      /* floats */
      /* It just record the memory change of instrcution. */
    case 0xd8:
    case 0xd9:
    case 0xda:
    case 0xdb:
    case 0xdc:
    case 0xdd:
    case 0xde:
    case 0xdf:
      if (i386_record_modrm (&ir))
	return -1;
      ir.reg |= ((opcode & 7) << 3);
      if (ir.mod != 3)
	{
	  /* memory */
	  uint32_t addr;

	  if (i386_record_lea_modrm_addr (&ir, &addr))
	    return -1;
	  switch (ir.reg)
	    {
	    case 0x00:
	    case 0x01:
	    case 0x02:
	    case 0x03:
	    case 0x04:
	    case 0x05:
	    case 0x06:
	    case 0x07:
	    case 0x10:
	    case 0x11:
	    case 0x12:
	    case 0x13:
	    case 0x14:
	    case 0x15:
	    case 0x16:
	    case 0x17:
	    case 0x20:
	    case 0x21:
	    case 0x22:
	    case 0x23:
	    case 0x24:
	    case 0x25:
	    case 0x26:
	    case 0x27:
	    case 0x30:
	    case 0x31:
	    case 0x32:
	    case 0x33:
	    case 0x34:
	    case 0x35:
	    case 0x36:
	    case 0x37:
	      break;
	    case 0x08:
	    case 0x0a:
	    case 0x0b:
	    case 0x18:
	    case 0x19:
	    case 0x1a:
	    case 0x1b:
	    case 0x28:
	    case 0x29:
	    case 0x2a:
	    case 0x2b:
	    case 0x38:
	    case 0x39:
	    case 0x3a:
	    case 0x3b:
	      switch (ir.reg & 7)
		{
		case 0:
		  break;
		case 1:
		  switch (ir.reg >> 4)
		    {
		    case 0:
		      if (record_arch_list_add_mem (addr, 4))
			return -1;
		      break;
		    case 2:
		      if (record_arch_list_add_mem (addr, 8))
			return -1;
		      break;
		    case 3:
		    default:
		      if (record_arch_list_add_mem (addr, 2))
			return -1;
		      break;
		    }
		  break;
		default:
		  switch (ir.reg >> 4)
		    {
		    case 0:
		    case 1:
		      if (record_arch_list_add_mem (addr, 4))
			return -1;
		      break;
		    case 2:
		      if (record_arch_list_add_mem (addr, 8))
			return -1;
		      break;
		    case 3:
		    default:
		      if (record_arch_list_add_mem (addr, 2))
			return -1;
		      break;
		    }
		  break;
		}
	      break;
	    case 0x0c:
	    case 0x0d:
	    case 0x1d:
	    case 0x2c:
	    case 0x3c:
	    case 0x3d:
	      break;
	    case 0x0e:
	      if (ir.dflag)
		{
		  if (record_arch_list_add_mem (addr, 28))
		    return -1;
		}
	      else
		{
		  if (record_arch_list_add_mem (addr, 14))
		    return -1;
		}
	      break;
	    case 0x0f:
	    case 0x2f:
	      if (record_arch_list_add_mem (addr, 2))
		return -1;
	      break;
	    case 0x1f:
	    case 0x3e:
	      if (record_arch_list_add_mem (addr, 10))
		return -1;
	      break;
	    case 0x2e:
	      if (ir.dflag)
		{
		  if (record_arch_list_add_mem (addr, 28))
		    return -1;
		  addr += 28;
		}
	      else
		{
		  if (record_arch_list_add_mem (addr, 14))
		    return -1;
		  addr += 14;
		}
	      if (record_arch_list_add_mem (addr, 80))
		return -1;
	      break;
	    case 0x3f:
	      if (record_arch_list_add_mem (addr, 8))
		return -1;
	      break;
	    default:
	      ir.addr -= 2;
	      opcode = opcode << 8 | ir.modrm;
	      goto no_support;
	      break;
	    }
	}
      break;

      /* string ops */
      /* movsS */
    case 0xa4:
    case 0xa5:
      /* stosS */
    case 0xaa:
    case 0xab:
      /* insS */
    case 0x6c:
    case 0x6d:
      {
	uint32_t addr;

	if ((opcode & 1) == 0)
	  ir.ot = OT_BYTE;
	else
	  ir.ot = ir.dflag + OT_WORD;
	if (opcode == 0xa4 || opcode == 0xa5)
	  {
	    if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
	      return -1;
	  }
	if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
	  return -1;

	regcache_raw_read (ir.regcache, I386_EDI_REGNUM,
			   (gdb_byte *) & addr);
	if (!ir.aflag)
	  {
	    addr &= 0xffff;
	    /* addr += ((uint32_t)read_register (I386_ES_REGNUM)) << 4; */
	    if (record_debug)
	      printf_unfiltered (_("Process record ignores the memory change "
				   "of instruction at address %s because "
				   "it can't get the value of the segment "
				   "register.\n"),
				 paddress (gdbarch, ir.addr));
	  }

	if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
	  {
	    uint32_t count;

	    regcache_raw_read (ir.regcache, I386_ECX_REGNUM,
			       (gdb_byte *) & count);
	    if (!ir.aflag)
	      count &= 0xffff;

	    regcache_raw_read (ir.regcache, I386_EFLAGS_REGNUM,
			       (gdb_byte *) & tmpu32);
	    if ((tmpu32 >> 10) & 0x1)
	      addr -= (count - 1) * (1 << ir.ot);

	    if (ir.aflag)
	      {
		if (record_arch_list_add_mem (addr, count * (1 << ir.ot)))
		  return -1;
	      }

	    if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
	      return -1;
	  }
	else
	  {
	    if (ir.aflag)
	      {
		if (record_arch_list_add_mem (addr, 1 << ir.ot))
		  return -1;
	      }
	  }
      }
      break;

      /* lodsS */
    case 0xac:
    case 0xad:
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
	return -1;
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
	{
	  if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
	    return -1;
	}
      break;

      /* outsS */
    case 0x6e:
    case 0x6f:
      if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
	return -1;
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
	{
	  if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
	    return -1;
	}
      break;

      /* scasS */
    case 0xae:
    case 0xaf:
      if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
	return -1;
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
	{
	  if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
	    return -1;
	}
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* cmpsS */
    case 0xa6:
    case 0xa7:
      if (record_arch_list_add_reg (ir.regcache, I386_EDI_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_ESI_REGNUM))
	return -1;
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
	{
	  if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
	    return -1;
	}
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* port I/O */
    case 0xe4:
    case 0xe5:
    case 0xec:
    case 0xed:
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      break;

    case 0xe6:
    case 0xe7:
    case 0xee:
    case 0xef:
      break;

      /* control */
      /* ret im */
    case 0xc2:
      /* ret */
    case 0xc3:
      /* lret im */
    case 0xca:
      /* lret */
    case 0xcb:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
	return -1;
      break;

      /* iret */
    case 0xcf:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* call im */
    case 0xe8:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
			 (gdb_byte *) & tmpu32);
      if (record_arch_list_add_mem
	  ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
	return -1;
      break;

      /* lcall im */
    case 0x9a:
      if (record_arch_list_add_reg (ir.regcache, I386_CS_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
			 (gdb_byte *) & tmpu32);
      if (record_arch_list_add_mem
	  ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 2)), (1 << (ir.dflag + 2))))
	return -1;
      break;

      /* jmp im */
    case 0xe9:
      /* ljmp im */
    case 0xea:
      /* jmp Jb */
    case 0xeb:
      /* jcc Jb */
    case 0x70:
    case 0x71:
    case 0x72:
    case 0x73:
    case 0x74:
    case 0x75:
    case 0x76:
    case 0x77:
    case 0x78:
    case 0x79:
    case 0x7a:
    case 0x7b:
    case 0x7c:
    case 0x7d:
    case 0x7e:
    case 0x7f:
      /* jcc Jv */
    case 0x0f80:
    case 0x0f81:
    case 0x0f82:
    case 0x0f83:
    case 0x0f84:
    case 0x0f85:
    case 0x0f86:
    case 0x0f87:
    case 0x0f88:
    case 0x0f89:
    case 0x0f8a:
    case 0x0f8b:
    case 0x0f8c:
    case 0x0f8d:
    case 0x0f8e:
    case 0x0f8f:
      break;

      /* setcc Gv */
    case 0x0f90:
    case 0x0f91:
    case 0x0f92:
    case 0x0f93:
    case 0x0f94:
    case 0x0f95:
    case 0x0f96:
    case 0x0f97:
    case 0x0f98:
    case 0x0f99:
    case 0x0f9a:
    case 0x0f9b:
    case 0x0f9c:
    case 0x0f9d:
    case 0x0f9e:
    case 0x0f9f:
      ir.ot = OT_BYTE;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  if (record_arch_list_add_reg (ir.regcache, ir.rm & 0x3))
	    return -1;
	}
      else
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      break;

      /* cmov Gv, Ev */
    case 0x0f40:
    case 0x0f41:
    case 0x0f42:
    case 0x0f43:
    case 0x0f44:
    case 0x0f45:
    case 0x0f46:
    case 0x0f47:
    case 0x0f48:
    case 0x0f49:
    case 0x0f4a:
    case 0x0f4b:
    case 0x0f4c:
    case 0x0f4d:
    case 0x0f4e:
    case 0x0f4f:
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.dflag == OT_BYTE)
	ir.reg &= 0x3;
      if (record_arch_list_add_reg (ir.regcache, ir.reg & 0x3))
	return -1;
      break;

      /* flags */
      /* pushf */
    case 0x9c:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      regcache_raw_read (ir.regcache, I386_ESP_REGNUM,
			 (gdb_byte *) & tmpu32);
      if (record_arch_list_add_mem
	  ((CORE_ADDR) tmpu32 - (1 << (ir.dflag + 1)), (1 << (ir.dflag + 1))))
	return -1;
      break;

      /* popf */
    case 0x9d:
      if (record_arch_list_add_reg (ir.regcache, I386_ESP_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* sahf */
    case 0x9e:
      /* cmc */
    case 0xf5:
      /* clc */
    case 0xf8:
      /* stc */
    case 0xf9:
      /* cld */
    case 0xfc:
      /* std */
    case 0xfd:
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* lahf */
    case 0x9f:
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      break;

      /* bit operations */
      /* bt/bts/btr/btc Gv, im */
    case 0x0fba:
      /* bts */
    case 0x0fab:
      /* btr */
    case 0x0fb3:
      /* btc */
    case 0x0fbb:
      ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.reg < 4)
	{
	  ir.addr -= 3;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      ir.reg -= 4;
      if (ir.reg != 0)
	{
	  if (ir.mod != 3)
	    {
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  else
	    {
	      if (record_arch_list_add_reg (ir.regcache, ir.rm))
		return -1;
	    }
	}
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* bt Gv, Ev */
    case 0x0fa3:
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* bsf */
    case 0x0fbc:
      /* bsr */
    case 0x0fbd:
      if (record_arch_list_add_reg (ir.regcache, ir.reg))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* bcd */
      /* daa */
    case 0x27:
      /* das */
    case 0x2f:
      /* aaa */
    case 0x37:
      /* aas */
    case 0x3f:
      /* aam */
    case 0xd4:
      /* aad */
    case 0xd5:
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* misc */
      /* nop */
    case 0x90:
      if (prefixes & PREFIX_LOCK)
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      break;

      /* fwait */
      /* XXX */
    case 0x9b:
      printf_unfiltered (_("Process record doesn't support instruction "
			   "fwait.\n"));
      ir.addr -= 1;
      goto no_support;
      break;

      /* int3 */
      /* XXX */
    case 0xcc:
      printf_unfiltered (_("Process record doesn't support instruction "
			   "int3.\n"));
      ir.addr -= 1;
      goto no_support;
      break;

      /* int */
      /* XXX */
    case 0xcd:
      {
	int ret;
	if (target_read_memory (ir.addr, &tmpu8, 1))
	  {
	    if (record_debug)
	      printf_unfiltered (_("Process record: error reading memory "
				   "at addr %s len = 1.\n"),
				 paddress (gdbarch, ir.addr));
	    return -1;
	  }
	ir.addr++;
	if (tmpu8 != 0x80
	    || gdbarch_tdep (gdbarch)->i386_intx80_record == NULL)
	  {
	    printf_unfiltered (_("Process record doesn't support "
				 "instruction int 0x%02x.\n"),
			       tmpu8);
	    ir.addr -= 2;
	    goto no_support;
	  }
	ret = gdbarch_tdep (gdbarch)->i386_intx80_record (ir.regcache);
	if (ret)
	  return ret;
      }
      break;

      /* into */
      /* XXX */
    case 0xce:
      printf_unfiltered (_("Process record doesn't support "
			   "instruction into.\n"));
      ir.addr -= 1;
      goto no_support;
      break;

      /* cli */
    case 0xfa:
      /* sti */
    case 0xfb:
      break;

      /* bound */
    case 0x62:
      printf_unfiltered (_("Process record doesn't support "
			   "instruction bound.\n"));
      ir.addr -= 1;
      goto no_support;
      break;

      /* bswap reg */
    case 0x0fc8:
    case 0x0fc9:
    case 0x0fca:
    case 0x0fcb:
    case 0x0fcc:
    case 0x0fcd:
    case 0x0fce:
    case 0x0fcf:
      if (record_arch_list_add_reg (ir.regcache, opcode & 7))
	return -1;
      break;

      /* salc */
    case 0xd6:
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* loopnz */
    case 0xe0:
      /* loopz */
    case 0xe1:
      /* loop */
    case 0xe2:
      /* jecxz */
    case 0xe3:
      if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
	return -1;
      break;

      /* wrmsr */
    case 0x0f30:
      printf_unfiltered (_("Process record doesn't support "
			   "instruction wrmsr.\n"));
      ir.addr -= 2;
      goto no_support;
      break;

      /* rdmsr */
    case 0x0f32:
      printf_unfiltered (_("Process record doesn't support "
			   "instruction rdmsr.\n"));
      ir.addr -= 2;
      goto no_support;
      break;

      /* rdtsc */
    case 0x0f31:
      printf_unfiltered (_("Process record doesn't support "
			   "instruction rdtsc.\n"));
      ir.addr -= 2;
      goto no_support;
      break;

      /* sysenter */
    case 0x0f34:
      {
	int ret;
	if (gdbarch_tdep (gdbarch)->i386_sysenter_record == NULL)
	  {
	    printf_unfiltered (_("Process record doesn't support "
				 "instruction sysenter.\n"));
	    ir.addr -= 2;
	    goto no_support;
	  }
	ret = gdbarch_tdep (gdbarch)->i386_sysenter_record (ir.regcache);
	if (ret)
	  return ret;
      }
      break;

      /* sysexit */
    case 0x0f35:
      printf_unfiltered (_("Process record doesn't support "
			   "instruction sysexit.\n"));
      ir.addr -= 2;
      goto no_support;
      break;

      /* cpuid */
    case 0x0fa2:
      if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_ECX_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EDX_REGNUM))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EBX_REGNUM))
	return -1;
      break;

      /* hlt */
    case 0xf4:
      printf_unfiltered (_("Process record doesn't support "
			   "instruction hlt.\n"));
      ir.addr -= 1;
      goto no_support;
      break;

    case 0x0f00:
      if (i386_record_modrm (&ir))
	return -1;
      switch (ir.reg)
	{
	  /* sldt */
	case 0:
	  /* str */
	case 1:
	  if (ir.mod == 3)
	    {
	      if (record_arch_list_add_reg (ir.regcache, ir.rm))
		return -1;
	    }
	  else
	    {
	      ir.ot = OT_WORD;
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  break;
	  /* lldt */
	case 2:
	  /* ltr */
	case 3:
	  break;
	  /* verr */
	case 4:
	  /* verw */
	case 5:
	  if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	    return -1;
	  break;
	default:
	  ir.addr -= 3;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      break;

    case 0x0f01:
      if (i386_record_modrm (&ir))
	return -1;
      switch (ir.reg)
	{
	  /* sgdt */
	case 0:
	  {
	    uint32_t addr;

	    if (ir.mod == 3)
	      {
		ir.addr -= 3;
		opcode = opcode << 8 | ir.modrm;
		goto no_support;
	      }

	    if (ir.override)
	      {
		if (record_debug)
		  printf_unfiltered (_("Process record ignores the memory "
				       "change of instruction at "
				       "address %s because it can't get "
				       "the value of the segment "
				       "register.\n"),
				     paddress (gdbarch, ir.addr));
	      }
	    else
	      {
		if (i386_record_lea_modrm_addr (&ir, &addr))
		  return -1;
		if (record_arch_list_add_mem (addr, 2))
		  return -1;
		addr += 2;
		if (record_arch_list_add_mem (addr, 4))
		  return -1;
	      }
	  }
	  break;
	case 1:
	  if (ir.mod == 3)
	    {
	      switch (ir.rm)
		{
		  /* monitor */
		case 0:
		  break;
		  /* mwait */
		case 1:
		  if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
		    return -1;
		  break;
		default:
		  ir.addr -= 3;
		  opcode = opcode << 8 | ir.modrm;
		  goto no_support;
		  break;
		}
	    }
	  else
	    {
	      /* sidt */
	      if (ir.override)
		{
		  if (record_debug)
		    printf_unfiltered (_("Process record ignores the memory "
					 "change of instruction at "
					 "address %s because it can't get "
					 "the value of the segment "
					 "register.\n"),
				       paddress (gdbarch, ir.addr));
		}
	      else
		{
		  uint32_t addr;

		  if (i386_record_lea_modrm_addr (&ir, &addr))
		    return -1;
		  if (record_arch_list_add_mem (addr, 2))
		    return -1;
		  addr += 2;
		  if (record_arch_list_add_mem (addr, 4))
		    return -1;
		}
	    }
	  break;
	  /* lgdt */
	case 2:
	  /* lidt */
	case 3:
	  /* invlpg */
	case 7:
	default:
	  if (ir.mod == 3)
	    {
	      ir.addr -= 3;
	      opcode = opcode << 8 | ir.modrm;
	      goto no_support;
	    }
	  break;
	  /* smsw */
	case 4:
	  if (ir.mod == 3)
	    {
	      if (record_arch_list_add_reg (ir.regcache, ir.rm))
		return -1;
	    }
	  else
	    {
	      ir.ot = OT_WORD;
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  break;
	  /* lmsw */
	case 6:
	  break;
	}
      break;

      /* invd */
    case 0x0f08:
      /* wbinvd */
    case 0x0f09:
      break;

      /* arpl */
    case 0x63:
      ir.ot = ir.dflag ? OT_LONG : OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod != 3)
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      else
	{
	  if (record_arch_list_add_reg (ir.regcache, ir.rm))
	    return -1;
	}
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

      /* lar */
    case 0x0f02:
      /* lsl */
    case 0x0f03:
      if (i386_record_modrm (&ir))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, ir.reg))
	return -1;
      if (record_arch_list_add_reg (ir.regcache, I386_EFLAGS_REGNUM))
	return -1;
      break;

    case 0x0f18:
      break;

      /* nop (multi byte) */
    case 0x0f19:
    case 0x0f1a:
    case 0x0f1b:
    case 0x0f1c:
    case 0x0f1d:
    case 0x0f1e:
    case 0x0f1f:
      break;

      /* mov reg, crN */
    case 0x0f20:
      /* mov crN, reg */
    case 0x0f22:
      if (i386_record_modrm (&ir))
	return -1;
      if ((ir.modrm & 0xc0) != 0xc0)
	{
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      switch (ir.reg)
	{
	case 0:
	case 2:
	case 3:
	case 4:
	case 8:
	  if (opcode & 2)
	    {
	    }
	  else
	    {
	      if (record_arch_list_add_reg (ir.regcache, ir.rm))
		return -1;
	    }
	  break;
	default:
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      break;

      /* mov reg, drN */
    case 0x0f21:
      /* mov drN, reg */
    case 0x0f23:
      if (i386_record_modrm (&ir))
	return -1;
      if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
	  || ir.reg == 5 || ir.reg >= 8)
	{
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      if (opcode & 2)
	{
	}
      else
	{
	  if (record_arch_list_add_reg (ir.regcache, ir.rm))
	    return -1;
	}
      break;

      /* clts */
    case 0x0f06:
      break;

      /* MMX/SSE/SSE2/PNI support */
      /* XXX */

    default:
      if (opcode > 0xff)
	ir.addr -= 2;
      else
	ir.addr -= 1;
      goto no_support;
      break;
    }

/* In the future, Maybe still need to deal with need_dasm */
  if (record_arch_list_add_reg (ir.regcache, I386_EIP_REGNUM))
    return -1;
  if (record_arch_list_add_end ())
    return -1;

  return 0;

no_support:
  printf_unfiltered (_("Process record doesn't support instruction 0x%02x "
		       "at address %s.\n"),
		     (unsigned int) (opcode), paddress (gdbarch, ir.addr));
  return -1;
}


static struct gdbarch *
i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch_tdep *tdep;
  struct gdbarch *gdbarch;

  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* Allocate space for the new architecture.  */
  tdep = XCALLOC (1, struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  /* General-purpose registers.  */
  tdep->gregset = NULL;
  tdep->gregset_reg_offset = NULL;
  tdep->gregset_num_regs = I386_NUM_GREGS;
  tdep->sizeof_gregset = 0;

  /* Floating-point registers.  */
  tdep->fpregset = NULL;
  tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;

  /* The default settings include the FPU registers, the MMX registers
     and the SSE registers.  This can be overridden for a specific ABI
     by adjusting the members `st0_regnum', `mm0_regnum' and
     `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
     will show up in the output of "info all-registers".  Ideally we
     should try to autodetect whether they are available, such that we
     can prevent "info all-registers" from displaying registers that
     aren't available.

     NOTE: kevinb/2003-07-13: ... if it's a choice between printing
     [the SSE registers] always (even when they don't exist) or never
     showing them to the user (even when they do exist), I prefer the
     former over the latter.  */

  tdep->st0_regnum = I386_ST0_REGNUM;

  /* The MMX registers are implemented as pseudo-registers.  Put off
     calculating the register number for %mm0 until we know the number
     of raw registers.  */
  tdep->mm0_regnum = 0;

  /* I386_NUM_XREGS includes %mxcsr, so substract one.  */
  tdep->num_xmm_regs = I386_NUM_XREGS - 1;

  tdep->jb_pc_offset = -1;
  tdep->struct_return = pcc_struct_return;
  tdep->sigtramp_start = 0;
  tdep->sigtramp_end = 0;
  tdep->sigtramp_p = i386_sigtramp_p;
  tdep->sigcontext_addr = NULL;
  tdep->sc_reg_offset = NULL;
  tdep->sc_pc_offset = -1;
  tdep->sc_sp_offset = -1;

  /* The format used for `long double' on almost all i386 targets is
     the i387 extended floating-point format.  In fact, of all targets
     in the GCC 2.95 tree, only OSF/1 does it different, and insists
     on having a `long double' that's not `long' at all.  */
  set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);

  /* Although the i387 extended floating-point has only 80 significant
     bits, a `long double' actually takes up 96, probably to enforce
     alignment.  */
  set_gdbarch_long_double_bit (gdbarch, 96);

  /* The default ABI includes general-purpose registers, 
     floating-point registers, and the SSE registers.  */
  set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
  set_gdbarch_register_name (gdbarch, i386_register_name);
  set_gdbarch_register_type (gdbarch, i386_register_type);

  /* Register numbers of various important registers.  */
  set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
  set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
  set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
  set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */

  /* NOTE: kettenis/20040418: GCC does have two possible register
     numbering schemes on the i386: dbx and SVR4.  These schemes
     differ in how they number %ebp, %esp, %eflags, and the
     floating-point registers, and are implemented by the arrays
     dbx_register_map[] and svr4_dbx_register_map in
     gcc/config/i386.c.  GCC also defines a third numbering scheme in
     gcc/config/i386.c, which it designates as the "default" register
     map used in 64bit mode.  This last register numbering scheme is
     implemented in dbx64_register_map, and is used for AMD64; see
     amd64-tdep.c.

     Currently, each GCC i386 target always uses the same register
     numbering scheme across all its supported debugging formats
     i.e. SDB (COFF), stabs and DWARF 2.  This is because
     gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
     DBX_REGISTER_NUMBER macro which is defined by each target's
     respective config header in a manner independent of the requested
     output debugging format.

     This does not match the arrangement below, which presumes that
     the SDB and stabs numbering schemes differ from the DWARF and
     DWARF 2 ones.  The reason for this arrangement is that it is
     likely to get the numbering scheme for the target's
     default/native debug format right.  For targets where GCC is the
     native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
     targets where the native toolchain uses a different numbering
     scheme for a particular debug format (stabs-in-ELF on Solaris)
     the defaults below will have to be overridden, like
     i386_elf_init_abi() does.  */

  /* Use the dbx register numbering scheme for stabs and COFF.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
  set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);

  /* Use the SVR4 register numbering scheme for DWARF 2.  */
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);

  /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
     be in use on any of the supported i386 targets.  */

  set_gdbarch_print_float_info (gdbarch, i387_print_float_info);

  set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);

  /* Call dummy code.  */
  set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);

  set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
  set_gdbarch_register_to_value (gdbarch,  i386_register_to_value);
  set_gdbarch_value_to_register (gdbarch, i386_value_to_register);

  set_gdbarch_return_value (gdbarch, i386_return_value);

  set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);

  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
  set_gdbarch_decr_pc_after_break (gdbarch, 1);
  set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);

  set_gdbarch_frame_args_skip (gdbarch, 8);

  /* Wire in the MMX registers.  */
  set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
  set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);

  set_gdbarch_print_insn (gdbarch, i386_print_insn);

  set_gdbarch_dummy_id (gdbarch, i386_dummy_id);

  set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);

  /* Add the i386 register groups.  */
  i386_add_reggroups (gdbarch);
  set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);

  /* Helper for function argument information.  */
  set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);

  /* Hook in the DWARF CFI frame unwinder.  */
  dwarf2_append_unwinders (gdbarch);

  frame_base_set_default (gdbarch, &i386_frame_base);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);

  /* If we have a register mapping, enable the generic core file
     support, unless it has already been enabled.  */
  if (tdep->gregset_reg_offset
      && !gdbarch_regset_from_core_section_p (gdbarch))
    set_gdbarch_regset_from_core_section (gdbarch,
					  i386_regset_from_core_section);

  /* Unless support for MMX has been disabled, make %mm0 the first
     pseudo-register.  */
  if (tdep->mm0_regnum == 0)
    tdep->mm0_regnum = gdbarch_num_regs (gdbarch);

  set_gdbarch_skip_permanent_breakpoint (gdbarch,
					 i386_skip_permanent_breakpoint);

  return gdbarch;
}

static enum gdb_osabi
i386_coff_osabi_sniffer (bfd *abfd)
{
  if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
      || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
    return GDB_OSABI_GO32;

  return GDB_OSABI_UNKNOWN;
}


/* Provide a prototype to silence -Wmissing-prototypes.  */
void _initialize_i386_tdep (void);

void
_initialize_i386_tdep (void)
{
  register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);

  /* Add the variable that controls the disassembly flavor.  */
  add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
			&disassembly_flavor, _("\
Set the disassembly flavor."), _("\
Show the disassembly flavor."), _("\
The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
			NULL,
			NULL, /* FIXME: i18n: */
			&setlist, &showlist);

  /* Add the variable that controls the convention for returning
     structs.  */
  add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
			&struct_convention, _("\
Set the convention for returning small structs."), _("\
Show the convention for returning small structs."), _("\
Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
is \"default\"."),
			NULL,
			NULL, /* FIXME: i18n: */
			&setlist, &showlist);

  gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
				  i386_coff_osabi_sniffer);

  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
			  i386_svr4_init_abi);
  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
			  i386_go32_init_abi);

  /* Initialize the i386-specific register groups.  */
  i386_init_reggroups ();
}