1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
|
/* Native-dependent code for Linux running on i386's, for GDB.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
/* For i386_linux_skip_solib_resolver */
#include "symtab.h"
#include "frame.h"
#include "symfile.h"
#include "objfiles.h"
#include <sys/ptrace.h>
#include <sys/user.h>
#include <sys/procfs.h>
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#endif
/* This is a duplicate of the table in i386-xdep.c. */
static int regmap[] =
{
EAX, ECX, EDX, EBX,
UESP, EBP, ESI, EDI,
EIP, EFL, CS, SS,
DS, ES, FS, GS,
};
/* Which ptrace request retrieves which registers?
These apply to the corresponding SET requests as well. */
#define GETREGS_SUPPLIES(regno) \
(0 <= (regno) && (regno) <= 15)
#define GETFPREGS_SUPPLIES(regno) \
(FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
#define GETXFPREGS_SUPPLIES(regno) \
(FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
/* Does the current host support the GETXFPREGS request? The header
file may or may not define it, and even if it is defined, the
kernel will return EIO if it's running on a pre-SSE processor.
My instinct is to attach this to some architecture- or
target-specific data structure, but really, a particular GDB
process can only run on top of one kernel at a time. So it's okay
for this to be a simple variable. */
int have_ptrace_getxfpregs =
#ifdef HAVE_PTRACE_GETXFPREGS
1
#else
0
#endif
;
/* Transfering the general registers between GDB, inferiors and core files. */
/* Given a pointer to a general register set in struct user format
(gregset_t *), unpack the register contents and supply them as
gdb's idea of the current register values. */
void
supply_gregset (gregsetp)
gregset_t *gregsetp;
{
register int regi;
register greg_t *regp = (greg_t *) gregsetp;
for (regi = 0; regi < NUM_GREGS; regi++)
{
supply_register (regi, (char *) (regp + regmap[regi]));
}
}
/* Fill in a gregset_t object with selected data from a gdb-format
register file.
- GREGSETP points to the gregset_t object to be filled.
- GDB_REGS points to the GDB-style register file providing the data.
- VALID is an array indicating which registers in GDB_REGS are
valid; the parts of *GREGSETP that would hold registers marked
invalid in GDB_REGS are left unchanged. If VALID is zero, all
registers are assumed to be valid. */
void
convert_to_gregset (gregset_t *gregsetp,
char *gdb_regs,
signed char *valid)
{
int regi;
register greg_t *regp = (greg_t *) gregsetp;
for (regi = 0; regi < NUM_GREGS; regi++)
if (! valid || valid[regi])
*(regp + regmap[regi]) = * (int *) ®isters[REGISTER_BYTE (regi)];
}
/* Store GDB's value for REGNO in *GREGSETP. If REGNO is -1, do all
of them. */
void
fill_gregset (gregset_t *gregsetp,
int regno)
{
if (regno == -1)
convert_to_gregset (gregsetp, registers, 0);
else
{
signed char valid[NUM_GREGS];
memset (valid, 0, sizeof (valid));
valid[regno] = 1;
convert_to_gregset (gregsetp, valid, valid);
}
}
/* Read the general registers from the process, and store them
in registers[]. */
static void
fetch_regs ()
{
int ret, regno;
gregset_t buf;
ret = ptrace (PTRACE_GETREGS, inferior_pid, 0, (int) &buf);
if (ret < 0)
{
warning ("Couldn't get registers");
return;
}
supply_gregset (&buf);
}
/* Set the inferior's general registers to the values in registers[]
--- but only those registers marked as valid. */
static void
store_regs ()
{
int ret, regno;
gregset_t buf;
ret = ptrace (PTRACE_GETREGS, inferior_pid, 0, (int) &buf);
if (ret < 0)
{
warning ("Couldn't get registers");
return;
}
convert_to_gregset (&buf, registers, register_valid);
ret = ptrace (PTRACE_SETREGS, inferior_pid, 0, (int)buf);
if (ret < 0)
{
warning ("Couldn't write registers");
return;
}
}
/* Transfering floating-point registers between GDB, inferiors and cores. */
/* What is the address of st(N) within the fpregset_t structure F? */
#define FPREGSET_T_FPREG_ADDR(f, n) \
((char *) &(f)->st_space + (n) * 10)
/* Fill GDB's register file with the floating-point register values in
*FPREGSETP. */
void
supply_fpregset (fpregset_t *fpregsetp)
{
int i;
/* Supply the floating-point registers. */
for (i = 0; i < 8; i++)
supply_register (FP0_REGNUM + i, FPREGSET_T_FPREG_ADDR (fpregsetp, i));
supply_register (FCTRL_REGNUM, (char *) &fpregsetp->cwd);
supply_register (FSTAT_REGNUM, (char *) &fpregsetp->swd);
supply_register (FTAG_REGNUM, (char *) &fpregsetp->twd);
supply_register (FCOFF_REGNUM, (char *) &fpregsetp->fip);
supply_register (FDS_REGNUM, (char *) &fpregsetp->fos);
supply_register (FDOFF_REGNUM, (char *) &fpregsetp->foo);
/* Extract the code segment and opcode from the "fcs" member. */
{
long l;
l = fpregsetp->fcs & 0xffff;
supply_register (FCS_REGNUM, (char *) &l);
l = (fpregsetp->fcs >> 16) & ((1 << 11) - 1);
supply_register (FOP_REGNUM, (char *) &l);
}
}
/* Fill in an fpregset_t structure with selected data from a
gdb-format register file.
- FPREGSETP points to the structure to be filled.
- GDB_REGS points to the GDB-style register file providing the data.
- VALID is an array indicating which registers in GDB_REGS are
valid; the parts of *FPREGSETP that would hold registers marked
invalid in GDB_REGS are left unchanged. If VALID is zero, all
registers are assumed to be valid. */
void
convert_to_fpregset (fpregset_t *fpregsetp,
char *gdb_regs,
signed char *valid)
{
int i;
/* Fill in the floating-point registers. */
for (i = 0; i < 8; i++)
if (!valid || valid[i])
memcpy (FPREGSET_T_FPREG_ADDR (fpregsetp, i),
®isters[REGISTER_BYTE (FP0_REGNUM + i)],
REGISTER_RAW_SIZE(FP0_REGNUM + i));
#define fill(MEMBER, REGNO) \
if (! valid || valid[(REGNO)]) \
memcpy (&fpregsetp->MEMBER, ®isters[REGISTER_BYTE (REGNO)], \
sizeof (fpregsetp->MEMBER))
fill (cwd, FCTRL_REGNUM);
fill (swd, FSTAT_REGNUM);
fill (twd, FTAG_REGNUM);
fill (fip, FCOFF_REGNUM);
fill (foo, FDOFF_REGNUM);
fill (fos, FDS_REGNUM);
#undef fill
if (! valid || valid[FCS_REGNUM])
fpregsetp->fcs
= ((fpregsetp->fcs & ~0xffff)
| (* (int *) ®isters[REGISTER_BYTE (FCS_REGNUM)] & 0xffff));
if (! valid || valid[FOP_REGNUM])
fpregsetp->fcs
= ((fpregsetp->fcs & 0xffff)
| ((*(int *) ®isters[REGISTER_BYTE (FOP_REGNUM)] & ((1 << 11) - 1))
<< 16));
}
/* Given a pointer to a floating point register set in (fpregset_t *)
format, update all of the registers from gdb's idea of the current
floating point register set. */
void
fill_fpregset (fpregset_t *fpregsetp,
int regno)
{
convert_to_fpregset (fpregsetp, registers, 0);
}
/* Get the whole floating point state of the process and store the
floating point stack into registers[]. */
static void
fetch_fpregs ()
{
int ret, regno;
fpregset_t buf;
ret = ptrace (PTRACE_GETFPREGS, inferior_pid, 0, (int) &buf);
if (ret < 0)
{
warning ("Couldn't get floating point status");
return;
}
/* ptrace fills an fpregset_t, so we can use the same function we do
for core files. */
supply_fpregset (&buf);
}
/* Set the inferior's floating-point registers to the values in
registers[] --- but only those registers marked valid. */
static void
store_fpregs ()
{
int ret;
fpregset_t buf;
ret = ptrace (PTRACE_GETFPREGS, inferior_pid, 0, (int) &buf);
if (ret < 0)
{
warning ("Couldn't get floating point status");
return;
}
convert_to_fpregset (&buf, registers, register_valid);
ret = ptrace (PTRACE_SETFPREGS, inferior_pid, 0, (int) &buf);
if (ret < 0)
{
warning ("Couldn't write floating point status");
return;
}
}
/* Transfering floating-point and SSE registers to and from GDB. */
#ifdef HAVE_PTRACE_GETXFPREGS
static void
supply_xfpregset (struct user_xfpregs_struct *xfpregs)
{
int reg;
/* Supply the floating-point registers. */
for (reg = 0; reg < 8; reg++)
supply_register (FP0_REGNUM + reg, (char *) &xfpregs->st_space[reg]);
{
supply_register (FCTRL_REGNUM, (char *) &xfpregs->cwd);
supply_register (FSTAT_REGNUM, (char *) &xfpregs->swd);
supply_register (FTAG_REGNUM, (char *) &xfpregs->twd);
supply_register (FCOFF_REGNUM, (char *) &xfpregs->fip);
supply_register (FDS_REGNUM, (char *) &xfpregs->fos);
supply_register (FDOFF_REGNUM, (char *) &xfpregs->foo);
/* Extract the code segment and opcode from the "fcs" member. */
{
long l;
l = xfpregs->fcs & 0xffff;
supply_register (FCS_REGNUM, (char *) &l);
l = (xfpregs->fcs >> 16) & ((1 << 11) - 1);
supply_register (FOP_REGNUM, (char *) &l);
}
}
/* Supply the SSE registers. */
for (reg = 0; reg < 8; reg++)
supply_register (XMM0_REGNUM + reg, (char *) &xfpregs->xmm_space[reg]);
supply_register (MXCSR_REGNUM, (char *) &xfpregs->mxcsr);
}
static void
convert_to_xfpregset (struct user_xfpregs_struct *xfpregs,
char *gdb_regs,
signed char *valid)
{
int reg;
/* Fill in the floating-point registers. */
for (reg = 0; reg < 8; reg++)
if (!valid || valid[reg])
memcpy (&xfpregs->st_space[reg],
®isters[REGISTER_BYTE (FP0_REGNUM + reg)],
REGISTER_RAW_SIZE(FP0_REGNUM + reg));
#define fill(MEMBER, REGNO) \
if (! valid || valid[(REGNO)]) \
memcpy (&xfpregs->MEMBER, ®isters[REGISTER_BYTE (REGNO)], \
sizeof (xfpregs->MEMBER))
fill (cwd, FCTRL_REGNUM);
fill (swd, FSTAT_REGNUM);
fill (twd, FTAG_REGNUM);
fill (fip, FCOFF_REGNUM);
fill (foo, FDOFF_REGNUM);
fill (fos, FDS_REGNUM);
#undef fill
if (! valid || valid[FCS_REGNUM])
xfpregs->fcs
= ((xfpregs->fcs & ~0xffff)
| (* (int *) ®isters[REGISTER_BYTE (FCS_REGNUM)] & 0xffff));
if (! valid || valid[FOP_REGNUM])
xfpregs->fcs
= ((xfpregs->fcs & 0xffff)
| ((*(int *) ®isters[REGISTER_BYTE (FOP_REGNUM)] & ((1 << 11) - 1))
<< 16));
/* Fill in the XMM registers. */
for (reg = 0; reg < 8; reg++)
if (! valid || valid[reg])
memcpy (&xfpregs->xmm_space[reg],
®isters[REGISTER_BYTE (XMM0_REGNUM + reg)],
REGISTER_RAW_SIZE (XMM0_REGNUM + reg));
}
/* Make a PTRACE_GETXFPREGS request, and supply all the register
values that yields to GDB. */
static int
fetch_xfpregs ()
{
int ret;
struct user_xfpregs_struct xfpregs;
if (! have_ptrace_getxfpregs)
return 0;
ret = ptrace (PTRACE_GETXFPREGS, inferior_pid, 0, &xfpregs);
if (ret == -1)
{
if (errno == EIO)
{
have_ptrace_getxfpregs = 0;
return 0;
}
warning ("couldn't read floating-point and SSE registers.");
return 0;
}
supply_xfpregset (&xfpregs);
return 1;
}
/* Send all the valid register values in GDB's register file covered
by the PTRACE_SETXFPREGS request to the inferior. */
static int
store_xfpregs ()
{
int ret;
struct user_xfpregs_struct xfpregs;
if (! have_ptrace_getxfpregs)
return 0;
ret = ptrace (PTRACE_GETXFPREGS, inferior_pid, 0, &xfpregs);
if (ret == -1)
{
if (errno == EIO)
{
have_ptrace_getxfpregs = 0;
return 0;
}
warning ("couldn't read floating-point and SSE registers.");
return 0;
}
convert_to_xfpregset (&xfpregs, registers, register_valid);
if (ptrace (PTRACE_SETXFPREGS, inferior_pid, 0, &xfpregs) < 0)
{
warning ("Couldn't write floating-point and SSE registers.");
return 0;
}
return 1;
}
/* Fill the XMM registers in the register file with dummy values. For
cases where we don't have access to the XMM registers. I think
this is cleaner than printing a warning. For a cleaner solution,
we should gdbarchify the i386 family. */
static void
dummy_sse_values ()
{
/* C doesn't have a syntax for NaN's, so write it out as an array of
longs. */
static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
static long mxcsr = 0x1f80;
int reg;
for (reg = 0; reg < 8; reg++)
supply_register (XMM0_REGNUM + reg, (char *) dummy);
supply_register (MXCSR_REGNUM, (char *) &mxcsr);
}
#else
/* Stub versions of the above routines, for systems that don't have
PTRACE_GETXFPREGS. */
static int store_xfpregs () { return 0; }
static int fetch_xfpregs () { return 0; }
static void dummy_sse_values () {}
#endif
/* Transferring arbitrary registers between GDB and inferior. */
/* Fetch registers from the child process.
Fetch all if regno == -1, otherwise fetch all ordinary
registers or all floating point registers depending
upon the value of regno. */
void
fetch_inferior_registers (int regno)
{
/* Use the xfpregs requests whenever possible, since they transfer
more registers in one system call, and we'll cache the results.
But remember that fetch_xfpregs can fail, and return zero. */
if (regno == -1)
{
fetch_regs ();
if (fetch_xfpregs ())
return;
fetch_fpregs ();
return;
}
if (GETREGS_SUPPLIES (regno))
{
fetch_regs ();
return;
}
if (GETXFPREGS_SUPPLIES (regno))
{
if (fetch_xfpregs ())
return;
/* Either our processor or our kernel doesn't support the SSE
registers, so read the FP registers in the traditional way,
and fill the SSE registers with dummy values. It would be
more graceful to handle differences in the register set using
gdbarch. Until then, this will at least make things work
plausibly. */
fetch_fpregs ();
dummy_sse_values ();
return;
}
internal_error ("i386-linux-nat.c (fetch_inferior_registers): "
"got request for bad register number %d", regno);
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register, which
then determines whether we store all ordinary
registers or all of the floating point registers. */
void
store_inferior_registers (regno)
int regno;
{
/* Use the xfpregs requests whenever possible, since they transfer
more registers in one system call. But remember that
fetch_xfpregs can fail, and return zero. */
if (regno == -1)
{
store_regs ();
if (store_xfpregs ())
return;
store_fpregs ();
return;
}
if (GETREGS_SUPPLIES (regno))
{
store_regs ();
return;
}
if (GETXFPREGS_SUPPLIES (regno))
{
if (store_xfpregs ())
return;
/* Either our processor or our kernel doesn't support the SSE
registers, so just write the FP registers in the traditional way. */
store_fpregs ();
return;
}
internal_error ("i386-linux-nat.c (store_inferior_registers): "
"got request to store bad register number %d", regno);
}
/* Calling functions in shared libraries. */
/* Find the minimal symbol named NAME, and return both the minsym
struct and its objfile. This probably ought to be in minsym.c, but
everything there is trying to deal with things like C++ and
SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may
be considered too special-purpose for general consumption. */
static struct minimal_symbol *
find_minsym_and_objfile (char *name, struct objfile **objfile_p)
{
struct objfile *objfile;
ALL_OBJFILES (objfile)
{
struct minimal_symbol *msym;
ALL_OBJFILE_MSYMBOLS (objfile, msym)
{
if (SYMBOL_NAME (msym)
&& STREQ (SYMBOL_NAME (msym), name))
{
*objfile_p = objfile;
return msym;
}
}
}
return 0;
}
static CORE_ADDR
skip_hurd_resolver (CORE_ADDR pc)
{
/* The HURD dynamic linker is part of the GNU C library, so many
GNU/Linux distributions use it. (All ELF versions, as far as I
know.) An unresolved PLT entry points to "_dl_runtime_resolve",
which calls "fixup" to patch the PLT, and then passes control to
the function.
We look for the symbol `_dl_runtime_resolve', and find `fixup' in
the same objfile. If we are at the entry point of `fixup', then
we set a breakpoint at the return address (at the top of the
stack), and continue.
It's kind of gross to do all these checks every time we're
called, since they don't change once the executable has gotten
started. But this is only a temporary hack --- upcoming versions
of Linux will provide a portable, efficient interface for
debugging programs that use shared libraries. */
struct objfile *objfile;
struct minimal_symbol *resolver
= find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
if (resolver)
{
struct minimal_symbol *fixup
= lookup_minimal_symbol ("fixup", 0, objfile);
if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
return (SAVED_PC_AFTER_CALL (get_current_frame ()));
}
return 0;
}
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
This function:
1) decides whether a PLT has sent us into the linker to resolve
a function reference, and
2) if so, tells us where to set a temporary breakpoint that will
trigger when the dynamic linker is done. */
CORE_ADDR
i386_linux_skip_solib_resolver (CORE_ADDR pc)
{
CORE_ADDR result;
/* Plug in functions for other kinds of resolvers here. */
result = skip_hurd_resolver (pc);
if (result)
return result;
return 0;
}
|